资源简介 中小学教育资源及组卷应用平台2024年中考数学真题专题分类精选汇编(2025年中考复习全国通用)专题09 一次函数一、选择题1. (2024四川德阳)正比例函数的图象如图所示,则的值可能是( )A. B. C. D.2. (2024陕西省)一个正比例函数的图象经过点和点,若点A与点B关于原点对称,则这个正比例函数的表达式为 ( )A. B. C. D.3. (2024甘肃临夏)一次函数,若y随x的增大而减小,则它的图象不经过( )A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限二、填空题1. (2024天津市)若正比例函数(是常数,)的图象经过第一、第三象限,则的值可以是_____________(写出一个即可).2. (2024甘肃威武)已知一次函数,当自变量时,函数y的值可以是________(写出一个合理的值即可).3. (2024上海市)若正比例函数的图像经过点,则y的值随x的增大而___________.(选填“增大”或“减小”)4. (2024上海市)某种商品的销售量y(万元)与广告投入x(万元)成一次函数关系,当投入10万元时销售额1000万元,当投入90万元时销售量5000万元,则投入80万元时,销售量为___________万元.5. (2024四川广安)如图,直线与轴、轴分别相交于点,,将绕点逆时针方向旋转得到,则点的坐标为______.6. (2024江苏扬州)如图,已知一次函数的图象分别与x、y轴交于A、B两点,若,,则关于x的方程的解为_____.7. (2024江苏苏州)直线与x轴交于点A,将直线绕点A逆时针旋转,得到直线,则直线对应的函数表达式是______.8. (2024四川凉山)如图,一次函数的图象经过两点,交轴于点,则的面积为______.三、解答题1. (2024北京市)在平面直角坐标系中,函数与的图象交于点.(1)求,的值;(2)当时,对于的每一个值,函数的值既大于函数的值,也大于函数的值,直接写出的取值范围.2. (2024黑龙江齐齐哈尔)领航无人机表演团队进行无人机表演训练,甲无人机以a米/秒的速度从地面起飞,乙无人机从距离地面20米高的楼顶起飞,甲、乙两架无人机同时匀速上升,6秒时甲无人机到达训练计划指定的高度停止上升开始表演,完成表演动作后,按原速继续飞行上升,当甲、乙无人机按照训练计划准时到达距离地面的高度为96米时,进行了时长为t秒的联合表演,表演完成后以相同的速度大小同时返回地面.甲、乙两架无人机所在的位置距离地面的高度y(米)与无人机飞行的时间x(秒)之间的函数关系如图所示.请结合图象解答下列问题:(1) ______米/秒, ______秒;(2)求线段所在直线的函数解析式;(3)两架无人机表演训练到多少秒时,它们距离地面的高度差为12米?(直接写出答案即可)3. (2024陕西省)我国新能源汽车快速健康发展,续航里程不断提升,王师傅驾驶一辆纯电动汽车从A市前往B市,他驾车从A市一高速公路入口驶入时,该车的剩余电量是,行驶了后,从B市一高速公路出口驶出,已知该车在高速公路上行驶的过程中,剩余电量与行驶路程之间的关系如图所示.(1)求y与x之间的关系式;(2)已知这辆车的“满电量”为,求王师傅驾车从B市这一高速公路出口驶出时,该车的剩余电量占“满电量”的百分之多少.21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)HYPERLINK "http://21世纪教育网(www.21cnjy.com)" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台2024年中考数学真题专题分类精选汇编(2025年中考复习全国通用)专题09 一次函数一、选择题1. (2024四川德阳)正比例函数的图象如图所示,则的值可能是( )A. B. C. D.【答案】A【解析】本题考查了正比例函数的性质:当,图象经过第一、第三象限,在每一象限内y随x的增大而增大;当,图象经过第二、第四象限,在每一象限内y随x的增大而减小.利用正比例函数的性质得到,然后在此范围内进行判断即可.【详解】∵正比例函数图象经过第一、第三象限,∴,∴选项A符合题意.故选:A.2. (2024陕西省)一个正比例函数的图象经过点和点,若点A与点B关于原点对称,则这个正比例函数的表达式为 ( )A. B. C. D.【答案】A【解析】本题考查正比例函数的图象,坐标与中心对称,根据关于原点对称的两个点的横纵坐标均互为相反数,求出的坐标,进而利用待定系数法求出函数表达式即可.【详解】∵点A与点B关于原点对称,∴,∴,,设正比例函数的解析式为:,把代入,得:,∴;故选A.3. (2024甘肃临夏)一次函数,若y随x的增大而减小,则它的图象不经过( )A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限【答案】A【解析】根据一次函数的图象当k<0时,一定经过二、四象限且y随x的增大而减小,结合b=-1即可得出结论.∵一次函数,若y随x的增大而减小,∴k<0,∴图象一定过第二、四象限,∵b=-1,∴该一次函数一定过第二、三、四象限,不过第一象限,故选:A.【点睛】本题考查一次函数的图象与性质,熟练掌握一次函数的性质是解答的关键.二、填空题1. (2024天津市)若正比例函数(是常数,)的图象经过第一、第三象限,则的值可以是_____________(写出一个即可).【答案】1(答案不唯一)【解析】根据正比例函数图象所经过的象限确定的符号.正比例函数(是常数,)的图象经过第一、三象限,.∴k的值可以为1,故答案为:1(答案不唯一).【点睛】本题主要考查正比例函数图象在坐标平面内的位置与的关系.解答本题注意理解:直线所在的位置与的符号有直接的关系.时,直线必经过一、三象限.时,直线必经过二、四象限.2. (2024甘肃威武)已知一次函数,当自变量时,函数y的值可以是________(写出一个合理的值即可).【答案】(答案不唯一)【解析】根据,选择,此时,解答即可.本题考查了函数值的计算,正确选择自变量进行计算是解题的关键.【详解】根据,选择,此时,故答案为:.3. (2024上海市)若正比例函数的图像经过点,则y的值随x的增大而___________.(选填“增大”或“减小”)【答案】减小【解析】本题考查了一次函数图象上点的坐标特征以及正比例函数的性质,牢记“当时,随的增大而增大;当时,随的增大而减小”是解题的关键.利用一次函数图象上点的坐标特征,可求出,结合正比例函数的性质,即可得出的值随的增大而减小.【详解】解:正比例函数的图象经过点,,解得:,又,的值随的增大而减小.故答案为:减小.4. (2024上海市)某种商品的销售量y(万元)与广告投入x(万元)成一次函数关系,当投入10万元时销售额1000万元,当投入90万元时销售量5000万元,则投入80万元时,销售量为___________万元.【答案】4500【解析】本题考查求一次函数解析式及求函数值,设,根据题意找出点代入求出解析式,然后把代入求解即可.【详解】解:设,把,代入,得,解得,∴,当时,,即投入80万元时,销售量为4500万元,故答案为:4500.5. (2024四川广安)如图,直线与轴、轴分别相交于点,,将绕点逆时针方向旋转得到,则点的坐标为______.【答案】【解析】本题考查一次函数图象与坐标轴的交点,旋转的性质,正方形的判定和性质等,延长交y轴于点E,先求出点A和点B的坐标,再根据旋转的性质证明四边形是正方形,进而求出和的长度即可求解.【详解】如图,延长交y轴于点E,中,令,则,令,解得,,,,,绕点逆时针方向旋转得到,,,,四边形是正方形.,,点的坐标为.故答案为:.6. (2024江苏扬州)如图,已知一次函数的图象分别与x、y轴交于A、B两点,若,,则关于x的方程的解为_____.【答案】【解析】本题主要考查了一次函数与一元一次方程之间的关系,难度不大,认真分析题意即可.根据一次函数与轴交点坐标可得出答案.∵,∴,∵一次函数的图象与轴交于点,∴当时,,即时,,∴关于的方程的解是.故答案为:.7. (2024江苏苏州)直线与x轴交于点A,将直线绕点A逆时针旋转,得到直线,则直线对应的函数表达式是______.【答案】【解析】根据题意可求得与坐标轴的交点A和点B,可得,结合旋转得到,则,求得,即得点C坐标,利用待定系数法即可求得直线的解析式.【详解】依题意画出旋转前的函数图象和旋转后的函数图象,如图所示∶设与y轴的交点为点B,令,得;令,即,∴, ,∴,,即∵直线绕点A逆时针旋转,得到直线,∴,,∴,则点,设直线的解析式为,则,解得,那么,直线的解析式为,故答案为:.【点睛】本题主要考查一次函数与坐标轴的交点、直线的旋转、解直角三角形以及待定系数法求一次函数解析式,解题的关键是找到旋转后对应的直角边长.8. (2024四川凉山)如图,一次函数的图象经过两点,交轴于点,则的面积为______.【答案】9【解析】本题考查了一次函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的面积.根据点A,B的坐标,利用待定系数法可求出直线的解析式,得出点C的坐标及的长,再利用三角形的面积公式即可求出的面积.【详解】将代入,得:,解得:,∴直线的解析式为.当时,,解得:,∴点C的坐标为,,∴.故答案为:9.三、解答题1. (2024北京市)在平面直角坐标系中,函数与的图象交于点.(1)求,的值;(2)当时,对于的每一个值,函数的值既大于函数的值,也大于函数的值,直接写出的取值范围.【答案】(1) (2)【解析】本题考查了待定系数法求函数解析式,一次函数图像平行的条件,利用数形结合的思想是解决本题的关键.(1)将代入先求出k,再将和k的值代入即可求出b;(2)根据数形结合的思想解决,将问题转化为当时,对于的每一个值,直线的图像在直线和直线的上方,画出临界状态图像分析即可.【小问1详解】解:由题意得将代入得:,解得:,将,,代入函数中,得:,解得:,∴;【小问2详解】解:∵,∴两个一次函数的解析式分别为,当时,对于的每一个值,函数的值既大于函数的值,也大于函数的值,即当时,对于的每一个值,直线的图像在直线和直线的上方,则画出图象为:由图象得:当直线与直线平行时符合题意或者当与x轴的夹角大于直线与直线平行时的夹角也符合题意,∴当直线与直线平行时,,∴当时,对于的每一个值,直线的图像在直线和直线的上方时,,∴m的取值范围为.2. (2024黑龙江齐齐哈尔)领航无人机表演团队进行无人机表演训练,甲无人机以a米/秒的速度从地面起飞,乙无人机从距离地面20米高的楼顶起飞,甲、乙两架无人机同时匀速上升,6秒时甲无人机到达训练计划指定的高度停止上升开始表演,完成表演动作后,按原速继续飞行上升,当甲、乙无人机按照训练计划准时到达距离地面的高度为96米时,进行了时长为t秒的联合表演,表演完成后以相同的速度大小同时返回地面.甲、乙两架无人机所在的位置距离地面的高度y(米)与无人机飞行的时间x(秒)之间的函数关系如图所示.请结合图象解答下列问题:(1) ______米/秒, ______秒;(2)求线段所在直线的函数解析式;(3)两架无人机表演训练到多少秒时,它们距离地面的高度差为12米?(直接写出答案即可)【答案】(1)8,20(2);(3)2秒或10秒或16秒.【解析】【分析】本题主要考查求一次函数应用,熟练掌握待定系数法求一次函数的解析式是解题的关键.(1)根据图形计算即可求解;(2)先求得甲无人机单独表演所用时间为秒,得到,利用待定系数法即可求解;(3)利用待定系数法分别求得线段、线段、线段所在直线的函数解析式,再分三种情况讨论,列式计算即可求解【小问1详解】解:由题意得甲无人机的速度为米/秒,,故答案为:8,20;【小问2详解】解:由图象知,,∵甲无人机的速度为8米/秒,甲无人机匀速从0米到96米所用时间为秒,甲无人机单独表演所用时间为秒,∴秒,∴,设线段所在直线的函数解析式为,将,代入得,解得,∴线段所在直线的函数解析式为;【小问3详解】解:由题意,,同理线段所在直线的函数解析式为,线段所在直线的函数解析式为,线段所在直线的函数解析式为,当时,由题意得,解得或(舍去),当时,由题意得,解得或(舍去),当时,由题意得,解得或(舍去),综上,两架无人机表演训练到2秒或10秒或16秒时,它们距离地面的高度差为12米.3. (2024陕西省)我国新能源汽车快速健康发展,续航里程不断提升,王师傅驾驶一辆纯电动汽车从A市前往B市,他驾车从A市一高速公路入口驶入时,该车的剩余电量是,行驶了后,从B市一高速公路出口驶出,已知该车在高速公路上行驶的过程中,剩余电量与行驶路程之间的关系如图所示.(1)求y与x之间的关系式;(2)已知这辆车的“满电量”为,求王师傅驾车从B市这一高速公路出口驶出时,该车的剩余电量占“满电量”的百分之多少.【答案】(1)y与x之间的关系式为;(2)该车的剩余电量占“满电量”的.【解析】本题考查了一次函数的应用,正确理解题意、求出函数关系式是解题的关键.(1)利用待定系数法求解即可;(2)先求得当时,y的值,再计算即可求解.【小问1详解】解:设y与x之间的关系式为,将,代入得,解得,∴y与x之间的关系式为;【小问2详解】解:当时,,,答:该车的剩余电量占“满电量”的.21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)HYPERLINK "http://21世纪教育网(www.21cnjy.com)" 21世纪教育网(www.21cnjy.com) 展开更多...... 收起↑ 资源列表 专题09 一次函数(原卷版) .doc 专题09 一次函数(解析版) .doc