资源简介 2.5 有理数的大小比较联想 我们已经知道,在数轴上表示的两个有理数,左边的数总比右边的数小.而两个负数在数轴上表示,左边的数与原点的距离较大,也就是绝对值较大.我们发现:两个负数,绝对值大的反而小.这样,比较两个负数的大小,只要比较它们的绝对值的大小就可以了。例如,比较两个负数和的大小:① 先分别求出它们的绝对值:==② 比较绝对值的大小:因为所以③ 得出结论:归纳联系到2.2节的结论,我们可以得到有理数大小比较的一般法则:(1) 负数小于0,0小于正数,负数小于正数;(2) 两个正数,应用已有的方法比较;(3) 两个负数,绝对值大的反而小. 例1 比较下列各对数的大小:-1与-0.01;与0-0.3与与解 (1)这是两个负数比较大小,因为|-1|=1, |-0.01|=0.01,且 1>0.01,所以 -1< -0.01 .(2) 化简 -|-2|=-2,因为负数小于0,所以-|-2| < 0 . (3) 这是两个负数比较大小,因为|-0.3|=0.3,且 0.3 < , 所以 (4) 分别化简两数,得因为正数大于负数,所以 练习1. 用“<”号或“>”填 空:(1)因为 ,所以 ; (2)因为 |-10| |-100| ;所以 -10 -100 .2. 判断下列各式是否正确:(1) (2) (3) >(4) <3. 比较下列各对数的大小;(1) 与(2) 与-0.6184. 回答下列问题:(1) 大于-4的负整数有几个?(2) 小于4的正整数有几个?(3) 大于-4且小于4的整数有几个?习题 2.5 1. 比较下列每对数的大小:(1) 与 ;(2)-9.1与-9.099; (3)-8与 |-8| ; (4)-|-3.2|与-(+3.2).2. 将有理数0,-3.14, ,2.7,-4,0.14按 从小到大的顺序排列,用“<”号连接起来.3. 写出绝对值小于5的所有整数,并在数轴上表示出来.4. 回答下列问题:(1) 有没有最小的正数?有没有最大的负数?为什么?(2) 有没有绝对值最小的有理数?把它写出来. 展开更多...... 收起↑ 资源预览