资源简介 中小学教育资源及组卷应用平台第2单元 二次函数(易错30题7个考点)一.二次函数的性质(共1小题)1.如图,抛物线y=ax2+bx+c交x轴于(﹣1,0)、(3,0)两点,则下列判断中,错误的是( )A.图象的对称轴是直线x=1B.当x>1时,y随x的增大而减小C.一元二次方程ax2+bx+c=0的两个根是﹣1和3D.当﹣1<x<3时,y<0二.二次函数图象与系数的关系(共3小题)2.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=﹣,下列结论中,正确的是( )A.abc>o B.b2﹣4ac<0 C.2b+c>0 D.4a﹣2b+c<03.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①a﹣b+c>0;②2abc>0;③4a﹣2b+c>0;④b2﹣4ac>0;⑤3a+c>0;⑥a﹣c>0,其中正确的结论的个数是( )A.2 B.3 C.4 D.54.二次函数y=ax2+bx+c(a≠0)的图象如图所示.下列结论:①abc>0;②2a+b=0;③m为任意实数,则a+b>am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2且x1≠x2,则x1+x2=2.其中正确的有( )A.①④ B.③④ C.②⑤ D.②③⑤三.二次函数图象上点的坐标特征(共1小题)5.若抛物线y=2x2﹣px+4p+1中不管p取何值时都通过定点,则定点坐标为 .四.二次函数的最值(共1小题)6.若函数y=x2﹣6x+5,当2≤x≤6时的最大值是M,最小值是m,则M﹣m= .五.抛物线与x轴的交点(共1小题)7.二次函数y=x2+bx+c的图象如图所示,则下列结论正确的是( )A.顶点坐标(﹣1,﹣4)B.当x>﹣1时,y随x的增大而减小C.线段AB的长为3D.当﹣3<x<1时,y>0六.二次函数的应用(共4小题)8.施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM为12米.现以O点为原点,OM所在直线为x轴建立直角坐标系(如图1所示).(1)求出这条抛物线的函数解析式,并写出自变量x的取值范围;(2)隧道下的公路是双向行车道(正中间是一条宽1米的隔离带),其中的一条行车道能否行驶宽2.5米、高5米的特种车辆?请通过计算说明;(3)施工队计划在隧道门口搭建一个矩形“脚手架”CDAB,使A、D点在抛物线上.B、C点在地面OM线上(如图2所示).为了筹备材料,需求出“脚手架”三根木杆AB、AD、DC的长度之和的最大值是多少,请你帮施工队计算一下.9.嘉兴某公司抓住“一带一路”的机遇不断创新发展,生产销售某产品,该产品销售量y(万件)与售价x(元件)之间存在图1(一条线段)所示的变化趋势,总成本P(万元)与销售量y(万件)之间存在图2所示的变化趋势,当6≤y≤10时可看成一条线段,当10≤y≤18时可看成抛物线P=﹣y2+8y+m(1)写出y与x之间的函数关系式(2)若销售量不超过10万件时,利润为45万元,求此时的售价为多少元/件?(3)当售价为多少元时,利润最大,最大值是多少万元?(利润=销售总额一总成本)10.某商场经营某种品牌的童装,购进时的单价是60元.根据市场调查,在一段时间内,销售单价是80元时,销售量是200件,而销售单价每降低1元,就可多售出20件.(1)写出销售量y件与销售单价x元之间的函数关系式;写出销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式;(2)若童装厂规定该品牌童装销售单价不低于76元,且商场要完成不少于240件的销售任务,则商场销售该品牌童装获得的最大利润是多少?11.为了落实国务院的指示精神,某地方政府出台了一系列“精准扶贫”优惠政策,使贫困户收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+80.设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种产品的销售价不高于每千克30元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?七.二次函数综合题(共19小题)12.如图(1)所示,E为矩形ABCD的边AD上一点,动点P,Q同时从点B出发,点P沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(曲线OM为抛物线的一部分),则下列结论:①AD=BE=5;②;③当0<t≤5时,;④当秒时,△ABE∽△QBP;其中正确的结论是( )A.①②③ B.②③ C.①③④ D.②④13.如图,分别过点Pi(i,0)(i=1、2、…、n)作x轴的垂线,交的图象于点Ai,交直线于点Bi.则= .14.如图,已知二次函数y=ax2+bx+c(a≠0)的顶点是(1,4),且图象过点A(3,0),与y轴交于点B.(1)求二次函数y=ax2+bx+c的解析式;(2)求直线AB的解析式;(3)在直线AB上方的抛物线上是否存在一点C,使得S△ABC=3,如果存在,请求出C点的坐标,如果不存在,请说明理由.15.如图,已知抛物线y=﹣x2+bx+c经过B(﹣3,0),C(0,3)两点,与x轴的另一个交点为A.(1)求抛物线的解析式;(2)若直线y=mx+n经过B,C两点,则m= ;n= ;(3)在抛物线对称轴上找一点E,使得AE+CE的值最小,直接写出点E的坐标;(4)设点P为x轴上的一个动点,是否存在使△BPC为等腰三角形的点P,若存在,直接写出点P的坐标;若不存在,说明理由.16.在平面直角坐标系xOy中,已知抛物线y=ax2﹣2(a+1)x+a+2(a≠0).(1)当a=﹣时,求抛物线的对称轴及顶点坐标;(2)请直接写出二次函数图象的对称轴(用含a的代数式表示)及二次函数图象经过的定点坐标是 .(3)若当1≤x≤5时,函数值有最大值为8,求二次函数的解析式;(4)已知点A(0,﹣3)、B(5,﹣3),若抛物线与线段AB只有一个公共点,请直接写出a的取值范围.17.如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点,与y轴交于点C,抛物线的对称轴交x轴于点D.已知A(﹣1,0),C(0,3).(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点M,使得MA+MC的值最小,求此点M的坐标;(3)在抛物线的对称轴上是否存在P点,使△PCD是等腰三角形,如果存在,求出点P的坐标,如果不存在,请说明理由.18.如图1,抛物线y=ax2+x+c与x轴交于点A、B(4,0)(A点在B点左侧),与y轴交于点C(0,6),点P是抛物线上一个动点,连接PB,PC,BC(1)求抛物线的函数表达式;(2)若点P的横坐标为3,求△BPC的面积;(3)如图2所示,当点P在直线BC上方运动时,连接AC,求四边形ABPC面积的最大值,并写出此时P点坐标.(4)若点M是x轴上的一个动点,点N是抛物线上一动点,P的横坐标为3.试判断是否存在这样的点M,使得以点B,M,N,P为顶点的四边形是平行四边形,若存在,请直接写出点M的坐标;若不存在,请说明理由.19.如图,抛物线y=﹣x2+2x+3与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D和点C关于抛物线的对称轴对称.(1)求直线AD的解析式;(2)如图,直线AD上方的抛物线上有一点F,过点F作FG⊥AD于点G,求线段FG的最大值;(3)点M是抛物线的顶点,点P是y轴上一点,点Q是坐标平面内一点,以A,M,P,Q为顶点的四边形是以AM为边的矩形,求点Q的坐标.20.如图所示,在平面直角坐标中,抛物线的顶点P到x轴的距离是4,抛物线与x轴相交于O、M两点,OM=4;矩形ABCD的边BC在线段的OM上,点A、D在抛物线上.(1)求这条抛物线的解析式;(2)设点D的横坐标是m,矩形ABCD的周长为L,求L与m的关系式,并求出L的最大值;(3)点E在抛物线的对称轴上,在抛物线上是否存在点F,使得以E、F、O、M为顶点的四边形是平行四边形?如果存在,求F点的坐标.21.如图,一次函数y=x+1的图象与x轴交于点A,与y轴交于点B,二次函数y=x2+bx+c的图象与一次函数y=x+1的图象交于B、C两点,与x轴交于D、E两点,且D点坐标为(1,0).(1)求抛物线的解析式;(2)在x轴上找一点P,使|PB﹣PC|最大,求出点P的坐标;(3)在x轴上是否存在点P,使得△PBC是以点P为直角顶点的直角三角形?若存在,求出点P的坐标,若不存在,请说明理由.22.如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出点P的坐标;如果不存在,请说明理由;(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,求△CBF的最大面积及此时点E的坐标.23.已知二次函数y=﹣x2+bx+c的图象与直线y=x+3相交于点A和点B,点A在x轴上,点B在y轴上.抛物线的顶点为P.(1)求这个二次函数的解析式;(2)现将抛物线向右平移m个单位,当抛物线与△ABP有且只有一个公共点时,求m的值;(3)在直线AB下方的抛物线上是否存在点Q,使得S△ABQ=2S△ABP,若存在,请求出点Q的坐标,若不存在,请说明理由.24.如图1和图2,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过B(1,0),C(0,3)两点,与x轴交于点A.(1)求抛物线的解析式;(2)如图1,在抛物线的对称轴直线x=﹣1上找一点M,使点M到点B的距离与到点C的距离之和最小,求出点M的坐标;(3)如图2,点Q为直线AC上方抛物线上一点,若∠CBQ=45°,请求出点Q坐标.25.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0)、B(3,0)两点,与y轴交于点C(0,3),D为抛物线的顶点.(1)求此二次函数的表达式;(2)求△CDB的面积.(3)在其对称轴右侧的抛物线上是否存在一点P,使△PDC是等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.26.如图,在平面直角坐标系中,已知抛物线y=ax2﹣2x+c与直线y=kx+b都经过A(0,﹣3),B(3,0)两点,该抛物线的顶点为C.(1)求此抛物线和直线AB的解析式;(2)设点P是直线AB下方抛物线上的一动点,当△PAB面积最大时,试求出点P的坐标,并求出△PAB面积的最大值;(3)设直线AB与该抛物线的对称轴交于点E,在射线EB上是否存在一点M,过点M作x轴的垂线交抛物线于点N,使点M、N、C、E是平行四边形的四个顶点?若存在,试求出点M的坐标;若不存在,请说明理由.27.矩形OABC在直角坐标系中的位置如图所示,A,C两点的坐标分别为A(6,0),C(0,3),直线y=x与BC边相交于点D.(1)求点D的坐标;(2)若抛物线y=ax2+bx经过D,A两点,试确定此抛物线的表达式;(3)设(2)中抛物线的对称轴与直线OD交于点M,点P为对称轴上一动点,以P,O,M为顶点的三角形与△OCD相似,求符合条件的P点的坐标.28.已知一次函数y1=﹣3x+3与x轴,y轴分别交于点A,B两点,抛物线y2=ax2﹣2ax+a+4(a<0);(1)若抛物线经过点B,求出抛物线的解析式;(2)抛物线是否经过一定点,若经过定点,求出定点坐标,若不经过,请说明理由;(3)在(1)的条件下,第一象限一点M是抛物线上一动点,连接AM,BM,设点M的横坐标为t,四边形BOAM的面积为S,求出S与t的函数关系式,当t取何值时,S有最大值是多少?29.已知抛物线y=﹣x2+x+3与x轴交于点A、B(A在B的左侧),与y轴交于点C.∠BAC的平分线AD交y轴于点D.过点D的直线l与射线AC、AB分别交于点M、N.(1)求抛物线的对称轴;(2)当实数a>﹣2时,求二次函数y=﹣x2+x+3在﹣2<x≤a时的最大值;(可用含a的代数式表示)(3)当直线l绕点D旋转时,试证明为定值,并求出该定值.30.如图,已知关于x的二次函数y=﹣x2+bx+c(c>0)的图象与x轴相交于A、B两点(点A在点B的左侧),与y轴交于点C,且OB=OC=3,顶点为M.(1)求出二次函数的关系式;(2)点P为线段MB上的一个动点,过点P作x轴的垂线PD,垂足为D.若OD=m,△PCD的面积为S,求S关于m的函数关系式,并写出m的取值范围;(3)探索线段MB上是否存在点P,使得△PCD为直角三角形?如果存在,求出P的坐标;如果不存在,请说明理由.21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台第2单元 二次函数(易错30题7个考点)一.二次函数的性质(共1小题)1.如图,抛物线y=ax2+bx+c交x轴于(﹣1,0)、(3,0)两点,则下列判断中,错误的是( )A.图象的对称轴是直线x=1B.当x>1时,y随x的增大而减小C.一元二次方程ax2+bx+c=0的两个根是﹣1和3D.当﹣1<x<3时,y<0【答案】D【解答】解:A、对称轴为直线x==1,正确,故本选项错误;B、当x>1时,y随x的增大而减小,正确,故本选项错误;C、一元二次方程ax2+bx+c=0的两个根是﹣1和3正确,故本选项错误;D、应为当﹣1<x<3时,y>0,故本选项正确.故选:D.二.二次函数图象与系数的关系(共3小题)2.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=﹣,下列结论中,正确的是( )A.abc>o B.b2﹣4ac<0 C.2b+c>0 D.4a﹣2b+c<0【答案】D【解答】解:A、图象开口向上,与y轴交于负半轴,对称轴在y轴左侧,能得到:a>0,c<0,﹣<0,b>0,∴abc>0,错误;B、图象与x轴有2个交点,依据根的判别式可知b2﹣4ac>0,错误;C、∵﹣=﹣,∴b=a,∵x=1时,a+b+c<0,∴2b+c<0,错误;D、∵图象与x轴交于左边的点在﹣2和﹣3之间,∴x=﹣2时,4a﹣2b+c<0,正确;故选:D.3.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①a﹣b+c>0;②2abc>0;③4a﹣2b+c>0;④b2﹣4ac>0;⑤3a+c>0;⑥a﹣c>0,其中正确的结论的个数是( )A.2 B.3 C.4 D.5【答案】C【解答】解:当x=﹣1时,y<0,则a﹣b+c<0,所以①错误;抛物线开口向上,则a>0;对称轴在y轴右侧,x=﹣>0,则b<0;抛物线与y轴的交点坐标在x轴下方,则c<0,于是abc>0,所以②正确;当x=﹣2,y>0,则4a﹣2b+c>0,所以③正确;抛物线与x轴有两个交点,则b2﹣4ac>0,所以④正确;x=﹣=1,即b=﹣2a,而a﹣b+c<0,则3a+c<0,所以⑤错误;a>0,c<0,则a﹣c>0,所以⑥正确.故选:C.4.二次函数y=ax2+bx+c(a≠0)的图象如图所示.下列结论:①abc>0;②2a+b=0;③m为任意实数,则a+b>am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2且x1≠x2,则x1+x2=2.其中正确的有( )A.①④ B.③④ C.②⑤ D.②③⑤【答案】C【解答】解:①抛物线开口方向向下,则a<0.抛物线对称轴位于y轴右侧,则a、b异号,即ab<0.抛物线与y轴交于正半轴,则c>0.所以abc<0.故①错误.②∵抛物线对称轴为直线x==1,∴b=﹣2a,即2a+b=0,故②正确;③∵抛物线对称轴为直线x=1,∴函数的最大值为:a+b+c,∴a+b+c≥am2+bm+c,即a+b≥am2+bm,故③错误;④∵抛物线与x轴的一个交点在(3,0)的左侧,而对称轴为直线x=1,∴抛物线与x轴的另一个交点在(﹣1,0)的右侧∴当x=﹣1时,y<0,∴a﹣b+c<0,故④错误;⑤∵ax12+bx1=ax22+bx2,∴ax12+bx1﹣ax22﹣bx2=0,∴a(x1+x2)(x1﹣x2)+b(x1﹣x2)=0,∴(x1﹣x2)[a(x1+x2)+b]=0,而x1≠x2,∴a(x1+x2)+b=0,即x1+x2=,∵b=﹣2a,∴x1+x2=2,故⑤正确.综上所述,正确的有②⑤.故选:C.三.二次函数图象上点的坐标特征(共1小题)5.若抛物线y=2x2﹣px+4p+1中不管p取何值时都通过定点,则定点坐标为 (4,33) .【答案】见试题解答内容【解答】解:y=2x2﹣px+4p+1可化为y=2x2﹣p(x﹣4)+1,分析可得:当x=4时,y=33;且与p的取值无关;故不管p取何值时都通过定点(4,33).四.二次函数的最值(共1小题)6.若函数y=x2﹣6x+5,当2≤x≤6时的最大值是M,最小值是m,则M﹣m= 9 .【答案】见试题解答内容【解答】解:原式可化为y=(x﹣3)2﹣4,可知函数顶点坐标为(3,﹣4),当y=0时,x2﹣6x+5=0,即(x﹣1)(x﹣5)=0,解得x1=1,x2=5.如图:m=﹣4,当x=6时,y=36﹣36+5=5,即M=5.则M﹣m=5﹣(﹣4)=9.故答案为9.五.抛物线与x轴的交点(共1小题)7.二次函数y=x2+bx+c的图象如图所示,则下列结论正确的是( )A.顶点坐标(﹣1,﹣4)B.当x>﹣1时,y随x的增大而减小C.线段AB的长为3D.当﹣3<x<1时,y>0【答案】A【解答】解:由图可知,对称轴为﹣=﹣1,b=2;c=﹣3,则函数解析式为y=x2+2x﹣3.其顶点坐标为(﹣1,﹣4).由图可知,当x>﹣1时,y随x的增大而增大;当y=0时,x2+2x﹣3=0,解得x1=1;x2=﹣3.可知线段AB长为1﹣(﹣3)=4,由图可知当﹣3<x<1时,y<0.可见,只有A正确,故选:A.六.二次函数的应用(共4小题)8.施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM为12米.现以O点为原点,OM所在直线为x轴建立直角坐标系(如图1所示).(1)求出这条抛物线的函数解析式,并写出自变量x的取值范围;(2)隧道下的公路是双向行车道(正中间是一条宽1米的隔离带),其中的一条行车道能否行驶宽2.5米、高5米的特种车辆?请通过计算说明;(3)施工队计划在隧道门口搭建一个矩形“脚手架”CDAB,使A、D点在抛物线上.B、C点在地面OM线上(如图2所示).为了筹备材料,需求出“脚手架”三根木杆AB、AD、DC的长度之和的最大值是多少,请你帮施工队计算一下.【答案】见试题解答内容【解答】解:(1)∵M(12,0),P(6,6).∴设这条抛物线的函数解析式为y=a(x﹣6)2+6,∵抛物线过O(0,0),∴a(0﹣6)2+6=0,解得a=﹣,∴这条抛物线的函数解析式为y=﹣(x﹣6)2+6,即y=﹣x2+2x.(0≤x≤12)(2)当x=6﹣0.5﹣2.5=3(或x=6+0.5+2.5=9)时y=4.5<5故不能行驶宽2.5米、高5米的特种车辆.(3)设点A的坐标为(m,﹣m2+2m)则OB=m,AB=DC=﹣m2+2m根据抛物线的轴对称,可得:OB=CM=m,故BC=12﹣2m,即AD=12﹣2m令L=AB+AD+DC=﹣m2+2m+12﹣2m﹣m2+2m=﹣m2+2m+12=﹣(m﹣3)2+15故当m=3,即OB=3米时,三根木杆长度之和L的最大值为15米.9.嘉兴某公司抓住“一带一路”的机遇不断创新发展,生产销售某产品,该产品销售量y(万件)与售价x(元件)之间存在图1(一条线段)所示的变化趋势,总成本P(万元)与销售量y(万件)之间存在图2所示的变化趋势,当6≤y≤10时可看成一条线段,当10≤y≤18时可看成抛物线P=﹣y2+8y+m(1)写出y与x之间的函数关系式(2)若销售量不超过10万件时,利润为45万元,求此时的售价为多少元/件?(3)当售价为多少元时,利润最大,最大值是多少万元?(利润=销售总额一总成本)【答案】见试题解答内容【解答】解:(1)将点(18,6)、(6,18)代入一次函数表达式:y=kx+b得:,解得:,函数表达式为:y=﹣x+24;(2)当6≤y≤10时,同理可得:P=10y,由题意得:利润w=yx﹣P=﹣(x﹣10)(x﹣24)=45,解得:x=15或19(舍去19),即:此时的售价为15;(3)①当6≤y≤10时,w1=yx﹣P=﹣(x﹣10)(x﹣24),当x=17时,w1有最大值为49万元;②10≤y≤18时,把点(10,100)代入二次函数并解得:m=40,w2=yx﹣P=(24﹣x)2+(24﹣x)(x﹣8)﹣40=﹣x2+x﹣,当x=﹣=14时,w2的最大值为40万元,49>40,故:x=17元时,w有最大值为49万元.10.某商场经营某种品牌的童装,购进时的单价是60元.根据市场调查,在一段时间内,销售单价是80元时,销售量是200件,而销售单价每降低1元,就可多售出20件.(1)写出销售量y件与销售单价x元之间的函数关系式;写出销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式;(2)若童装厂规定该品牌童装销售单价不低于76元,且商场要完成不少于240件的销售任务,则商场销售该品牌童装获得的最大利润是多少?【答案】(1)y=﹣20x+1800(60≤x≤80),W=﹣20x2+3000x﹣108000;(2)4480元.【解答】解:(1)根据题意得,y=200+(80﹣x)×20=﹣20x+1800,所以销售量y件与销售单价x元之间的函数关系式为y=﹣20x+1800(60≤x≤80);W=(x﹣60)y=(x﹣60)(﹣20x+1800)=﹣20x2+3000x﹣108000,所以销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式W=﹣20x2+3000x﹣108000;(2)根据题意得,﹣20x+1800≥240,解得x≤78,∴76≤x≤78,w=﹣20x2+3000x﹣108000,对称轴为x=﹣=75,∵a=﹣20<0,∴抛物线开口向下,∴当76≤x≤78时,W随x的增大而减小,∴x=76时,W有最大值,最大值=(76﹣60)(﹣20×76+1800)=4480(元).所以商场销售该品牌童装获得的最大利润是4480元.11.为了落实国务院的指示精神,某地方政府出台了一系列“精准扶贫”优惠政策,使贫困户收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+80.设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种产品的销售价不高于每千克30元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?【答案】(1)w=﹣2x2+120x﹣1600;(2)该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元;过程见解答;(3)该农户想要每天获得150元的销售利润,销售价应定为每千克25元,过程见解答.【解答】解:(1)由题意得出:w=(x﹣20) y=(x﹣20)(﹣2x+80)=﹣2x2+120x﹣1600,故w与x的函数关系式为:w=﹣2x2+120x﹣1600;(2)w=﹣2x2+120x﹣1600=﹣2(x﹣30)2+200,∵﹣2<0,∴当x=30时,w有最大值.w最大值为200.答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元.(3)当w=150时,可得方程﹣2(x﹣30)2+200=150.解得 x1=25,x2=35.∵35>30,∴x2=35不符合题意,应舍去.答:该农户想要每天获得150元的销售利润,销售价应定为每千克25元.七.二次函数综合题(共19小题)12.如图(1)所示,E为矩形ABCD的边AD上一点,动点P,Q同时从点B出发,点P沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(曲线OM为抛物线的一部分),则下列结论:①AD=BE=5;②;③当0<t≤5时,;④当秒时,△ABE∽△QBP;其中正确的结论是( )A.①②③ B.②③ C.①③④ D.②④【答案】C【解答】解:根据图(2)可得,当点P到达点E时,点Q到达点C,∵点P、Q的运动的速度都是1cm/秒,∴BC=BE=5,∴AD=BE=5,故①小题正确;又∵从M到N的变化是2,∴ED=2,∴AE=AD﹣ED=5﹣2=3,在Rt△ABE中,AB===4,∴cos∠ABE==,故②小题错误;过点P作PF⊥BC于点F,∵AD∥BC,∴∠AEB=∠PBF,∴sin∠PBF=sin∠AEB==,∴PF=PBsin∠PBF=t,∴当0<t≤5时,y=BQ PF=t t=t2,故③小题正确;当t=秒时,点P在CD上,此时,PD=﹣BE﹣ED=﹣5﹣2=,PQ=CD﹣PD=4﹣=,∵=,==,∴=,又∵∠A=∠Q=90°,∴△ABE∽△QBP,故④小题正确.综上所述,正确的有①③④.故选:C.13.如图,分别过点Pi(i,0)(i=1、2、…、n)作x轴的垂线,交的图象于点Ai,交直线于点Bi.则= .【答案】见试题解答内容【解答】解:根据题意,知A1、A2、A3、…An的点都在函与直线x=i(i=1、2、…、n)的图象上,B1、B2、B3、…Bn的点都在直线与直线x=i(i=1、2、…、n)图象上,∴A1(1,)、A2(2,2)、A3(3,)…An(n,n2);B1(1,﹣)、B2(2,﹣1)、B3(3,﹣)…Bn(n,﹣);∴A1B1=|﹣(﹣)|=1,A2B2=|2﹣(﹣1)|=3,A3B3=|﹣(﹣)|=6,…AnBn=|n2﹣(﹣)|=;∴=1,=,…=.∴,=1++…+,=2[+++…+],=2(1﹣+﹣+﹣+…+﹣),=2(1﹣),=.故答案为:.14.如图,已知二次函数y=ax2+bx+c(a≠0)的顶点是(1,4),且图象过点A(3,0),与y轴交于点B.(1)求二次函数y=ax2+bx+c的解析式;(2)求直线AB的解析式;(3)在直线AB上方的抛物线上是否存在一点C,使得S△ABC=3,如果存在,请求出C点的坐标,如果不存在,请说明理由.【答案】(1)y=﹣x2+2x+3;(2)y=﹣x+3;(3)C(1,4)或C(2,3).【解答】解:(1)∵(1,4)是二次函数的顶点,∴设二次函数的解析式为y=a(x﹣1)2+4.又∵图象过点A(3,0),∴代入可得4a+4=0,解得a=﹣1,∴y=﹣(x﹣1)2+4或y=﹣x2+2x+3;(2)由y=﹣x2+2x+3可知,B为(0,3).设直线AB的解析式为:y=kx+t(k≠0),将A(3,0)和B(0,3)代入可得k=﹣1,b=3∴直线AB的解析式为:y=﹣x+3;(3)∵C在直线AB上方的抛物线上,∴可设C(x,﹣x2+2x+3)其中x>0,过C作CD∥y轴,交AB于D点.则D坐标为(x,﹣x+3),又∵S△ABC=3,∴[(﹣x2+2x+3)﹣(﹣x+3)]×3=3,解得x1=1,x2=,2,代入﹣x2+2x+3得4或3.∴C点坐标为(1,4)或(2,3).15.如图,已知抛物线y=﹣x2+bx+c经过B(﹣3,0),C(0,3)两点,与x轴的另一个交点为A.(1)求抛物线的解析式;(2)若直线y=mx+n经过B,C两点,则m= 1 ;n= 3 ;(3)在抛物线对称轴上找一点E,使得AE+CE的值最小,直接写出点E的坐标;(4)设点P为x轴上的一个动点,是否存在使△BPC为等腰三角形的点P,若存在,直接写出点P的坐标;若不存在,说明理由.【答案】(1)y=﹣x2﹣2x+3;(2)1,3;(3)E的坐标为(﹣1,2);(4)点P的坐标为(﹣3﹣3,0)或(3﹣3,0)或(0,0)或(3,0).【解答】解:(1)把点B(﹣3,0),C(0,3)代入y=﹣x2+bx+c得:,解得:,∴抛物线的解析式是y=﹣x2﹣2x+3;(2)把B(﹣3,0),C(0,3)代入y=mx+n中得:,解得:;故答案为:1,3;(3)如图1,由(2)知:直线BC的解析式为y=x+3,抛物线的对称轴为直线x=﹣=﹣1,直线BC与直线x=﹣1相交于点E,则EB=EA,此时AE+CE最小,此时点E的坐标为(﹣1,2);(4)∵B(﹣3,0),C(0,3),∴OB=OC=3,∴BC=3,分三种情况:①BC=BP,如图2,此时点P的坐标为(﹣3﹣3,0)或(3﹣3,0);②当P与O重合时,△BPC也是等腰三角形,此时P(0,0);③BC=CP,如图3,此时点P的坐标为(3,0);综上所述,点P的坐标为(﹣3﹣3,0)或(3﹣3,0)或(0,0)或(3,0).16.在平面直角坐标系xOy中,已知抛物线y=ax2﹣2(a+1)x+a+2(a≠0).(1)当a=﹣时,求抛物线的对称轴及顶点坐标;(2)请直接写出二次函数图象的对称轴(用含a的代数式表示)及二次函数图象经过的定点坐标是 (1,0) .(3)若当1≤x≤5时,函数值有最大值为8,求二次函数的解析式;(4)已知点A(0,﹣3)、B(5,﹣3),若抛物线与线段AB只有一个公共点,请直接写出a的取值范围.【答案】(1)直线x=﹣7,(﹣7,8);(2)(1,0);(3)y=x2﹣4x+3;(4)a的取值范围是:a=或0<a<或﹣5<a<0.【解答】解:(1)a=﹣时,y=﹣x2﹣x+∴对称轴为直线x=﹣=﹣7,把x=﹣7代入y=﹣x2﹣x+得,y=8,∴顶点坐标为(﹣7,8);(2)∵y=ax2﹣2(a+1)x+a+2(a≠0).∴对称轴为直线x=﹣=1+,∵y=ax2﹣2(a+1)x+a+2=a(x﹣1)2﹣2(x﹣1)=(x﹣1)[a(x﹣1)﹣2],∴二次函数经过的定点坐标为(1,0);故答案为:(1,0);(3)由(2)知:二次函数图象的对称轴为直线x=1+,分两种情况:①当a<0时,1+<1,在自变量x的值满足1≤x≤5的情况下,y随x的增大而减小,∴当x=1时,y=0,而当1≤x≤5时,函数值有最大值为8,所以此种情况不成立;②当a>0时,1+>1,i)当1<1+≤3时,即a≥,当x=5时,二次函数的最大值为y=25a﹣10(a+1)+a+2=8,∴a=1,此时二次函数的解析式为y=x2﹣4x+3;ii)当1+>3时,在自变量x的值满足1≤x≤5的情况下,y随x的增大而减小,即x=1有最大值,所以此种情况不成立;综上所述:此时二次函数的解析式为:y=x2﹣4x+3;(4)分三种情况:①当抛物线的顶点在线段AB上时,抛物线与线段AB只有一个公共点,即当y=﹣3时,ax2﹣2(a+1)x+a+2=﹣3,ax2﹣2(a+1)x+a+5=0,Δ=4(a+1)2﹣4a(a+5)=0,∴a=,当a=时,x2﹣x+=0,解得:x1=x2=4(符合题意,如图1),②当a>0时,如图2,当x=0时,y>﹣3;当x=5时,y<﹣3,∴,解得:﹣5<a<,∴0<a<;③当a<0时,如图3,当x=0时,y>﹣3;当x=5时,y<﹣3,∴,解得:﹣5<a<,∴﹣5<a<0;综上所述,a的取值范围是:a=或0<a<或﹣5<a<0.17.如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点,与y轴交于点C,抛物线的对称轴交x轴于点D.已知A(﹣1,0),C(0,3).(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点M,使得MA+MC的值最小,求此点M的坐标;(3)在抛物线的对称轴上是否存在P点,使△PCD是等腰三角形,如果存在,求出点P的坐标,如果不存在,请说明理由.【答案】(1)y=﹣x2+2x+3;(2)点M(1,2);(3)点P的坐标为(1,6)或(1,)或(1,﹣)或(1,).【解答】解:(1)∵抛物线y=﹣x2+bx+c经过A(﹣1,0),C(0,3)两点,∴,解得:,∴该抛物线的解析式为y=﹣x2+2x+3;(2)由对称性可知,直线BC与抛物线对称轴的交点就是点M,抛物线y=﹣x2+2x+3的对称轴是直线x=﹣=1,由于点A(﹣1,0),则点B(3,0),设直线BC的解析式为y=kx+d,则,解得,∴直线BC的解析式为y=﹣x+3,当x=1时,y=﹣1+3=2,∴点M(1,2);(3)设P(1,t),则PC2=12+(t﹣3)2,CD2=32+12=10,PD2=t2,根据△PCD为等腰三角形,分三种情况讨论:①当PC=CD时,则12+(t﹣3)2=10,解得:t=6或t=0(此时点P与D重合,舍去),∴P(1,6);②当CD=PD时,则10=t2,解得:t=±,∴P1(1,),P2(1,﹣);③当PC=PD时,则12+(t﹣3)2=t2,解得:t=,P(1,);综上所述,点P的坐标为(1,6)或(1,)或(1,﹣)或(1,).18.如图1,抛物线y=ax2+x+c与x轴交于点A、B(4,0)(A点在B点左侧),与y轴交于点C(0,6),点P是抛物线上一个动点,连接PB,PC,BC(1)求抛物线的函数表达式;(2)若点P的横坐标为3,求△BPC的面积;(3)如图2所示,当点P在直线BC上方运动时,连接AC,求四边形ABPC面积的最大值,并写出此时P点坐标.(4)若点M是x轴上的一个动点,点N是抛物线上一动点,P的横坐标为3.试判断是否存在这样的点M,使得以点B,M,N,P为顶点的四边形是平行四边形,若存在,请直接写出点M的坐标;若不存在,请说明理由.【答案】(1)该抛物线的函数表达式为y=﹣x2+x+6;(2)S△BPC=;(3)S四边形ABPC的最大值为24,此时,点P的坐标为(2,6);(4)点M的坐标为(8,0)或(﹣,0)或(,0)或(0,0).【解答】解:(1)∵抛物线y=ax2+x+c经过点B(4,0)、C(0,6),∴,解得:,∴该抛物线的函数表达式为y=﹣x2+x+6;(2)设直线BC的解析式为y=kx+b,则,解得:,∴直线BC的解析式为y=x+6,∵点P的横坐标为3,∴P(3,),如图1,过点P作PE∥y轴,交BC于点E,则E(3,),∴PE=﹣=,∴S△BPC=S△BPE+S△CPE=××(4﹣3)+××3=;(3)∵y=﹣x2+x+6,∴抛物线的对称轴为直线x=1,∵点A和点B(4,0)关于直线x=1对称,∴A(﹣2,0),∴AB=4﹣(﹣2)=6,∵C(0,6),∴OC=6,∴S△ABC=AB OC=×6×6=18,如图2,过点P作PE∥y轴交BC于点E,设P(t,﹣t2+t+6),则E(t,t+6),∴PE=﹣t2+t+6﹣(t+6)=﹣t2+3t,∴S△PBC=S△PBE+S△PCE=PE (xB﹣xP)+PE (xP﹣xC)=×(﹣t2+3t)×4=﹣t2+6t,∴S四边形ABPC=S△PBC+S△ABC=﹣t2+6t+18=﹣(t﹣2)2+24,∵﹣<0,∴当t=2时,S四边形ABPC有最大值,最大值为24.此时,点P的坐标为(2,6);(4)由(2)知P(3,),B(4,0),∵点M是x轴上的一个动点,点N是抛物线上一动点,∴设M(m,0),N(n,﹣n2+n+6),当BP、MN为对角线时,BP与MN的中点重合,则,解得:,(此时点N与点P重合,舍去),∴M(8,0);当BM、PN为对角线时,BM与PN的中点重合,则,解得:,,∴M(﹣,0)或(,0);当BN、PM为对角线时,BN与PM的中点重合,则,解得:,(此时点N与点P重合,舍去),∴M(0,0);综上所述,点M的坐标为(8,0)或(﹣,0)或(,0)或(0,0).19.如图,抛物线y=﹣x2+2x+3与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D和点C关于抛物线的对称轴对称.(1)求直线AD的解析式;(2)如图,直线AD上方的抛物线上有一点F,过点F作FG⊥AD于点G,求线段FG的最大值;(3)点M是抛物线的顶点,点P是y轴上一点,点Q是坐标平面内一点,以A,M,P,Q为顶点的四边形是以AM为边的矩形,求点Q的坐标.【答案】(1)直线AD的解析式为y=x+1;(2)FG的最大值为:;(3)或.【解答】(1)解:当x=0时,y=﹣x2+2x+3=3,则C(0,3),当y=0时,﹣x2+2x+3=0,解得x1=﹣1,x2=3,则A(﹣1,0),B(3,0),∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线对称轴为直线x=1,而点D和点C关于直线x=1对称,∴D(2,3),设直线AD的解析式为y=kx+b,把A(﹣1,0),D(2,3)分别代入得 ,解得 ,∴直线AD的解析式为y=x+1;(2)记AD于y轴的交点为E,当x=0时,y=x+1=1,则E(0,1),∴OA=OE,∴△OAE为等腰直角三角形,∴∠EAO=∠AEO=45°,过F作FN∥y轴交AD于N,∴∠FNG=45°,∴△FGN为等腰直角三角形,∴,设F(x,﹣x2+2x+3),则N(x,x+1),∴,当时,FN有最大值,∴FG的最大值为:;(3)如图,当P在AM的右边,记直线AM交y轴于R,y=﹣x2+2x+3=﹣(x﹣1)2+4,则M(1,4),设直线AM的解析式为y=mx+n,把A(﹣1,0)、M(1,4)分别代入得 ,解得 ,∴直线AM的解析式为y=2x+2,当x=0时,y=2x+2=2,则R(0,2),设P(0,y),而四边形APQM为矩形,∴∠RAP=90°,∴(2﹣y)2=12+y2+12+22,解得:,即,由平移的性质可得:;如图,当P在AM的左边,同理可得:(y﹣2)2=(1﹣0)2+(4﹣2)2+(0﹣1)2+(y﹣4)2,解得:,即,由平移的性质可得:;综上:或.20.如图所示,在平面直角坐标中,抛物线的顶点P到x轴的距离是4,抛物线与x轴相交于O、M两点,OM=4;矩形ABCD的边BC在线段的OM上,点A、D在抛物线上.(1)求这条抛物线的解析式;(2)设点D的横坐标是m,矩形ABCD的周长为L,求L与m的关系式,并求出L的最大值;(3)点E在抛物线的对称轴上,在抛物线上是否存在点F,使得以E、F、O、M为顶点的四边形是平行四边形?如果存在,求F点的坐标.【答案】(1)y=﹣x2+4x;(2)当m=1时,周长L有最大值10;(3)点F(﹣2,﹣12)或(6,﹣12)或(2,4)时,以E、F、O、M为顶点的四边形是平行四边形.【解答】解:(1)依题意得顶点P的坐标(2,4),设抛物线的解析式为y=a(x﹣2)2+4,把点M(4,0)代入解析式,解得a=﹣1,所以y=﹣(x﹣2)2+4=﹣x2+4x,所以抛物线的解析式为:y=﹣x2+4x.(2)∵点D的横坐标是m,∴点D的纵坐标是﹣m2+4m,BC=4﹣2m,∴矩形ABCD的周长L=2(﹣m2+4m+4﹣2m)=﹣2(m﹣1)2+10,∴当m=1时,周长L有最大值10.(3)①OM是平行四边形的边时:点F的横坐标:2﹣4=﹣2,纵坐标:y=﹣(﹣2)2+4×(﹣2)=﹣12,此时,点F(﹣2,﹣12);或点F的横坐标:2+4=6,纵坐标:y=﹣62+4×6=﹣12,此时,点F(6,﹣12).②OM是平行四边形的对角线时,EF所在的直线经过OM的中点,∴EF都在抛物线的对称轴上,∴点F与点P重合,∴点F(2,4).综上所述,点F(﹣2,﹣12)或(6,﹣12)或(2,4)时,以E、F、O、M为顶点的四边形是平行四边形.21.如图,一次函数y=x+1的图象与x轴交于点A,与y轴交于点B,二次函数y=x2+bx+c的图象与一次函数y=x+1的图象交于B、C两点,与x轴交于D、E两点,且D点坐标为(1,0).(1)求抛物线的解析式;(2)在x轴上找一点P,使|PB﹣PC|最大,求出点P的坐标;(3)在x轴上是否存在点P,使得△PBC是以点P为直角顶点的直角三角形?若存在,求出点P的坐标,若不存在,请说明理由.【答案】(1)y=x2﹣x+1;(2)P(﹣2,0);(3)存在,P(1,0)或(3,0).【解答】解:(1)将B(0,1),D(1,0)的坐标代入y=x2+bx+c,得:,解得,∴解析式y=x2﹣x+1.(2)当P在x轴上的任何位置(点A除外)时,根据三角形两边之差小于第三边得|PB﹣PC|<BC,当点P在点A 处时,|PB﹣PC|=BC,这时,|PB﹣PC|最大,即P在A点时,|PB﹣PC|最大.∵直线y=x+1交x轴与A点,令y=0,x=﹣2,即A(﹣2,0),∴P(﹣2,0).(3)设符合条件的点P存在,令P(a,0):当P为直角顶点时,如图:过C作CF⊥x轴于F;∵∠BPO+∠OBP=90°,∠BPO+∠CPF=90°,∴∠OBP=∠FPC,∴Rt△BOP∽Rt△PFC,∴,即,整理得a2﹣4a+3=0,解得a=1或a=3;∴所求的点P的坐标为(1,0)或(3,0),综上所述:满足条件的点P共有2个.22.如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出点P的坐标;如果不存在,请说明理由;(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,求△CBF的最大面积及此时点E的坐标.【答案】(1)y=﹣x2+x+2;(2)存在,点P的坐标为(,)或(,﹣)或(,4);(3)△CBF的最大面积为4,E(2,1).【解答】解:(1)∵A(﹣1,0),C(0,2)在抛物线y=x2+bx+c上,则,解得,∴抛物线解析式为y=﹣x2+x+2;(2)存在,理由:∵y=﹣x2+x+2=﹣(x﹣)2+,∴抛物线对称轴为直线x=,∴D(,0),且C(0,2),∴CD==,∵点P在对称轴上,∴可设P(,t),∴PD=|t|,PC=,当PD=CD时,则有|t|=,解得t=±,此时P点坐标为(,)或(,﹣);当PC=CD时,则有=,解得t=0(与D重合,舍去)或t=4,此时P点坐标为(,4);综上可知存在满足条件的点P,其坐标为(,)或(,﹣)或(,4);(3)当y=0时,即﹣x2+x+2=0,解得x=﹣1或x=4,∴A(﹣1,0),B(4,0),设直线BC解析式为y=kx+s,由题意可得,解得,∴直线BC解析式为y=﹣x+2,∵点E是线段BC上的一个动点,∴可设E(m,﹣m+2),则F(m,﹣m2+m+2),∴EF=﹣m2+m+2﹣(﹣m+2)=﹣m2+2m=﹣(m﹣2)2+2,∴S△CBF=×4 EF=2[﹣(m﹣2)2+2]=﹣(m﹣2)2+4,∵﹣1<0,∴当m=2时,S△CBF有最大值,最大值为4,此时﹣x+2=1,∴E(2,1),即E为BC的中点,∴当E运动到BC的中点时,△CBF的面积最大,最大面积为4,此时E点坐标为(2,1).23.已知二次函数y=﹣x2+bx+c的图象与直线y=x+3相交于点A和点B,点A在x轴上,点B在y轴上.抛物线的顶点为P.(1)求这个二次函数的解析式;(2)现将抛物线向右平移m个单位,当抛物线与△ABP有且只有一个公共点时,求m的值;(3)在直线AB下方的抛物线上是否存在点Q,使得S△ABQ=2S△ABP,若存在,请求出点Q的坐标,若不存在,请说明理由.【答案】(1)这个二次函数的解析式为:y=﹣x2﹣2x+3;(2)m的值为2;(3)点Q的坐标为(﹣4,﹣5)或(1,0).【解答】解:(1)当x=0时,y=3,∴B(0,3),当y=0时,x+3=0,∴x=﹣3,∴A(﹣3,0),把A(﹣3,0)和B(0,3)代入二次函数y=﹣x2+bx+c中得:,解得:,∴这个二次函数的解析式为:y=﹣x2﹣2x+3;(2)y=﹣x2﹣2x+3=﹣(x+1)2+4,∴P(﹣1,4),将抛物线向右平移m个单位,P对应点为(﹣1+m,4),∴平移后的抛物线解析式为y=﹣(x+1﹣m)2+4,把B(0,3)代入得,3=﹣(1﹣m)2+4,解得m1=2,m2=0(舍去),故m的值为2;(3)∵S△ABP=S△APD+S梯形PDOB﹣S△AOB=+×(3+4)×1﹣=3,∴S△ABQ=2S△ABP=6,设点Q的坐标为(a,﹣a2﹣2a+3),分两种情况:①如图1,当Q在对称轴的左侧,过点P作PD⊥x轴于点D,过点Q作QE∥y轴交直线AB于E,∴S△ABQ=(a+3+a2+2a﹣3)(﹣a+3+a)=6,解得:a1=﹣4,a2=1(舍),∴Q(﹣4,﹣5);②如图2,当Q在对称的右侧,过点P作PD⊥x轴于点D,过点Q作QE∥y轴交直线AB于E,同理可得a=1,∴Q(1,0),综上,点Q的坐标为(﹣4,﹣5)或(1,0).24.如图1和图2,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过B(1,0),C(0,3)两点,与x轴交于点A.(1)求抛物线的解析式;(2)如图1,在抛物线的对称轴直线x=﹣1上找一点M,使点M到点B的距离与到点C的距离之和最小,求出点M的坐标;(3)如图2,点Q为直线AC上方抛物线上一点,若∠CBQ=45°,请求出点Q坐标.【答案】见试题解答内容【解答】解:(1)点B的坐标为(1,0),函数的对称轴为x=﹣1,故点A(﹣3,0),则抛物线的表达式为:y=a(x+3)(x﹣1)=a(x2+2x﹣3),即﹣3a=3,解得:a=﹣1,故抛物线的表达式为:y=﹣x2﹣2x+3…①;(2)点B关于函数对称轴的对称点为点A,则AC交函数对称轴于点M,则点M为所求,由点A、C的坐标得,直线AC的表达式为:y=x+3,当x=﹣1时,y=2,故点M(﹣1,2);(3)如图,设直线BQ交y轴于点H,作HG⊥BC于点G,tan∠OCB=,∠CBQ=45°,则设:BG=HG=x,则CG=3x,则BC=BG+CG=4x==,解得x=,CH=x=,则点H(0,),由点B、H的坐标可得,直线BQ的表达式为:y=﹣x+…②,联立①②并解得:x=1(舍去)或﹣,故点Q(﹣,).25.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0)、B(3,0)两点,与y轴交于点C(0,3),D为抛物线的顶点.(1)求此二次函数的表达式;(2)求△CDB的面积.(3)在其对称轴右侧的抛物线上是否存在一点P,使△PDC是等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.【答案】见试题解答内容【解答】解:(1)设解析式为:y=a(x﹣x1)(x﹣x2)(a≠0),即y=a(x+1)(x﹣3).把点C(0,3)代入,得a(0+1)(0﹣3)=3.a=﹣1.故该抛物线解析式是y=﹣(x+1)(x﹣3)或y=﹣x2+2x+3.(2)由y=﹣x2+2x+3=﹣(x﹣1)2+4知,顶点坐标D为(1,4).∵B(3,0),C(0,3),∴BC2=18,BD2=(3﹣1)2+(0﹣4)2=20,CD2=(0﹣1)2+(3﹣4)2=2,∴BD2=BC2+CD2.∴△BCD是直角三角形,且∠BCD=90°.∴S△BCD=CD BC=××3=3,即△CDB的面积是3.(3)存在,由y=﹣x2+2x+3得,D点坐标为(1,4),对称轴为x=1,①若以CD为底边,则PD=PC,设P点坐标为(x,y),根据勾股定理得:x2+(3﹣y)2=(x﹣1)2+(4﹣y)2,即y=4﹣x,又∵P点(x,y)在抛物线上,∴4﹣x=﹣x2+2x+3,即 x2﹣3x+1=0,解得 x1=,x2=<1 (舍去),∴x=,∴y=4﹣x=,即点P坐标为(,).②若以CD为一腰,因为点P在对称轴右侧的抛物线上,由抛物线对称性知,点P与点C关于直线x=1对称,此时点P坐标为(2,3),∴符合条件的点P坐标为(,) 或(2,3).26.如图,在平面直角坐标系中,已知抛物线y=ax2﹣2x+c与直线y=kx+b都经过A(0,﹣3),B(3,0)两点,该抛物线的顶点为C.(1)求此抛物线和直线AB的解析式;(2)设点P是直线AB下方抛物线上的一动点,当△PAB面积最大时,试求出点P的坐标,并求出△PAB面积的最大值;(3)设直线AB与该抛物线的对称轴交于点E,在射线EB上是否存在一点M,过点M作x轴的垂线交抛物线于点N,使点M、N、C、E是平行四边形的四个顶点?若存在,试求出点M的坐标;若不存在,请说明理由.【答案】(1)y=x2﹣2x﹣3;y=x﹣3;(2),P(,﹣);(3)(2,﹣1)或(,),【解答】解:(1)∵抛物线y=ax2﹣2x+c经过A(0,﹣3),B(3,0)两点,∴,解得,∴抛物线的解析式为y=x2﹣2x﹣3,∵直线y=kx+b经过A(0,﹣3),B(3,0)两点,∴,解得,∴直线AB的解析式为y=x﹣3;(2)如图1,作PQ∥y轴交直线AB于点Q,设P(m,m2﹣2m﹣3),则Qm,m﹣3),∴PQ=m﹣3﹣(m2﹣2m﹣3)=﹣m2+3m,∴S△PAB=×3×(﹣m2+3m)=﹣m2+m=﹣(m﹣)2+,∴当m=时,△PAB面积有最大值,最大值是,此时P点坐标为(,﹣).(3)存在,理由如下:∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的顶点C的坐标为(1,﹣4),∵CE∥y轴,∴E(1,﹣2),∴CE=2,①如图2,若点M在x轴下方,四边形CEMN为平行四边形,则CE=MN,设M(a,a﹣3),则N(a,a2﹣2a﹣3),∴MN=a﹣3﹣(a2﹣2a﹣3)=﹣a2+3a,∴﹣a2+3a=2,解得:a=2,a=1(舍去),∴M(2,﹣1),②如图3,若点M在x轴上方,四边形CENM为平行四边形,则CE=MN,设M(a,a﹣3),则N(a,a2﹣2a﹣3),∴MN=a2﹣2a﹣3﹣(a﹣3)=a2﹣3a,∴a2﹣3a=2,解得:a=,a=(舍去),∴M(,),综合可得M点的坐标为(2,﹣1)或(,),27.矩形OABC在直角坐标系中的位置如图所示,A,C两点的坐标分别为A(6,0),C(0,3),直线y=x与BC边相交于点D.(1)求点D的坐标;(2)若抛物线y=ax2+bx经过D,A两点,试确定此抛物线的表达式;(3)设(2)中抛物线的对称轴与直线OD交于点M,点P为对称轴上一动点,以P,O,M为顶点的三角形与△OCD相似,求符合条件的P点的坐标.【答案】(1)D(4,3);(2)y=﹣x2+x;(3)P1(3,0),P2(3,﹣4).【解答】解:(1)∵四边形OABC是矩形,∴BC∥OA,∵直线y=x与BC边相交于点D,∴点D的纵坐标为3,令y=3,得3=x,解得:x=4,∴D(4,3);(2)∵抛物线y=ax2+bx经过D(4,3),A(6,0)两点,∴,解得:,∴该抛物线的解析式为y=﹣x2+x;(3)如图2:抛物线的对称轴与x轴交于点P1,符合条件.∵CB∥OA,∴∠P1OM=∠CDO,∵∠DCO=∠OP1M=90°,∴Rt△P1OM∽Rt△CDO.∵x=﹣=3,∴该点坐标为P1(3,0).过点O作OD的垂线交抛物线的对称轴于点P2,∵对称轴平行于y轴,∴∠P2MO=∠DOC,∴Rt△P2OM∽Rt△DCO.在△P2P1O和△DCO中,,,∴△P2P1O≌△DCO(AAS).∴CD=P1P2=4,∵点P2位于第四象限,∴P2(3,﹣4).∴符合条件的点P有两个,分别是P1(3,0),P2(3,﹣4).28.已知一次函数y1=﹣3x+3与x轴,y轴分别交于点A,B两点,抛物线y2=ax2﹣2ax+a+4(a<0);(1)若抛物线经过点B,求出抛物线的解析式;(2)抛物线是否经过一定点,若经过定点,求出定点坐标,若不经过,请说明理由;(3)在(1)的条件下,第一象限一点M是抛物线上一动点,连接AM,BM,设点M的横坐标为t,四边形BOAM的面积为S,求出S与t的函数关系式,当t取何值时,S有最大值是多少?【答案】(1)y=﹣x2+2x+3;(2)抛物线经过一定点,定点坐标为(1,4);(3)S=﹣t2++(0<t<3),当t=时,S有最大值是.【解答】解:(1)当x=0时,y=3,∴B(0,3),将B(0,3)代入y2=ax2﹣2ax+a+4中得:a+4=3,∴a=﹣1,∴抛物线的解析式为:y=﹣x2+2x+3;(2)抛物线y2=ax2﹣2ax+a+4=a(x﹣1)2+4,当x=1时,y2=4,∴抛物线经过一定点,定点坐标为(1,4);(3)如图,连接OM,当y=0时,﹣3x+3=0,∴x=1,∴A(1,0),由题意得:M(t,﹣t2+2t+3)(0<t<3),∴S=S△OBM+S△AOM= OB xM+ OA yM=×3t+×1×(﹣t2+2t+3)=﹣t2++(0<t<3)=﹣(t﹣)2+;∵﹣<0,∴当t=时,S有最大值是.29.已知抛物线y=﹣x2+x+3与x轴交于点A、B(A在B的左侧),与y轴交于点C.∠BAC的平分线AD交y轴于点D.过点D的直线l与射线AC、AB分别交于点M、N.(1)求抛物线的对称轴;(2)当实数a>﹣2时,求二次函数y=﹣x2+x+3在﹣2<x≤a时的最大值;(可用含a的代数式表示)(3)当直线l绕点D旋转时,试证明为定值,并求出该定值.【答案】(1)x=;(2)当a≤时,最大值为﹣a2+a+3;当a>时,最大值为4;(3)证明见解答过程,定值是.【解答】解:(1)抛物线对称轴为:x==;(2)①当a≤时,如图:此时二次函数y=﹣x2+x+3在﹣2<x≤a时的最大值,在x=a时取得,最大值为y=﹣a2+a+3,②当a>时,如图:此时二次函数y=﹣x2+x+3在﹣2<x≤a时的最大值,在x=时取得,最大值为y=4,综上所述,当a≤时,最大值为﹣a2+a+3;当a>时,最大值为4;(3)过M作ME⊥x轴于E,在y=﹣x2+x+3中令x=0得y=3,令y=0得x1=﹣,x2=3,∴A(﹣,0),B(3,0),C(0,3),∴OA=,OC=3,∴tan∠OAC==,∴∠OAC=60°,即∠BAC=60°,∵∠BAC的平分线AD交y轴于点D,∴∠OAD=30°,∴OD=OA tan30°=1,∴D(0,1),①当M在线段AC上时,如图:设AM=a,AN=b,则ON=AN﹣OA=b﹣,∴N(b﹣,0),设直线DN解析式为y=kx+m,将D(0,1),N(b﹣,0)代入得:,解得,∴直线DN解析式为y=x+1,在Rt△AME中,∠OAC=60°,AM=a,∴AE=a,ME=a,∴OE=﹣a=,∴M(,a),将M(,a)代入y=x+1得:a=×+1,变形为:ab=2(a+b),∴a+b=ab,∴=+===,∴为定值,是;②当M在线段AC延长线上时,如图:设AM=a,AN=b,则ON=OA﹣AN=﹣b,∴N(b﹣,0),设直线DN解析式为y=tx+n,将D(0,1),N(b﹣,0)代入得:,解得,∴直线DN解析式为y=x+1,在Rt△AME中,∠OAC=60°,AM=a,∴AE=a,ME=a,∴OE=a﹣=,∴M(,a),将M(,a)代入y=x+1,得:a=×+1,变形为:ab=2(a+b),∴a+b=ab,∴=+===,∴为定值,是;综上所述,直线l绕点D旋转时,为定值,该定值是.30.如图,已知关于x的二次函数y=﹣x2+bx+c(c>0)的图象与x轴相交于A、B两点(点A在点B的左侧),与y轴交于点C,且OB=OC=3,顶点为M.(1)求出二次函数的关系式;(2)点P为线段MB上的一个动点,过点P作x轴的垂线PD,垂足为D.若OD=m,△PCD的面积为S,求S关于m的函数关系式,并写出m的取值范围;(3)探索线段MB上是否存在点P,使得△PCD为直角三角形?如果存在,求出P的坐标;如果不存在,请说明理由.【答案】见试题解答内容【解答】解:(1)∵OB=OC=3,∴B(3,0),C(0,3)∴,解得 ,∴二次函数的解析式为y=﹣x2+2x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴M(1,4)设直线MB的解析式为y=kx+n,则有解得:,∴直线MB的解析式为y=﹣2x+6∵PD⊥x轴,OD=m,∴点P的坐标为(m,﹣2m+6)S三角形PCD=×(﹣2m+6) m=﹣m2+3m(1≤m<3);(3)∵若∠PDC是直角,则点C在x轴上,由函数图象可知点C在y轴的正半轴上,∴∠PDC≠90°,在△PCD中,当∠DPC=90°时,当CP∥AB时,∵PD⊥AB,∴CP⊥PD,∴PD=OC=3,∴P点纵坐标为:3,代入y=﹣2x+6,∴x=,此时P(,3).∴线段BM上存在点P( ,3)使△PCD为直角三角形.当∠P′CD′=90°时,△COD′∽△D′CP′,此时CD′2=CO P′D′,即9+m2=3(﹣2m+6),∴m2+6m﹣9=0,解得:m=﹣3±3,∵1≤m<3,∴m=3(﹣1),∴P′(3﹣3,12﹣6)综上所述:P点坐标为:(,3),(3﹣3,12﹣6).21世纪教育网(www.21cnjy.com) 展开更多...... 收起↑ 资源列表 第二十二章 二次函数(易错30题7个考点)(原卷版)2023-2024学年九年级数学上册《重难点题型 高分突破》(人教版).docx 第二十二章 二次函数(易错30题7个考点)(解析版)2023-2024学年九年级数学上册《重难点题型 高分突破》(人教版).docx