资源简介 中小学教育资源及组卷应用平台2024年中考数学真题专题分类精选汇编(2025年中考复习全国通用)专题07 平面直角坐标系一、选择题1. 在平面直角坐标系中,点关于原点的对称点的坐标是( )A. B. C. D.2. (2024四川成都市)在平面直角坐标系中,点关于原点对称的点的坐标是( )A. B. C. D.3. (2024四川广元)如果单项式与单项式的和仍是一个单项式,则在平面直角坐标系中点在( )A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限4. (2024四川凉山)点关于原点对称的点是,则的值是( )A. B. C. D.5. (2024贵州省)为培养青少年的科学态度和科学思维,某校创建了“科技创新”社团.小红将“科”“技”“创”“新”写在如图所示的方格纸中,若建立平面直角坐标系,使“创”“新”的坐标分别为,,则“技”所在的象限为( )A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限6. (2024广西)如图,在平面直角坐标系中,点O为坐标原点,点P的坐标为,则点Q的坐标为( )A. B. C. D.7. (2024河北省)在平面直角坐标系中,我们把一个点的纵坐标与横坐标的比值称为该点的“特征值”.如图,矩形位于第一象限,其四条边分别与坐标轴平行,则该矩形四个顶点中“特征值”最小的是( )A. 点A B. 点B C. 点C D. 点D8. (2024甘肃临夏)如图,是坐标原点,菱形的顶点在轴的负半轴上,顶点的坐标为,则顶点的坐标为( )A. B. C. D.9. (2024河北省)平面直角坐标系中,我们把横、纵坐标都是整数,且横、纵坐标之和大于0的点称为“和点”.将某“和点”平移,每次平移的方向取决于该点横、纵坐标之和除以3所得的余数(当余数为0时,向右平移;当余数为1时,向上平移;当余数为2时,向左平移),每次平移1个单位长度.例:“和点”按上述规则连续平移3次后,到达点,其平移过程如下:若“和点”Q按上述规则连续平移16次后,到达点,则点Q的坐标为( )A. 或 B. 或 C. 或 D. 或二、填空题1. (2024江西省)在平面直角坐标系中,将点向右平移2个单位长度,再向上平移3个单位长度得到点B,则点B的坐标为______.2. (2024甘肃临夏)如图,在中,点的坐标为,点的坐标为,点的坐标为,点在第一象限(不与点重合),且与全等,点的坐标是______.3. (2024河南省)如图,在平面直角坐标系中,正方形的边在x轴上,点A的坐标为,点E在边上.将沿折叠,点C落在点F处.若点F的坐标为,则点E的坐标为___________.21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)HYPERLINK "http://21世纪教育网(www.21cnjy.com)" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台2024年中考数学真题专题分类精选汇编(2025年中考复习全国通用)专题07 平面直角坐标系一、选择题1. 在平面直角坐标系中,点关于原点的对称点的坐标是( )A. B. C. D.【答案】D【解析】根据关于原点对称的点的坐标特征:横坐标、纵坐标都变为相反数,即可得答案.∵点关于原点的对称点为,∴的坐标为(-1,-2),故选D.【点睛】本题考查关于原点对称的点的坐标,其坐标特征为:横坐标、纵坐标都变为相反数.2. (2024四川成都市)在平面直角坐标系中,点关于原点对称的点的坐标是( )A. B. C. D.【答案】B【解析】本题考查了求关于原点对称的点的坐标.关于原点对称的两点,则其横、纵坐标互为相反数,由点关于原点对称的坐标特征即可求得对称点的坐标.【详解】点关于原点对称的点的坐标为;故选:B.3. (2024四川广元)如果单项式与单项式的和仍是一个单项式,则在平面直角坐标系中点在( )A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限【答案】D【解析】本题主要考查同类项和确定点的坐标,根据同类项的性质求出的值,再确定点的位置即可∵单项式与单项式的和仍是一个单项式,∴单项式与单项式是同类项,∴,解得,,∴点在第四象限,故选:D4. (2024四川凉山)点关于原点对称的点是,则的值是( )A. B. C. D.【答案】A【解析】本题考查了关于原点对称的点的坐标特征,代数式求值,根据关于原点对称的点,横纵坐标互为相反数可得,,再代入代数式计算即可求解,掌握关于原点对称的点的坐标特征是解题的关键.【详解】∵点关于原点对称的点是,∴,,∴,故选:.5. (2024贵州省)为培养青少年的科学态度和科学思维,某校创建了“科技创新”社团.小红将“科”“技”“创”“新”写在如图所示的方格纸中,若建立平面直角坐标系,使“创”“新”的坐标分别为,,则“技”所在的象限为( )A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限【答案】A【解析】本题考查坐标与图形,先根据题意确定平面直角坐标系,然后确定点的位置.如图建立直角坐标系,则“技”在第一象限,故选A.6. (2024广西)如图,在平面直角坐标系中,点O为坐标原点,点P的坐标为,则点Q的坐标为( )A. B. C. D.【答案】C【解析】本题主要考查点的坐标,理解点的坐标意义是关键.根据点P的坐标可得出横、纵轴上一格代表一个单位长度,然后观察坐标系即可得出答案.【详解】∵点P的坐标为,∴点Q的坐标为,故选:C.7. (2024河北省)在平面直角坐标系中,我们把一个点的纵坐标与横坐标的比值称为该点的“特征值”.如图,矩形位于第一象限,其四条边分别与坐标轴平行,则该矩形四个顶点中“特征值”最小的是( )A. 点A B. 点B C. 点C D. 点D【答案】B【解析】本题考查的是矩形的性质,坐标与图形,分式的值的大小比较,设,,,可得,,,再结合新定义与分式的值的大小比较即可得到答案.【详解】解:设,,,∵矩形,∴,,∴,,,∵,而,∴该矩形四个顶点中“特征值”最小的是点B;故选:B.8. (2024甘肃临夏)如图,是坐标原点,菱形的顶点在轴的负半轴上,顶点的坐标为,则顶点的坐标为( )A. B. C. D.【答案】C【解析】本题考查平面直角坐标系内两点间的距离公式,菱形的性质,坐标与图形.结合菱形的性质求出是解题关键.由两点间的距离公式结合菱形的性质可求出,从而可求出,即得出顶点的坐标为.【详解】如图,∵点坐标为,∴. ∵四边形为菱形,∴,∴,∴顶点的坐标为.故选C.9. (2024河北省)平面直角坐标系中,我们把横、纵坐标都是整数,且横、纵坐标之和大于0的点称为“和点”.将某“和点”平移,每次平移的方向取决于该点横、纵坐标之和除以3所得的余数(当余数为0时,向右平移;当余数为1时,向上平移;当余数为2时,向左平移),每次平移1个单位长度.例:“和点”按上述规则连续平移3次后,到达点,其平移过程如下:若“和点”Q按上述规则连续平移16次后,到达点,则点Q的坐标为( )A. 或 B. 或 C. 或 D. 或【答案】D【解析】本题考查了坐标内点的平移运动,熟练掌握知识点,利用反向运动理解是解决本题的关键.先找出规律若“和点”横、纵坐标之和除以3所得的余数为0时,先向右平移1个单位,之后按照向上、向左,向上、向左不断重复的规律平移,按照的反向运动理解去分类讨论:①先向右1个单位,不符合题意;②先向下1个单位,再向右平移,当平移到第15次时,共计向下平移了8次,向右平移了7次,此时坐标为,那么最后一次若向右平移则为,若向左平移则为.【详解】由点可知横、纵坐标之和除以3所得的余数为1,继而向上平移1个单位得到,此时横、纵坐标之和除以3所得的余数为2,继而向左平移1个单位得到,此时横、纵坐标之和除以3所得的余数为1,又要向上平移1个单位,因此发现规律为若“和点”横、纵坐标之和除以3所得的余数为0时,先向右平移1个单位,之后按照向上、向左,向上、向左不断重复的规律平移,若“和点”Q按上述规则连续平移16次后,到达点,则按照“和点”反向运动16次求点Q坐标理解,可以分为两种情况:①先向右1个单位得到,此时横、纵坐标之和除以3所得的余数为0,应该是向右平移1个单位得到,故矛盾,不成立;②先向下1个单位得到,此时横、纵坐标之和除以3所得的余数为1,则应该向上平移1个单位得到,故符合题意,那么点先向下平移,再向右平移,当平移到第15次时,共计向下平移了8次,向右平移了7次,此时坐标为,即,那么最后一次若向右平移则为,若向左平移则为,故选:D.二、填空题1. (2024江西省)在平面直角坐标系中,将点向右平移2个单位长度,再向上平移3个单位长度得到点B,则点B的坐标为______.【答案】【解析】本题考查了坐标与图形变化-平移.利用点平移的坐标规律,把A点的横坐标加2,纵坐标加3即可得到点B的坐标.【详解】∵点向右平移2个单位长度,再向上平移3个单位长度得到点B,∴点B的坐标为,即.故答案为:.2. (2024甘肃临夏)如图,在中,点的坐标为,点的坐标为,点的坐标为,点在第一象限(不与点重合),且与全等,点的坐标是______.【答案】【解析】本题考查坐标与图形,三角形全等的性质.利用数形结合的思想是解题的关键.根据点在第一象限(不与点重合),且与全等,画出图形,结合图形的对称性可直接得出.【详解】∵点在第一象限(不与点重合),且与全等,∴,,∴可画图形如下,由图可知点C、D关于线段的垂直平分线对称,则.故答案为:.3. (2024河南省)如图,在平面直角坐标系中,正方形的边在x轴上,点A的坐标为,点E在边上.将沿折叠,点C落在点F处.若点F的坐标为,则点E的坐标为___________.【答案】【解析】设正方形的边长为a,与y轴相交于G,先判断四边形是矩形,得出,,,根据折叠的性质得出,,在中,利用勾股定理构建关于a的方程,求出a的值,在中,利用勾股定理构建关于的方程,求出的值,即可求解.【详解】设正方形的边长为a,与y轴相交于G,则四边形是矩形,∴,,,∵折叠,∴,,∵点A的坐标为,点F的坐标为,∴,,∴,在中,,∴,解得,∴,,在中,,∴,解得,∴,∴点E的坐标为,故答案:.【点睛】本题考查了正方形的性质,坐标与图形,矩形的判定与性质,折叠的性质,勾股定理等知识,利用勾股定理求出正方形的边长是解题的关键.21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)HYPERLINK "http://21世纪教育网(www.21cnjy.com)" 21世纪教育网(www.21cnjy.com) 展开更多...... 收起↑ 资源列表 专题07 平面直角坐标系(原卷版) .doc 专题07 平面直角坐标系(解析版) .doc