5.3 递推公式求数列通项公式(含答案) 2025年高考数学一轮复习《一隅三反》系列(新高考新题型)

资源下载
  1. 二一教育资源

5.3 递推公式求数列通项公式(含答案) 2025年高考数学一轮复习《一隅三反》系列(新高考新题型)

资源简介

5.3 递推公式求数列通项公式
考法一 公式法
【例 1-1】(2024·四川·模拟预测)已知数列 an 的前 n项和为 Sn ,若 S = 2n-1
1
n - ,则数列 an 的通项公式为 2
【答案】 an = 2
n-2
n-1 1 0 1 1
【解析】 Sn = 2 - ,当 n =1时, a1 = S1 = 2 - = ,2 2 2
当 n 2, a
1
n = S - S = 2
n-1 - 2n-2n n-1 = 2
n-2 , a1 = 也满足,2
所以数列 a a = 2n-2n 的通项公式为 n .
2
【例 1-2】(23-24 天津宁河·期末)若数列 an 的前 n项和 Sn = 2n + n +1,则 an 的通项公式是
ì 4, n =1
【答案】 an = í
4n -1,n >1
【解析】当 n 2,则 an = Sn - S
2 2
n-1 = 2n + n +1- 2(n -1) - (n -1) -1 = 4n -1,
2 ì 4, n =1
而 a1 = S1 = 2 1 +1+1 = 4,显然不满足上式,所以 an = í .
4n -1,n >1
【例 1-3】(2024 高三下·全国·专题练习)若数列 an n S
2 a 1的前 项和 n = n + (n N*),则 an 的通项公式是 3 3
a = (-2)n-1【答案】 n
2 1 2 1
【解析】因为 Sn = an + ①,则当 n 2,n N*时, S3 3 n-1
= an-1 + ②,3 3
2 2
①―②得: Sn - Sn-1 = an = an - an-1,整理得: an = -2an-1(n 2, n N*) ,3 3
S a 2 a 1= = + a =1 . a 1 -2 a =1 (-2)n-1 n-1又 1 1 1 ,解得 所以数列 是首项为 ,公比为 的等比数列,则 = (-2) .3 3 1 n n
a a a
【例 1-4】(23-24 辽宁·期中)已知数列 a 满足 a + 2 + 3 nn 1 2 +L+ n-1 = 3n,则 an = 3 3 3
【答案】3n
a a a
【解析】由 a 2 31 + + 2 +L+
n
n-1 = 3n ① 知,3 3 3
当 n =1时, a1 = 3;
当 n 2 a
a2 a a时, + + 3 +L+ n-11 3 32 n-2
= 3(n -1) ②,
3
由① -
a
② : nn-1 = 3,即得 an = 3
n

3
当 n =1时,符合题意,故 an = 3
n .
【例 1-5】(2024 陕西榆林· n+1期末)已知数列 an 的前 n 项和为 Sn , an+1 = Sn + 2 , a1 = 2,则 Sn =
【答案】 n ×2n
a = S + 2n+1【解析】因为 n+1 n ,则 Sn+1 - Sn = Sn + 2
n+1 S S a
,整理得 n+1 n a = 2 1n+1 - n =1,又 1 ,则 =1,2 2 2
ì S
因此数列 í n
ü S
n 是首项为 1,公差为 1 的等差数列,则
n
n =1+ (n -1) 1 = n ,所以 Sn = n × 2
n .
2 2
【一隅三反】
1.(23-24 北京·期中)已知数列 an 的前 n 项和为 Sn ,且 Sn = n2 + 3n ,则数列 an 的通项公式为 .
【答案】 an = 2n + 2
【解析】数列 an 中, Sn = n2 + 3n , a1 = S1 = 4,
n 2 a = S - S = n2 2当 时, n n n-1 + 3n - (n -1) - 3(n -1) = 2n + 2,显然 a1 = 4满足上式,
数列 an 的通项公式为 an = 2n + 2 .故答案为: an = 2n + 2
a S 6 22.(23-24 江西景德镇·期中)若数列 n 的前 n 项和 n = - 3n-1 ,则数列
an 的通项公式为 .
4
【答案】 an = 3n-1
【解析】当 n =1时, S1 = 6
2
- 1 1 = 4 ,又 a1 = S1,所以 a1 = 43 -

a S S 6 2 6 2 4当 n 2时, n = n - n-1 = - 3n-1
- +
3n-2
= ,
3n-1
4
因为 a1 = 4,也满足关系 an = n-1 ,所以 a
4 4
n = n-1 n N* .故答案为: an =3 3 3n-1 .
3.(23-24 广东深圳·阶段练习)已知数列 an 的前 n项和为 Sn ,且 S = n2n - 4n +1,则 an = .
ì-2, n =1
【答案】 í
2n - 5,n 2
【解析】当 n =1时, a1 = S1 = -2;
当 n 2时, a = S - S 2 é
2 ù
n n n-1 = n - 4n +1- n -1 - 4 n -1 +1 = 2n - 5 .
ì-2, n =1 ì-2, n =1
所以 an = í .
2n - 5,n 2
故答案为: í
2n - 5,n 2
4.(23-24 广东佛山·阶段练习)已知数列 an 的前 n 项和为 Sn , a1 = 3,2Sn = 3an - 3,则 an 的通项公式为
【答案】3n
【解析】数列 an 中, 2Sn = 3an - 3,当 n 2时, 2Sn-1 = 3an-1 - 3,
两式相减得 2an = 3an - 3an-1 ,即 an = 3an-1 ,而 a1 = 3,因此数列 an 是首项为 3,公比为 3 的等比数列,
所以 an 的通项公式为 an = 3n .故答案为:3n
1 3
5.(2024·四川· 2模拟预测)已知 Sn 为正项数列 an 的前 n项和, a1 = 3且 Sn + Sn+1 = a - ,则 a2 n+1 2 n = .
【答案】 2n +1
S S 1 a2 3【解析】因为 n + n+1 = n+1 - ,即 2 S 22 2 n + Sn+1 = an+1 - 3,
当 n =1时, 2 S1 + S2 = a22 - 3,又因为 a1 = 3,即 a22 - 2a2 -15 = 0,解得 a2 = 5或 a2 = -3(舍去),
当 n 2时, 2 Sn-1 + Sn = a2n - 3,两式相减,可得 an+1 + an an+1 - an - 2 = 0,
因为 an > 0,可得 an+1 - an = 2 n 2 ,又 a2 - a1 = 2 ,所以 an+1 - an = 2 n N* ,
所以数列 an 表示首项为3,公差为 2的等差数列,所以 an = 2n +1.故答案为: 2n +1
a a a2 a a6 n *.(23-24·江西抚州·阶段练习)数列 n 满足 3 n1 + + + ×××+ = 3 - 2(n N ,n 1) ,则 an = .2 3 n
ì1, n =1
【答案】 í
2n 3
n-1, n 2
a a a n
【解析】因为 a1 + 2 + 3 + ×××+ n = 3 - 2(n N
* ,n 1) ,
2 3 n
当 n =1时 a = 311 - 2 =1,
a a a
当 n
a
2时 a + 21 + 3 + ×××+ n-1 = 3
n-1 - 2,所以 n = 3n - 3n-1 = 2 3n-1 a n-1,所以
2 3 n -1 n n
= 2n 3 ,
ì1, n =1 ì1, n =1
当 n =1时 an = 2n 3
n-1
不成立,所以 an = í n-1 .2n 3 , n 2 故答案为: í2n 3n-1 , n 2
考法二 累乘法
【例 2-1】(23-24 四川成都·阶段练习)已知数列
a
a a =1 n nn 满足: 1 且 = n 2,n N* aa ,则数列 n 的通n-1 n -1
项公式为 .
【答案】 an = n
an n= n 2,n N* a2 2 a3 3 a4 4【解析】因为 ,所以 = , = , = ,L, an n=an-1 n -1 a1 1 a2 2 a ,3 3 an-1 n -1
a2 a3 a× × 4 L an 2 3 4累乘可得 = L
n a
n = n a = n n 2
a1 a2 a3 an-1 1 2 3 n -1
,即 a ,所以 n ,1
当 n =1时, a1 =1也成立,所以 an = n .故答案为: an = n
【例 2-2 】( 22-23 福建宁德 · 期中)已知 a1 =1, an+1 = n an - an+1 n N+ ,则数列 an 的通项公式是
an = .
1
【答案】
n
a n
【解析】由 an+1 = n an - an+1 ,得 (n +1)an+1 = na n+1n,所以 =an n +1

a2 1 a3 2 a= 4 3 a= n n -1 a2 a3 a4 an 1 2 3 n -1所以 = , , ,……, = ( n 2),所以 × × × × × × × = ××× a ,1 2 a2 3 a3 4 an-1 n a1 a2 a3 an-1 2 3 4 n
an 1 1 1 1
所以 = a =1 a =1a n ,因为 1 ,所以 an = ,因为 1 也满足上式, an = ,故答案为:1 n n n
2
【例 2-3】(2024 高三下·全国·专题练习)已知数列 an 的前 n项和为 Sn , Sn = n an , a1 =1,则 Sn = .
2n
【答案】
n +1
【解析】当 n 2时, Sn = n
2an ,则 Sn+1 = (n +1)
2 a 2 2n+1,两式作差得 Sn+1 - Sn = (n +1) an+1 - n an ,即
a 2 2n+1 = (n +1) an+1 - n an ,即 n + 2 an+1 = nan ,
an+1 n a= n n -1所以 ,即 = n 2 an n + 2 a n +1

n-1
2 1 a2 1
又由 S2 = 2 a2 且 a1 =1,即1+ a2 = 4a2 ,所以 a2 = ,可得 =a 3 , 3 1
a an an-1 an-2 a2 a n -1 n - 2 n - 3 2 1 2则 n = × × × × = × × × × ×1 = n 2 an-1 an-2 a 1n-3 a1 n +1 n n -1 4 3 n n +1
.
2 2
显然 a1 =1时也符合 an = ,可得 an = = 2(
1 1
- )
n n +1 n n +1 n n +1 ,
S 1 1 1 1 1所以 n = 2(1- + - +L+ - ) = 2(1
1 2n
- ) = .
2 2 3 n n +1 n +1 n +1
2n
故答案为: .
n +1
【一隅三反】
1.(2024·全国·高三专题练习)已知数列 an 满足 a1 = 2 , na *n+1 = n + 2an ,n N ,求数列 an 的通项公式.
【答案】 an = n × n +1 n N*
a
【解析】由 na = n + 2a ,得 n+1
n + 2
n+1 n = ,an n
a a a 3 4 5 n n +1 n × n +1
所以当 n 2时, 2 × 3 L n = × × L × = ,
a1 a2 an -1 1 2 3 n - 2 n -1 2
因为 a1 = 2 ,所以 an = n × n +1 n 2 ,
又因为 n =1时, a1 = 2 满足上式,所以 an = n × n +1 n N*
2.(2024 高三下·全国·专题练习)在数列 an 中, a
1
1 = ,前 n项和 Sn = n 2n -1 an ,则数列 an 的通项公式为 3
1
【答案】 2n -1 2n +1
1
【解析】由于数列 an 中, a1 = ,前 n项和 Sn = n 2n -1 an , 3
∴当 n 2时, Sn-1 = n -1 2n - 3 an-1,两式相减可得: an = n 2n -1 an - n -1 2n - 3 an-1
∴ 2n +1 an =
a 2n - 3
2n - 3 a nn-1,所以 =an-1 2n +1

a a a2 a3 a4 L a 1 1 3 2n - 5 2n - 3 1因此 n = 1 n = L =a1 a2 a3 an-1 3 5 7 2n -1 2n +1 2n -1 2n +1
3.(2023 高二·全国·专题练习)已知正项数列 an 满足 a1 = 24,na2n+1 - n + 4 a2n = 4anan+1 .求 an 的通项公式
【答案】 an = n + 3 × n + 2 × n +1 × n
2
【解析】由 nan+1 - n + 4 a2n = 4anan+1可得: énan+1 - n + 4 an ù an+1 + an = 0,
因为 an 为正项数列,所以 nan+1 - n + 4 an = 0,
an+1 n + 4 an n + 3 a= n-1 n + 2 an-2 n +1 a3 6 a2 5所以 a n ,则
= , = , =
a ,……,
= , = ,
n n-1 n -1 an-2 n - 2 an-3 n - 3 a2 2 a1 1
an n + 3 × n + 2 × n +1 × n n + 3 × n + 2 × n +1 × n
将这 n -1个式子相乘,则 = = ,a1 4 3 2 1 24
又因为a1 = 24 ,所以 an = n + 3 × n + 2 × n +1 × n
4.(2024 广东)已知数列{an}满足 a1 =1, an = a1 + 2a2 + 3a3 +L+ (n -1)an-1(n 2),求{an}的通项公式
ì1, n =1
a = *【答案】 n ín! , n N
,n 2 2
【解析】因为 an = a1 + 2a2 +L+ n -1 an-1 n 2 ,
当 n = 2时,可得 a2 = a1 =1;
当 n 3时,可得 an-1 = a1 + 2a2 +L+ n - 2 an-2 ,
两式相减得, an - an-1 = n -1 an-1,即 an = nan-1,
a
且 a2 =1 0
n
,即 = na ,n-1
所以 a
a a a
n =
n n-1 L 3 a2 = n n 1 4 3 a
n!
× - ×L
a a a 2
= ;
n-1 n-2 2 2
且 a2 =1满足上式, a1 =1不满足上式,
ì1, n =1

所以数列 an 的通项公式为 an = ín! , n N* .
,n 2 2
考法三 累加法
【例 3-1】(23-24 上海宝山·阶段练习)已知数列 an 满足 a1 = 2, an+1 - an = 2n + 2, n N*,则 an = .
【答案】 n2 + n
【解析】因 a1 = 2, an+1 - an = 2n + 2, n N
*

a = (a - a ) + (a - a ) +L+ (a - a ) + a = 2 + 4 + 6 +L+ (2n - 2) + 2n n(2 + 2n) 2则 n n n-1 n-1 n-2 2 1 1 = = n + n .2
故答案为: n2 + n .
1
【例 3-2】(23-24 上海)在数列 an 中,已知 a1 =1,且 an+1 = an + 2n -1 2n +1 ,则 an = .
3n - 2
【答案】
2n -1
a a 1【解析】由 n+1 = n + 2n -1 2n +1 可得:
a 1 1 1 n+1 - an = -2 è 2n -1 2n +1÷
ì
a2 - a
1 1
1 =

1-

2 3 ÷ è
1 1 1
\
a3 - a2 = - ÷
í 2 è 3 5

L

a
1 1 1
n - an-1 = -

÷
2 è 2n - 3 2n -1
a a 1 1 1 1 1 L 1 1 1 - = - + - + + - = n 1 1
1
- ,
2 è 3 3 5 2n - 3 2n -1÷ 2 ÷ è 2n -1
1 1 3n - 2
\a =1+ 1- n ÷ = .2 è 2n -1 2n -1
3n - 2
故答案为: .
2n -1
n
【例 3-3】(23-24 · 1 a a - a = n × 1 辽宁 期中)在首项为 的数列 n 中 n+1 n ÷ ,则 an =
è 2
【答案】3
n +1
-
2n-1
n
【解析】因为 an+1 - an = n
1× 2 ÷

è
所以 a
1
2 - a1 =1 ,2
2
a - a = 2 1 3 2 ÷ ,
è 2
a a 3 1
3
- = 4 3 ÷ ,
è 2
L
n-1
a - a 1= n -1 × n n-1 ÷ n 2 ,
è 2
1 1 1 1
以上各式相加得: an - a1 =1 + 2 2 + 3 3 +L n -1
n 2 ,
2 2 2 ֏ 2n-1
S 1 1 1 1= a 令 n - a1 =1 + 2 2 + 3 3 +L n -1 2 2 2 ÷ n 2 ,①è 2n-1
1 S 1 1 2 1= 2 + 3 +L+ n -1
1
n n 2 ,②2 2 2 2
1 S 1 1 L 1 1错位相减:① - ②有, = + 2 + n-1 - n -1 n n 2 ,2 2 2 2 2
1 1 1-
1 2 ÷
即 S = è 2
n-1 1
1 - n -1 n 2n ,2 1- 2
2
S 2 2 n -1 2 n +1所以 = - n-1 - n-1 = - n 1 n 2- ,2 2 2
又因为 a1 =1
n +1
,所以有,所以 an = S +1 = 3- n 1 n 2- ,2
n +1
检验 n =1 *时, a1 =1符合上式,所以 an = 3- n-1 n N .2
n +1
故答案为:3-
2n-1
【一隅三反】
1(23-24 四川南充·阶段练习)(多选)已知 a1 = 0, an+1 = an + 2n -1,则下列说法正确的是( )
2
A.an = n - 1 B.{an}是单调递增数列
C. an 是等差数列 D. a5 = 25
【答案】AB
【解析】Q an+1 = an + 2n -1,即 an+1 - an = 2n -1,
\ a2 - a1 =1, a3 - a2 = 3 , a4 - a3 = 5,L,an - an-1 = 2n - 3 n 2 ,
a a 1 3 5 7 ... 2n 3 1+ 2n - 3 n -1 以上各式相加得 n - 1 = + + + + + - = = n -1
2 n 2 ,
2
又 a1 = 0
2 2
,所以 an = n -1 n 2 ,而 a1 = 0也适合上式,\ an = n -1 ,故 A 正确,
由于 an+1 - an = 2n -1 > 0,所以 an+1 > an ,故{an}是单调递增数列,B 正确,C 错误,
a5 =16,D 错误,
故选:AB
2 2n-1.(2024 河北)设数列 an 满足 a1 = 2, an+1 - an = 3 × 2 ,则 an =_______.
【答案】 22n-1
2n-1
【解析】因为数列{an}满足 a1 = 2, an+1 - an = 3 × 2 ,
n
所以当 n 1时, an+1 = (an+1 - an ) + (an - an-1) + ×××+ (a2 - a1) + a
2 1- 4
1 = 3 22n-1 + 22n-3 + ×××+ 2 + 2 = 3 + 2 = 22n+1 .1- 4
2n-1
所以a = 2 , n 2, n N*n ,因为 a = 2
2n-1
1 ,也满足上式,所以数列{an}的通项公式为a *n = 2 , n N
故答案为: 22n-1
1
3.(2024 江西)已知首项为 的数列 an 的前 n项和为 Sn ,且 Sn+1 + (2n + 3)anan+1 = an + Sn ,则 S3 98 = ______.
14651
【答案】
19800
a - a
【解析】依题意, (2n + 3)ana
n n+1
n+1 = an - an+1 ,则 2n + 3 = a ,nan+1
1 1
故 - = 2n + 3a a ,n+1 n
1 1 5 1 1 7 1 1 1 1- =
a a ,
- =
a a ,
- = 9 - = 2n +1
2 1 3 2 a4 a
,…,
3 a

n an-1
1 1 (2n +1+ 5)(n -1)
累加可得, - = =a a 2 n + 3 n -1 ,n 1
1
= n + 3 n -1 + 3 = n n + 2 n 2a ,n
1
当 n=1 时, = 3a 也成立,1
a 1 1 1 1故 n = = -

n(n + 2) 2 è n n + 2 ÷


S 1 1 1 1 1 1 1 L 1 1 1 3 1 1 1465198 = - + - + - + + - = - - = ;2 è 3 2 4 3 5 98 100 ÷ 2 è 2 99 100 ÷ 19800
14651
故答案为: .
19800
考法四 构造等比数列
【例 4-1】(23-24 广东深圳·期末)已知数 an 满足 a1 = 2, an+1 = 5an +12,则数列 an 的通项公式 an = .
【答案】5n - 3
an+1 + 3
【解析】由 an+1 = 5an +12可得: an+1 + 3 = 5 an + 3 ,又 a1 + 3 = 5 0 , = 5an + 3

所以 an + 3 是以 a1 + 3 = 5为首项,5为公比的等比数列,
a n-1 n n所以 n + 3 = 5 ×5 = 5 ,所以 an = 5 - 3 .
故答案为:5n - 3
【例 4-2】(23-24 上海·期末)数列 an 满足 a1 = 2, a n+1n+1 = 3an + 2 ,则数列 an 的通项公式为 an = .
【答案】 2(3n - 2n )
a a = 3a + 2n+1 a 3 a【解析】数列 n+1 nn 中,由 n+1 n ,得 n+1 = × +1
a 3 a
,即 n+1 n
2 2 2n 2n+1
+ 2 = ( n + 2),2 2
而 a1 = 2
a a
, 1 + 2 = 3,于是数列{ nn + 2}
3
是首项为 3,公比为 的等比数列,
2 2 2
a 3 n-1 n n
因此 nn + 2 = 3 ( ) ,即 an = 2(3 - 2 ),2 2
所以数列 an n n的通项公式为 an = 2(3 - 2 ) .
故答案为: 2(3n - 2n )
【例 4-3】(23-24 *高三下·广东·阶段练习)在数列 an 中, a1 = 3,且 an+1 = 3an + 4n - 6 n N ,则 an 的通项公
式为 .
n
【答案】 an = 3 - 2 n -1
*
【解析】因为 an+1 = 3an + 4n - 6 n N ,设 an+1 + x n +1 + y = 3 an + xn + y ,其中 x 、 y R,
整理可得 an+1 = 3an + 2xn + 2y - x,
ì2x = 4 ìx = 2
所以, í a + 2 n +1 - 2 = 3 a + 2n - 2
2y x
,解得 ,所以, ,
- = -6 í y = -2
n+1 n
且 a1 + 2 1- 2 = a1 = 3,所以,数列 an + 2n - 2 是首项为3,公比也为3的等比数列,
所以, an + 2n - 2 = 3 3
n-1 = 3n n,解得 an = 3 - 2 n -1 .
n
故答案为: an = 3 - 2 n -1 .
【一隅三反】
1.(23-24 河北沧州·阶段练习)已知数列 an 满足 a1 = 2, an+1 = 3an + 2 n N* ,则该数列的通项公式
an = .
【答案】3n -1
【解析】因为 an+1 = 3an + 2,所以 an+1 +1 = 3 an +1 ,则数列 an +1 时以 a1 +1 = 3为首项
n n
公比为3的等比数列,故 an +1 = 3 ,所以 an = 3 -1.
2.(22-23 宁夏中卫·阶段练习)数列 an 满足 an = 4an-1 + 3 n 2 且 a1 = 0,则数列 an 的通项公式
是 .
a = 4n-1【答案】 n -1
【解析】设 an + l = 4 an-1 + l ,则 an = 4an-1 + 3l ,
又因为 an = 4an-1 + 3 n 2 ,所以3l = 3,则l = 1,
所以 an +1 = 4 an-1 +1 ,
因为 a1 +1 =1 0,所以 an +1 0,
an +1
所以 = 4a +1 为常数,n-1
所以 an +1 是首项为1,公比为 4的等比数列,
所以 an +1 =1 4
n-1 = 4n-1 a = 4n-1,所以 n -1 .
a = 4n-1故答案为: n -1
3.(2023高三·全国·专题练习)已知数列 an 满足 an+1 = 2a n-1n + 4 ×3 ,a1 = -1,则数列 an 的通项公式为 .
a = 4 3n-1 - 5 2n-1【答案】 n
【解析】解法一:设 an+1 + l ×3
n = 2 an + l ×3n-1 n-1,整理得 an+1 = 2an - l ×3 ,可得l = -4 ,
即 an+1 - 4 3
n = 2 a - 4 3n-1n ,且 a1 - 4 31-1 = -5 0,
n-1
则数列 an - 4 ×3 是首项为-5,公比为 2的等比数列,
a - 4 3n-1 = -5 2n-1所以 n ,即 an = 4 3
n-1 - 5 2n-1;
解法二:(两边同除以qn+1
a 2 a 4
) 两边同时除以3n+1得: n+1 = n
3n+1 3 3n
+ ,
9
an+1 4 2 a 4- = n - a1 4 5整理得 n+1 n ÷ ,且 - = - 0,3 3 3 è 3 3 3 3 3
ìan 4- ü 5- 2则数列 í n 是首项为 ,公比为 3 的等比数列, 3 3 3
a 4 5 2 n-1n - = - n-1 n-1所以 n ÷ ,即 an = 4 3 - 5 2 ;3 3 3 è 3
a a 3 n-1 a a 3 n-1
解法三:(两边同除以 pn+1 )两边同时除以 2n+1 得: n+1 = nn+1 n + ,即
n+1 - n =
2 2 2 ÷ 2n+1 2n 2 ÷

è è
a
n
a a
2 n = n - n-1
a
+ n-1
a
- n-2
a a a
当 时,则 n n + ×××+
2 - 1 + 1
2 è 2 2n-1 ÷ ÷ è 2n-1 2n-2 è 22 2 ÷ 2
1 3
n-1
-
3
n-2
3
n-3 1 ÷ 1 n-1
= + ÷ ÷ + ××× +1- =
è 2 - = 2 3 5
2 2 ÷
- ,
è è 2 1 3- 2 è 2 2
2
故 an = 4 3
n-1 - 5 2n-1 n 2 ,
显然当 n =1时, a1 = -1符合上式,故 an = 4 3
n-1 - 5 2n-1 .
a = 4 3n-1故答案为: n - 5 2
n-1 .
4.(2024 河南)设数列 an 满足 a1 = 4, an = 3an-1 + 2n -1(n 2),则数列 an 的通项公式为 .
【答案】 a nn = 2 ×3 - n -1
【解析】设 an + pn + q = 3 an-1 + p(n -1) + q ,化简后得 an = 3an-1 + 2 pn + 2q - 3p ,
ì 2 p = 2 ì p =1
与原递推式比较,对应项的系数相等,得 í
2q 3p 1
,解得
- = - í

q =1
即 an + n +1 = 3 an-1 + n -1+1 ,令bn = an + n +1,则bn = 3bn-1,又b1 = 6,
故b = 6 ×3n-1n = 2 ×3
n ,bn = an + n +1,得 a nn = 2 ×3 - n -1 .
故答案为: an = 2 ×3
n - n -1
5.(2024 *高三·全国·专题练习)已知数列 an ,a1 =1,a2 = 2,an+1 - 5an + 4an-1 = 0 n N ,n 2 ,则 an 的通项公
式为 .
4n-1
【答案】 a
+ 2
n = 3
【解析】因为当 n 2时, an+1 - 5an + 4an-1 = 0,所以 an+1 - an = 4 an - an-1 ,
又 a1 =1, a2 = 2,则 a2 - a1 =1,
所以 an+1 - an 是以1为首项,4 为公比的等比数列,
所以 a - a = 4n-1n+1 n ,
从而 an = an - an-1 + an-1 - an-2 +L+ a2 - a1 + a1
n-2 1- 4
n-1 4n-1 + 2
= 4 + 4n-1 +L+ 41 + 40 +1 = +1 = ,
1- 4 3
当 n =1时, a1 =1满足上式,
4n-1a + 2所以 n = .3
4n-1 + 2
故答案为: an = .3
考法五 构造等差数列
a
【例 5-1】(2024 福建)已知数列 a a =1 a = n *n 满足 1 , n+1 n N a =4a +1, ,则 n .n
1
【答案】
4n - 3
a an 1 4aa a =1 = a 0 = n +1 1【解析】数列 n 中, 1 , n+1 4a +1,显然 n ,取倒数得 = 4 +a a ,n n+1 n an
1 1 1
即 - = 4 { }a a ,则数列 a 是首项为 1,公差为 4 的等差数列,n+1 n n
1
因此 =1+ 4 n -1 = 4n - 3a ,所以 a
1
n = .
n 4n - 3
1
故答案为: .
4n - 3
【例 5-2】(2024 山东淄博·期中)已知 an 数列满足 a1 = 2 a n+1, n+1 - 2an = 2 ,则数列 an 的通项公式为
【答案】 an = n × 2
n
a - 2a = 2n+1 a【解析】由 得 n+1
a
- n
ìan ü a
n+1 n n+1 n = 1,故 í n 为等差数列,公差为 1,首项为 1,所以
n
n =1+ n -1 = n 2 2 2 2
所以 an = n × 2
n .故答案为: an = n × 2
n
【例 5-3】(23-24 湖南常德 )已知数列 an 满足 a1 =1, an - an+1 = 2n anan+1,则 an = .
1
【答案】
2n -1
【解析】若 an+1 = 0,则 an - an+1 = 0,即 an = an+1 = 0,这与 a1 =1矛盾,所以 an+1 0 ,
n 1 1 n
由 an - an 1 = 2 anan 1两边同时除以 anan+1,得 - = 2+ + a a ,n+1 n
1 1 1 1 1 1 1 1
则 - = 2n-1, - = 2n-2 , - = 22 - = 2an a
, ,
n-1 an-1 an-2 a3 a2 a2 a1
1 1 2 1- 2n-1
上面的式子相加可得: - = 2 + 22 + 23 +K+ 2n-1 = = 2n - 2,
an a1 1- 2
a 1 1所以 n = n ,故答案为:2 -1 2n
.
-1
【一隅三反】
1 a
1.(23-24 n安徽)已知数列 an 满足 a1 = ,且 an+1= a a2 3a +1,则数列 n 的通项公式为 n
= .
n
1
【答案】
3n -1
1
1 an a 1
【解析】因为数列 an 满足 a a = 1 21 = ,且 n+1 ,则 a = = = ,2 3a 2n +1 3a1 +1 3 1 +1 5
2
1
a a= 2 = 5 13 L3a +1 3 1
= , ,
2 +1 8
5
以此类推可知,对任意的 n N* , an > 0,
a = an 1 1+ 3a 1 1 1在等式 n+1 两边取倒数可得 = n = + 3 - = 33a +1 a a a ,则 a ,n n+1 n n n+1 an
ì 1 ü 1
所以数列 í 是首项为 = 2a ,公差为3的等差数列. an 1
1
所以, = 2 + 3 n -1 = 3n -1 1a ,所以, an = .n 3n -1
1
故答案为: .
3n -1
2.(23-24 福建宁德·期末)已知数列 an 的前 n项和为 Sn ,满足 Sn = an+1 -1, a1 = 2,则 Sn = .
【答案】3 2n-1 -1
【解析】因为 Sn = an+1 -1, a1 = 2,则 Sn = Sn+1 - Sn -1,
整理得 Sn+1 +1 = 2 Sn +1 ,且 S1 +1 = 3 0 ,
可知数列 Sn +1 是以首项为 3,公比为 2 的等比数列,
可得 Sn +1 = 3 2
n-1
,所以 Sn = 3 2n-1 -1 .
故答案为:3 2n-1 -1 .
3 n+1.(2024 黑龙江)数列{an}满足 an+1 = 5an + 3 5 , a1 = 6,则数列{an}的通项公式为 .
【答案】 an = (3n
9
- ) ×5n .
5
【解析】∵ a = 5a 3
a a a
+ 5n+1 ,所以 n+1 = n + 3,即 n+1
a
- nn+1 n 5n+1 5n 5n+1 5n
= 3,
{an } a 6∴ n 是等差数列,而
1 = ,
5 5 5
an 6所以 = + 3(n -1) 3n
9
= - ,
5n 5 5
9 n
所以 an = (3n - ) ×5 .5
故答案为: an = (3n
9
- ) ×5n .
5
4.(2024· *江苏南京·模拟预测)已知数列 an 满足 a1 =1,2an+1 - an + anan+1 = 0(n N ) ,则数列 an 的通项公式
为 .
1
【答案】 an = 2n -1
1 1 1 1
【解析】数列 an 中, a1 =1, 2an+1 - an + anan+1 = 0 ,显然 an 0 ,则有 = 2 × +1,即 +1 = 2( +1)an+1 an a

n+1 an
1
而 +1
1
= 2 ,因此数列{ +1}a 是以 2 为首项,2 为公比的等比数列,1 an
1
所以 +1 = 2n
1 1
,即 an = n .故答案为: an =a 2 -1 2nn -1
考法六 其他方法
【例 6-1】(2024 江苏无锡·阶段练习)(多选)意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样
一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成
的数列 an 称为“斐波那契数列”,记 Sn 为数列 an 的前 n项和,则下列结论正确的是( ).
A. S7 = 33 B. Sn+2 = Sn+1 + Sn
a2 + a2 +L+ a2
C 1 2 2019. a1 + a3 + a5 +L+ a2019 = a2020 D. = aa 20202019
【答案】ACD
【解析】 a6 = 8, a7 =13,∴ S7 =1+1+ 2 + 3 + 5 + 8 +13 = 33 成立,故选项 A 正确;
由 an+2 = an+1 + an ,两边累加:
a3 + a4 +L+ an+2 = a2 + a3 +L+ an+1 + a1 + a2 +L+ an
即 Sn+2 - 2 = Sn+1 -1 + Sn ,
∴ Sn+2 = Sn+1 + Sn +1,故选项 B 错误;
由 a1 = a2 , a3 = a4 - a2 , a5 = a6 - a4 ,…, a2019 = a2020 - a2018 ,
可得: a1 + a3 + a5 +L+ a2019 = a2020 .选项 C 正确;
斐波那契数列总有 an+2 = an+1 + an ,
2 2 2 2
则 a1 = a2a1 a1 = a2a1, a2 = a2 a3 - a1 = a2a3 - a1a2, a3 = a3 a4 - a2 = a3a4 - a2a3 ,…,
a2 22018 = a2018 a2019 - a2017 = a2018a2019 - a2017a2018, a2019 = a2019a2010 - a2018a2019;
∴ a21 + a
2
2 +L+ a
2
2019 = a2019a2020,即答案 D 成立.
故选 ACD.
1
【例 6-2】(23-24 吉林长春·阶段练习)(多选)已知数列 an 满足a1 = 3,an+1 = 1- a ,记数列 an 的前 n项和为n
Sn ,则下列结论错误的是( )
3 1
A. a2024 = B. S3n+1 - S3n = -2 2
C. anan+1an+2 = -1 D. S19 = 22
【答案】AB
【解析】数列 an 中,a1 = 3,a
1 1 1 2
n+1 = 1- a ,则
a2 =1- =1- =
n a 3 3

1
a 1 1 1 1 1 , a 1 1 1 13 = - = - = - = - = - = 3 = aa 2 2 4 a 1 1 a2 3 - ,因此数列 n 是以 3 为周期的周期数列,
3 2
对于 A, a a
2
2024 = 2 = ,A3 错误;
对于 B, S3n+1 - S3n = a3n+1 = a1 = 3,B 错误;
1 an -1 1 an an -1- an -1
对于 C, an+1 =1- = ,an+2 =1- =1- = =a ,n an an+1 an -1 an -1 an -1
an -1 -1
因此 anan+1an+2 = an × × = -1a a -1 ,C 正确;n n
2 1
对于 D, S19 = (a1 + a2 + a3 +L+ a18 ) + a19 = 6 a1 + a2 + a3 + a1 = 6(3+ - ) + 3 = 22 ,D 正确.3 2
故选:AB
【一隅三反】
1.(2024 山东菏泽)(多选)意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,
2,3,5,….,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列 an 称为
“斐波那契数列”,记 Sn 为数列 an 的前 n 项和,则下列结论正确的是( )
A. a6 = 8 B. S7 = 33
a2 + a2 + ×××× × × +a2
C a + a + a + ×××+ a = a D 1 2 2019. 1 3 5 2019 2020 . = aa 20202019
【答案】ABCD
【解析】 对 A,写出数列的前 6 项为1,1,2,3,5,8,故 A 正确;
对 B, S7 =1+1+ 2 + 3 + 5 + 8 +13 = 33,故 B 正确;
对 C,由 a1 = a2 , a3 = a4 - a2 , a5 = a6 - a4 ,……, a2019 = a2020 - a2018 ,
可得: a1 + a3 + a5 + ×××+ a2019 = a2020 .故 a1 + a3 + a5 + ×××+ a2019 是斐波那契数列中的第 2020 项.
2 2
对 D,斐波那契数列总有 an+2 = an+1 + an ,则 a1 = a2a1 , a2 = a2 a3 - a1 = a2a3 - a2a1,
a23 = a3 a4 - a2 = a3a4 - a2a3,……, a22018 = a2018 a 22019 - a2017 = a2018a2019 - a2017a2018, a2019 = a2019a2020 - a2019a2018
a2 21 + a2 + a
2
3 + ×××× × × +a
2
2019 = a2019a2020 ,故 D 正确;
故选:ABCD.
2.(2024 高三·全国·专题练习)(多选)已知数列 an 满足 a1 = 2, anan+1 + an - an+1 +1 = 0 ,记数列 an 的前 n 项
和为 Sn ,前 n 项积为Tn ,则( )
1
A.数列 an 是周期数列 B. a2024 = 3
C. S2024 > T2024 D.T2024 =1
【答案】ABD
1+ an
【解析】选项 A:易知an 1,由 anan+1 + an - an+1 +1 = 0 ,得 an+1 = 1- a ,n
又 a1 = 2,计算得 a2 = -3
1 1
, a3 = - , a4 = , a2 3 5
= 2 = a1 ,
因此 an 为周期数列,且周期为 4,A 正确.
1
选项 B:由 A 知, a2024 = a4 = ,B 正确,3
7
选项 C,D:由周期性,得 S2024 = 506S4 = 506 a1 + a2 + a3 + a4 = 506 - ÷ < 0,
è 6
T = T 506 = a a 5062024 4 1 2 a3 a4 =1,则 S2024 < T2024 ,故 C 错误,D 正确.
故选:ABD.
3.(2024 浙江)已知数列 x x 2n 满足: 1 = , xn+1 = x
n(n +1)
n 2 , n 1,则通项 x2 x + n(n +1) n
= .
n
n
【答案】
3n -1
x x n(n +1) 2 x 0 x2 n(n +1)x
2
【解析】由 n+1 = n 2 , x1 = > 0,得 n >
n
,两边平方得 n+1 = 2 ,xn + n(n +1) 2 xn + n(n +1)
1 x2n + n(n +1) 1 1 1 1 1 1 1 1 1 1 1
则 + = +2 = 2 = 2 + = 2 + - ,即有 2 2 ,因此数列{ 2 + }是常数列,xn+1 n(n +1)xn xn n(n +1) xn n n +1 xn+1 n +1 xn n xn n
1 1 1 1
+ = + = 3 n n
x2 n x2 1 ,所以 xn = .故答案为:n 1 3n -1 3n -1
2a -1
4.(2024 n甘肃)已知数列 an 满足 a1 = 2, an+1 = a a =+ 4 ,则 n .n
3
【答案】 -1
n
2x -1 2x -1 2a - 1
【解析】设 f x = ,令 f x = x得: = x,解得: x=-1; an+1 - -1 = n - -1 x + 4 x + 4 an + 4 ,化简得,
3 a +1
an+1 +1=
n
a ,n +4
1 an + 4 1 an +1 + 3 1 1 1 1 1
所以 = - =an +1 + 1 3 an + 1 ,从而
= = +
a ,故 a + 1 a + 1 3 ,n+1 +1 3 an +1 3 an +1 n +1 n
1 1 ì 1 ü
= 1又 a +1 3 ,所以 í 是首项和公差均为 的等差数列,1 an +1 3
1 1 1 n
从而 = + n - 1 =
3 3
a + 1 3 3 3 ,故 an = -1.故答案为: -1n n n
一.单选题
1(23-24 广东深圳·期末)已知数列 a 3n 的前 n项和为 Sn ,满足 Sn = an - 3,则 an =( )2
A n n n n. an = 3 B. an = 2 ×3 C. an = 6 ×3 D. an = 6
【答案】B
S 3【解析】 n = a
3
n - 3①中,当 n =1时, a1 = a1 - 3,解得 a1 = 6,2 2
当 n 2
3
时, Sn-1 = a2 n-1
- 3 ②,
3 3
式子①-②得, an = an - a2 2 n-1
,即 an = 3an-1 ,
故 an 为首项为 6,公比为 3 的等比数列,
故 an = 6 × 3
n-1 = 2 × 3n .
故选:B
2.(2024·西藏·模拟预测)已知数列 a 对任意 k N*n 满足 a kk × ak +1 = 2 ,则 a1 ×a2024 = ( )
A. 21012 B. 21013 C. 22024 D. 22025
【答案】A
k
【解析】由 ak × ak +1 = 2 ,得 ak +1 × a
k +1
k +2 = 2 ,
ak +2
所以 = 2a ,k
a2024 a× 2022 a× 2020 a a a× × × × × 8 × 6 × 4 = 21011 a2024 1011所以 a a a a a a ,即
= 2
a ①.2022 2020 2018 6 4 2 2
又因为a1 × a2 = 2 ②,
①② a ×a = 21012两式相乘,得 1 2024 .
故选:A.
a
3.(23-24 广东湛江· n阶段练习)在数列 an 中, a1 =1, an+1 = a =3an +1
,则 34 ( )
34 1 1
A. B. C. D.100
103 104 100
【答案】C
a =1 a
an 1 3a= = n +1【解析】因为 1 , n+1 ,所以 = 3
1
+
3an +1 a

n+1 an an
1 1
即 - = 3a ,n+1 an
ì 1 ü
所以 í 是以1为首项,3为公差的等差数列,
an
1
=1+ 3 n -1 = 3n - 2 a 1所以 a ,则 n = ,n 3n - 2
1 1
所以 a34 = = .3 34 - 2 100
故选:C
2a
4.(2023·全国·高三专题练习)已知数列 an 的首项 a1 =1 n *,且各项满足公式 an+1 = n Na + 2 ,则数列 an n
的通项公式为( )
A. an = n
2 2 1B. an = C. an = n D. an +1 n
=
n
【答案】B
2a
【解析】因为数列 an 的首项 a1 =1 a n *,且各项满足公式 n+1 = n Na + 2 ,则 a2 0 , a3 0,L,n
以此类推,对任意的n N*, an 0 ,
a 2an 1 2 + an 1 1 1 1 1由 n+1 = 可得 = = + - =an + 2 an+1 2a a 2
,所以, a a ,n n n+1 n 2
ì 1 ü 1 1
所以,数列 í 是等差数列,且首项为 =1,公差为 ,
a 2n a1
1
\ =1 n -1 n +1+ = 2
a 2 2 ,因此, an = .n n +1
故选:B.
5 n+1
5.(2024· · 1 1 全国 高三专题练习)已知在数列 an 中, a1 = , an+1 = an + ,则 a =( )6 3 è 2 ÷ n
3 2 2 3 1 2 2 1
A. n - n B. n -2 3 3 2n
C. n - n D. -2 3 3n 2n
【答案】A
a 5
n+1
= a 1 1= a + 2n+1 ×a
2
= ×2n【解析】因为 1 , n+1 n ÷ ,所以 n+1 a +1
n+1 2
n ,整理得 2 ×an+1 - 3 = × 2n an - 3 ,所以6 3 è 2 3 3
4 4 2 n-1
数列 2n an - 3 是以 2a 3 21 - 3 = - 2 为首项, 3 为公比的等比数列.所以 2n a3 n - 3 = - ÷ ,解得 a =3 3 n 2n - n .è 3
故选:A
6.(23-24 福建厦门·期末)已知数列 an 的前 n项和为 Sn ,若3Sn = an - 2,则 an 的最大值为( )
1
A. -1 B.- C 1. 2 D.12
【答案】C
【解析】由题意知3Sn = an - 2,故 n =1时,3a1 = a1 - 2,\a1 = -1,
当 n 2时,3Sn = an - 2,3Sn-1 = an-1 - 2 ,则3 Sn - Sn-1 = an - an-1,
即3an = an - a
1
n-1,故 an = - an-1, n 2 ,又 a1 = -1 0,2
1
所以 an 为首项是 a1 = -1,公比为- 的等比数列,2
1 n-1 n-1
故 an = -1

-

÷ = -1
n 1
2 ÷

è è 2
1 n-1
÷ 随 n 的增大而减小,且数列的奇数项均为负值,偶数项为正值,
è 2
故 n = 2 1时, an 取最大值,最大值为 2 ,
故选:C
7.(22-23 福建福州·期末)如图的形状出现在南宋数学家扬辉所著的《详解九章算法·商功》中后人称为“三角
垛”,“三角垛”最上层有 1 个球,第二层有 3 个球,第三层有 6 个球,…,设第 n 层有 an 个球,从上往下 n 层球
的总数为 Sn ,则说法不正确的是( )
A. a5 = 35 B. S5 = 35
C. an+1 - an = n +1 D.不存在正整数m > 2 ,使得am 为质数
【答案】A
【解析】依题意因为 a1 =1, a2 - a1 = 2,a3 - a2 = 3,L,an - an-1 = n,
n(n +1)
以上 n 个式子累加可得︰ an =1+ 2 + 3 +L+ n = , (n 2) ,2
n(n +1) 5 6
又 a1 =1满足上式,所以 an = ,故 a5 = =15,故 A 错误;2 2
因a1 = 1,a2 = 3,a3 = 6,a4 = 10,a5 = 15,
所以 S5 = a1 + a2 + a3 + a4 + a5 =1+ 3 + 6 +10 +15 = 35,故 B 正确;
因为 an - an-1 = n,所以 an+1 - an = n +1,故 C 正确;
a n(n +1)因为 n = ,故当m > 2 且为整数时, a
m(m +1)
m = ,2 2
此时m(m +1) m(m +1)必为偶数,则 2 为整数,且为合数,
则不存在正整数m > 2 ,使得am 为质数,D 正确,
故选:A
8.(2024·全国·模拟预测)已知数列 an 的前 n 项和为 Sn ,则下列说法中正确的是( )
A.若数列 Sn - 4 是等差数列,则数列 an 可能也是等差数列
B.若数列 Sn + 4 是等差数列,则数列 an 可能也是等差数列
C.若数列 an 是等差数列,则数列 Sn 不可能是等差数列
D.若数列 an 是正项等差数列,则数列 Sn - 4 可能是等差数列
【答案】B
2 2 2
【解析】对于 A,设 Sn - 4 = kn + m ,则 Sn = k n + 2kmn + m + 4.
当 n 2 S 2时, n-1 = k (n -1)
2 + 2km(n -1) + m2 + 4,
所以 an = S - S
2
n n-1 = k (2n -1) + 2km(n 2) .
2 2
又 a1 = S1 = k + 2km + m + 4,不符合该式,数列 an 不是等差数列,故选项 A 错误.
对于 B,由选项 A 可知,当 n 2时, an = Sn - Sn-1 = k
2 (2n -1) + 2km(n 2) ,
a1 = S = k
2
1 + 2km + m
2 - 4,当m2 - 4 = 0时, a1适合上式;
故只需m2 - 4 = 0,数列 an 为等差数列,故选项 B 正确.
对于 C,若数列 an 满足 an = 0,则数列 Sn 为等差数列,故选项 C 错误.
a S na n(n -1)d d n2 a d 对于 D,若数列 n 是正项等差数列, n = 1 + = + 1 - ÷ n a1 > 0, d 0 ,可知只有当 d > 0时,2 2 è 2
才有可能,
S 4 d n2 a d 所以 n - = +2 1
- ÷ n - 4 成为完全平方数,数列 S2 n - 4 才可以是等差数列,è
d 2a - d d 2 2a - d
2
故对其变形可得 Sn - 4 =

n + 1

÷ n - 4 =

n
2a
+ 1
- d - 1 ÷ - 4,2 è d 2 è 2d 8d
2a1 - d
2 2
当- - 4 = 0时,数列 Sn - 4 2a - d 才为等差数列,而- 1 - 4 < 0,故选项 D 错误.
8d 8d
故选:B.
二.多选题
9.(广西桂林市 2023-2024 学年高二下学期期末质量检测数学试卷)已知数列 an 的前 n 项和 Sn =1- an ,则下
列结论中正确的是( )
a 1A. 1 = B.数列 a2 n 是递增数列
S 1C. n =1- ( )
n D. Sn >12
【答案】AC
1
【解析】当 n =1时, S1 =1- a1 = a1,解得 a1 = > 0,故 A 正确;2
当 n 2时,由 Sn =1- an 可得, Sn-1 =1- a a
1
n-1,两式相减得 n = a ,2 n-1
1 1
数列 an 是等比数列,公比 q = ,且首项 a = > 0,所以数列 a 是递减数列,故 B 错误;2 1 2 n
1 é n ù
ê1
1
-
2 2 ÷ ú n
由等比数列求和公式知, S ê
è ú 1
n = 1 =1-

÷ ,故 C 正确;
1- è 2
2
n
C S =1- 1 由 知, n ÷ <1,故 D 错误.
è 2
故选:AC
1 1 1
10.(2024 山西)已知数列 an 满足 a1 =1, an = a1 + a2 + a3 +L+ an-1 n >1 ,则(2 3 n 1 )-
a ì1, n =1
A a =1 B n
n
. 2 . = C. a
n
n = D. an =

a n -1 2 ínn-1 ,n 2 2
【答案】AD
1 1 1
【解析】对于 AB,因为数列 an 满足 a1 =1, an = a1 + a2 + a3 + ×××+ a n >1 ,2 3 n -1 n-1
a
所以当 n = 2 a 2时, 2 = a1 =1,此时 =1
2

a 1 ,故 A 正确,B 错误;1
1 1 1 1
对于 CD,当 n 2时, an+1 = a1 + a2 + a3 +L+ a2 3 n -1 n-1 + an n,
1 a a
两式相减,得 a n+1 nn+1 - an = a =n n ,整理得 ,n +1 n
a
又 1 =1
a
, 2
1
= ,即当 n =1时,不满足上式,
1 2 2
ìa
所以 í n
ü 1
n 是从第二项起首项为 2 的常数列,
a
故当 n 2时, n
1
= ,则 a
n
n 2 n
= ,
2
ì 1, n =1

综上, an = ín ,故 C 错误,D 正确.

,n 2
2
故选:AD.
11.(22-23 广东广州·期末)意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,
3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列 an 称为“斐
波那契数列”,记 Sn 为数列 an 的前 n 项和,则下列结论正确的是( ).
A. a6 = 8 B. S7 = 33
C a + a + a 2 2 2. 1 3 5 +L+ a2021 = a2023 D. a1 + a2 +L+ a2022 = a2022a2023
【答案】ABD
【解析】对 A, a6 = 3+ 5 = 8,A 对;
对 B, a7 = 5 + 8 =13, S7 =1+1+ 2 + 3 + 5 + 8 +13 = 33,B 对;
对 C,由 an + an+1 = an+2 得 an+1 = an+2 - an ,∴ a1 + a3 + a5 +L+ a2021 = a2 + a4 - a2 + a6 - a4 +L+ a2022 - a2020 = a2022 ,C
错;
D a2 2 2对 , 1 + a2 +L+ a2022 = a1a2 + a2 a3 - a1 +L+ a2022 a2023 - a2021 = a2022a2023,D 对.
故选:ABD
三.填空题
12.(2024·江西鹰潭·二模)设数列 an 的前 n项和为 Sn , a1 = 2, 2S *n = nan+1, n N ,则 Sn = .
【答案】 n n +1 ( n N*)
【解析】因为 2Sn = nan+1,当 n 2时, 2Sn-1 = n -1 an ,
两式相减可得 2an = nan+1 - n -1 an ,即 n +1 an = nan+1 ,
a
所以 n+1
a
= n n a 2 ,又 a = 2S = 4,所以 22 1 = 2 ,n +1 n 2
a a
所以 n = 2 = 2 n 2 ,所以 an = 2n n 2 ,且 a1 = 2也符合上式,n 2
所以 an = 2n n N* n 2 + 2nS ,所以 n = = n n +1 , n N* .2
故答案为: n n +1 ( n N*)
13.(2024·浙江嘉兴·二模)设数列 an 的前 n项和为 Sn ,等比数列 bn 的前 n项和为Tn ,若b1 = -1,b5 = 8b2 ,
1- 2n Sn = n n +1 Tn,则 an = .
【答案】 2n
【解析】设等比数列 bn 的公比为q,
由b5 = 8b2,则 q3 = 8,解得 q = 2,又b1 = -1,
n
b n-1 -1 1- 2 n所以 n = -2 ,\T = =1- 2n,代入 1- 2 Sn = n n +1 T ,n n1- 2
解得 Sn = n n +1 ,
当 n =1时, a1 = S1 = 2,
当 n 2, n N*时, an = Sn - Sn-1 = n n +1 - n n -1 = 2n ,
a1 = 2满足上式,所以 a = 2n, n N*n .
故答案为: 2n .
14 *.(2023·广东深圳·二模)已知正项数列 an 的前 n项积为Tn ,且满足 an 3Tn -1 = Tn n N ,则Tn = .
1 1 n 1
【答案】 ÷ + n N*2 è 3 2
【解析】由题意 a1 3T1 -1 = a1 3a1 -1 = T1 = a
2
1,且 a1 > 0,所以 a1 = ,3
Tn * Tn *
又 an = n N3T -1 ,且 an = n 2, n NT ,n n-1
* 1 1 1 1 2 1 1
所以3Tn -1 = Tn-1 n 2,n N ,则Tn - = T2 3 n-1 - ÷,又Tè 2 1 - = - = ,2 3 2 6
ìT 1- ü 1 1 1 1
n-1
í
1
所以数列 n 是以 为首项, 为公比的等比数列,故Tn - = ÷ , 2 6 3 2 6 è 3
T 1
n
=
1 1
所以 + n N*n .2 3 ÷ 2 è
1 n 1 1
故答案为: + n N*2 ÷ .è 3 2
四.解答题
15.(22-23 北京海淀·期末)求下列数列 an 的通项公式.
(1) a1 =1,2an = 2an-1 +1;
(2) a1 =1,3an = an-1;
(3) S nn = 3 - 2;
(4) a1 =1, an = a + 3
n-1
n-1 ;
(5) a
n
1 =1, an = a ;n +1 n-1
(6) a1 =1, a
2an
n+1 = a ;n + 2
(7) 2an = Sn +1;
(8) a1 =1,3an+1 = Sn ;
a n +1【答案】(1) n = 2
1
(2) an = 3n-1
ì1, n =1
(3) an = í2 ×3n-1 , n 2
n
(4) a 3 -1n = 2
2
(5) an = n +1
2
(6) an = n +1
(7) an = 2
n-1
ì1, n =1

(8) an = í1 4
n-2

× ÷ , n 2
3 è 3
【解析】(1)因为 a1 =1,2an = 2an-1 +1,
1
所以 an - an-1 = n 2 ,2
1
所以数列 an 是以 2 为公差的等差数列,
a 1 1 n 1 n +1所以 n = + - = ;2 2
a 1
(2)因为 a1 =1,3an = a
n
n-1,所以 = n 2 a ,n-1 3
所以数列 an
1
是以 为公比的等比数列,
3
1
所以 an = 3n-1

(3)由 Sn = 3
n - 2,
当 n =1时, a1 = S1 =1,
当 n 2 n时, an = Sn - Sn-1 = 3 - 2 - 3n-1 - 2 = 2 ×3n-1,
当 n =1时,上式不成立,
ì1, n =1
所以 an = í n-1
2 ×3 , n 2
(4)因为 a1 =1, an = an-1 + 3
n-1

a - a = 3n-1所以 n n-1 n 2 ,
则当 n 2时, an = an - an-1 + an-1 - an-2 + an-2 - an-3 +L+ a2 - a1 + a1
3n-1 3n-2 L 3 1 1- 3
n 3n -1
= + + + + = = ,
1- 3 2
当 n =1时,上式也成立,
3n -1
所以 an = ;2
a 1, a n
a n
(5)因为 1 = n = a
n
n 1,所以 = n 2- a n +1 ,n +1 n-1
则当 n 2时, a
an an-1 a= × × n-2 an ×L× 2 × aa 1n-1 an-2 an-3 a1
n n -1 n - 2 2 2
= × × ×L× 1 = ,
n +1 n n -1 3 n +1
当 n =1时,上式也成立,
2
所以 an = ;n +1
2a
(6 n)因为 a1 =1, an+1 = an + 2

1 an + 2 1 1 1 1 1
所以 = = + - =an+1 2an a
,即 ,
n 2 an+1 an 2
ì 1 ü 1 =1 1所以数列 í 是以 a 为首项, 2 为公差的等差数列, an 1
1 1 n +1
所以 =1+ n -1 =an 2 2

2
所以 an = ;n +1
(7)由 2an = Sn +1,得 Sn = 2an -1,
当 n =1时, a1 = S1 = 2a1 -1,所以 a1 =1,
当 n 2时, an = Sn - Sn-1 = 2an - 2an-1,
所以 an = 2an-1,
所以数列 an 是以 2为公比,1为首项的等比数列,
n-1
所以 an = 2 ;
(8)由 a1 =1,3an+1 = Sn ,
a = S = 3a a 1当 n =1时, 1 1 2,所以 2 = ,3
当 n 2时, an = Sn - Sn-1 = 3an+1 - 3an ,
所以 a
4
n+1 = a ,3 n
所以数列数列 a 4 1n 从第二项起是以 为公比, 为首项的等比数列,3 3
1 n-2a = × 4 所以 n ÷ ,3 è 3
当 n =1时,上式不成立,
ì1, n =1
所以 a =

n í1 4
n-2
×
.
÷ , n 2
3 è 3
16.(2024·辽宁沈阳·模拟预测)已知数列 an 满足 a1 =1, an > 0, Sn 是数列 an 的前 n项和,对任意 n N*,
有 2Sn = 2a
2
n + an -1
(1)求数列 an 的通项公式;
(2)设bn = (-1)
n-1an,求 bn 的前 100 项的和.
1
【答案】(1) an = (n +1)2 ;
(2) -25
【解析】(1)由 2Sn = 2a
2
n + an -1, 2S
2
n-1 = 2an-1 + an-1 -1 n 2 ,
2 2
两式相减得 2an = 2an - 2an-1 + an - an-1,即 an + an-1 2an - 2an-1 -1 = 0,
因为 an > 0,所以 2an - 2an-1 -1 = 0 a a
1
,即 n - n-1 = (n 2),2
故 an 是首项为1 1,公差为 2 的等差数列,
a 1所以 n = (n +1)2 ;
n-1
(2)由(1)知bn = (-1) a = (-1)
n-1 1
n (n +1),2
b 1所以 2n-1 + b2n = - ,2
记 cn = b2n-1 + b2n ,则 c
1
n = - ,2
\b1 + b2 + ......+ b100 = c1 + c2 + ......+ c
1
50 = - ÷ 50 = -25
è 2
17.(24-25 湖北)已知数列 an 的前 n项和 Sn ,且满足 2Sn + an =1 .
(1)求 an 的通项公式;
8
(2)记数列 an 的前 n
a
项乘积为Tn ,求
n .
T 的最小值n
a (1【答案】(1) n = )
n .
3
1
(2) ( )28
3
【解析】(1)因为 2Sn + an =1 .
所以当 n =1时, 2S1 + a1 =1,2a1 + a1 =1,
1
\a1 = ,3
当 n 2时, 2Sn + an =1,2Sn-1 + an-1 =1,
两式相减得 2S 2S
a
- n
1
n n-1 + an - an-1 = 0,\3an - an-1 = 0,Qan 0,\ = ,an-1 3
1
所以数列 an 是首项为 ,公比为 q
1
= 的等比数列,
3 3
n-1 1 1 n-1 1 n
则数列通项公式为 an = a1q = ( ) = ( ) ,3 3 3
(2)记数列 an 的前 n项乘积为Tn ,
所以Tn = a1a2a3La
1 n
n ,由(1)可知 an = ( ) .3
1 n(n+1)T = a a a La = ( )1 (1 2 1 3 1 n 1n 1 2 3 n ) ( ) L ( ) = ( )
1+2+3+L+n 1= ( ) 2
3 3 3 3 3 3
1 8n 2
a8 ( ) 1 8n n(n+1) 1 16n-n -n 15n-n
2 -15n+n2
n 3 -= 2 2 1 2 2则 T 1 n(n+1)
= ( ) = ( ) = ( ) = 3
n ( ) 2 3 3 3
3
2 2 15
令 y = -15n+n n 15n= - ,开口向上且对称轴为 n = ,n N*2 2 2 ,2
所以 n = 7或 8 时, y 取最小值且最小值为 -28 .
a8
所以 n 的最小值为 (
1)28 = 3-28 .
Tn 3
18.(23-24 2北京·期中)已知数列 an 的前 n项和为 Sn ,且 Sn = n + 6n - 2.
(1)求 an 的通项公式;
(2)证明:数列 a2n 为等差数列.
ì5,n =1
【答案】(1) an = í
2n + 5, n 2
(2)证明见解析
2
【解析】(1)因为 Sn = n + 6n - 2,
若 n =1,可得 a1 = 5;
2
若 n 2,可得 an = S
2 é ù
n - Sn-1 = n + 6n - 2 - n -1 + 6 n -1 - 2 = 2n + 5,
由于 a1 = 5不符合 an = 2n + 5 ,
ì5,n =1
所以 an = í
2n + 5, n 2

(2)因为 n N* ,则 2n 2,由(1)可知: a2n = 2 2n + 5 = 4n + 5,
则 a2 n+1 - a2n = é4 n +1 + 5 ù - 4n + 5 = 4,
可知数列 a2n 是以首项 a2 = 9,公差 d = 4的等差数列.
19.(23-24 山东淄博·阶段练习)已知数列 an 是等差数列,其前 n和为 Sn , a2 = 2, S9 = 45,数列 bn 满足
a b n1 1 + a2b2 +L+ anbn = n -1 ×2 +1
(1)求数列 an , bn 的通项公式;
(2)若对数列 an , bn ,在 a 与 a *k k +1之间插入bk 个 2( k N ),组成一个新数列 dn ,求数列 dn 的前 83 项
的和T83 .
(1) a = n b = 2n-1【答案】 n , n
(2)180
【解析】(1)设公差为d ,
ìa1 + d = 2 ìa1 =1
故 í ,解得 í ,
9a1 + 36d = 45 d =1
故 an = a1 + n -1 d =1+ n -1 = n,
n
故b1 + 2b2 +L+ nbn = n -1 × 2 +1,①
当 n =1时,b1 =1,
当 n 2时,b1 + 2b2 +L+ n -1 bn-1 = n - 2 ×2n-1 +1,②
①-② n n-1 n-1式子 得, nbn = n -1 ×2 +1- n - 2 × 2 -1 = n ×2 ,
n ×2n-1
即b = = 2n-1n ,n
当 n =1 n-1时,b1 =1也满足上式,故bn = 2 ;
(2)因为 an = n ,所以在 dn 中,从项 a1开始,到项 ak 为止,
1- 2k -1
共有项数为 k + 20 + 2 + 22 +L+ 2k -2 = k + = k + 2k -1 -1,
1- 2
当 k = 7时,7 + 26 -1 = 70 < 83,当 k = 8时,8 + 27 -1 =135 > 83,
故数列 dn 前83项是项a7之后还有83- 70 =13项为 2,
T83 = 1+ 2 + 3+ 4 + 5 + 6 + 7 + 2 20 + 21 +L+ 25 +13 =180 .5.3 递推公式求数列通项公式
考法一 公式法
1
【例 1-1】(2024·四川· n-1模拟预测)已知数列 an 的前 n项和为 Sn ,若 Sn = 2 - ,则数列 a2 n 的通项公式为
【例 1-2】(23-24 天津宁河· 2期末)若数列 an 的前 n项和 Sn = 2n + n +1,则 an 的通项公式是
2 1
【例 1-3】(2024 高三下·全国·专题练习)若数列 an 的前 n项和 Sn = an + (n N*),则 an 的通项公式是 3 3
a a a
【例 1-4】(23-24 辽宁·期中)已知数列 an 满足 a1 + 2 + 32 +L+ nn-1 = 3n,则 an = 3 3 3
【例 1-5】(2024 n+1陕西榆林·期末)已知数列 an 的前 n 项和为 Sn , an+1 = Sn + 2 , a1 = 2,则 Sn =
【一隅三反】
1.(23-24 北京·期中)已知数列 an 的前 n 2项和为 Sn ,且 Sn = n + 3n ,则数列 an 的通项公式为 .
2
2.(23-24 江西景德镇·期中)若数列 an 的前 n 项和 Sn = 6 - n 1 ,则数列 a- n 的通项公式为 .3
3 2.(23-24 广东深圳·阶段练习)已知数列 an 的前 n项和为 Sn ,且 Sn = n - 4n +1,则 an = .
4.(23-24 广东佛山·阶段练习)已知数列 an 的前 n 项和为 Sn , a1 = 3,2Sn = 3an - 3,则 an 的通项公式为
1 3
5 2.(2024·四川·模拟预测)已知 Sn 为正项数列 an 的前 n项和, a1 = 3且 Sn + Sn+1 = an+1 - ,则 a = .2 2 n
a a a
6.(23-24· · a a + 2 + 3 + ×××+ n = 3n - 2(n N*江西抚州 阶段练习)数列 n 满足 1 ,n 1) ,则 an = .2 3 n
考法二 累乘法
a n
【例 2-1】(23-24 四川成都· n
*
阶段练习)已知数列 an 满足: a1 =1且 = n 2,n N aan-1 n -1
,则数列 n 的通
项公式为 .
【例 2-2 】( 22-23 福建宁德 · 期中)已知 a1 =1, an+1 = n an - an+1 n N+ ,则数列 an 的通项公式是
an = .
【例 2-3】(2024 高三下·全国· 2专题练习)已知数列 an 的前 n项和为 Sn , Sn = n an , a1 =1,则 Sn = .
【一隅三反】
1.(2024·全国·高三专题练习)已知数列 an 满足 a1 = 2 , nan+1 = n + 2a ,n N*n ,求数列 an 的通项公式.
1
2.(2024 高三下·全国·专题练习)在数列 an 中, a1 = ,前 n项和 Sn = n 2n -1 an ,则数列 an 的通项公式为 3
3.(2023 高二·全国·专题练习)已知正项数列 an 满足 a1 = 24,na2n+1 - n + 4 a2n = 4anan+1 .求 an 的通项公式
4.(2024 广东)已知数列{an}满足 a1 =1, an = a1 + 2a2 + 3a3 +L+ (n -1)an-1(n 2),求{an}的通项公式
考法三 累加法
【例 3-1 *】(23-24 上海宝山·阶段练习)已知数列 an 满足 a1 = 2, an+1 - an = 2n + 2, n N ,则 an = .
1
【例 3-2】(23-24 上海)在数列 an 中,已知 a1 =1,且 an+1 = an + 2n 1 2n 1 ,则 an =- + .
n
【例 3-3】(23-24 辽宁·期中)在首项为 1 的数列 a a 1n 中 n+1 - an = n × ÷ ,则 an =
è 2
【一隅三反】
1(23-24 四川南充·阶段练习)(多选)已知 a1 = 0, an+1 = an + 2n -1,则下列说法正确的是( )
2A.an = n - 1 B.{an}是单调递增数列
C. an 是等差数列 D. a5 = 25
2.(2024 河北)设数列 an 满足 a1 = 2, an+1 - a = 3 × 22n-1n ,则 an =_______.
1
3.(2024 江西)已知首项为 的数列 an 的前 n项和为 Sn ,且 Sn+1 + (2n + 3)anan+1 = an + Sn ,则 S98 = ______.3
考法四 构造等比数列
【例 4-1】(23-24 广东深圳·期末)已知数 an 满足 a1 = 2, an+1 = 5an +12,则数列 an 的通项公式 an = .
【例 4-2】(23-24 n+1上海·期末)数列 an 满足 a1 = 2, an+1 = 3an + 2 ,则数列 an 的通项公式为 an = .
*
【例 4-3】(23-24 高三下·广东·阶段练习)在数列 an 中, a1 = 3,且 an+1 = 3an + 4n - 6 n N ,则 an 的通项公
式为 .
【一隅三反】
1.(23-24 河北沧州·阶段练习)已知数列 an 满足 a1 = 2 *, an+1 = 3an + 2 n N ,则该数列的通项公式
an = .
2.(22-23 宁夏中卫·阶段练习)数列 an 满足 an = 4an-1 + 3 n 2 且 a1 = 0,则数列 an 的通项公式
是 .
3.(2023高三·全国· n-1专题练习)已知数列 an 满足 an+1 = 2an + 4 ×3 ,a1 = -1,则数列 an 的通项公式为 .
4.(2024 河南)设数列 an 满足 a1 = 4, an = 3an-1 + 2n -1(n 2),则数列 an 的通项公式为 .
5.(2024 高三·全国·专题练习)已知数列 an ,a1 =1,a2 = 2,an+1 - 5an + 4an-1 = 0 n N*,n 2 ,则 an 的通项公
式为 .
考法五 构造等差数列
a
【例 5-1】(2024 福建)已知数列 an 满足 a1 =1, a n *n+1 = n N a =4a +1, ,则 n .n
【例 5-2】(2024 山东淄博·期中)已知 an 数列满足 a1 = 2 a n+1, n+1 - 2an = 2 ,则数列 an 的通项公式为
【例 5-3】(23-24 湖南常德 )已知数列 an 满足 a1 =1, an - a nn+1 = 2 anan+1,则 an = .
【一隅三反】
1 a
1.(23-24 n安徽)已知数列 an 满足 a1 = ,且 an+1= 3a +1,则数列 an 的通项公式为 an = .2 n
2.(23-24 福建宁德·期末)已知数列 an 的前 n项和为 Sn ,满足 Sn = an+1 -1, a1 = 2,则 Sn = .
3.(2024 黑龙江)数列{an}满足 an+1 = 5an + 3 5
n+1
, a1 = 6,则数列{an}的通项公式为 .
4.(2024·江苏南京·模拟预测)已知数列 an 满足 a1 =1,2a *n+1 - an + anan+1 = 0(n N ) ,则数列 an 的通项公式
为 .
考法六 其他方法
【例 6-1】(2024 江苏无锡·阶段练习)(多选)意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样
一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成
的数列 an 称为“斐波那契数列”,记 Sn 为数列 an 的前 n项和,则下列结论正确的是( ).
A. S7 = 33 B. Sn+2 = Sn+1 + Sn
a2 + a2 +L+ a2
C. a1 + a3 + a +L+ a 1 2 20195 2019 = a2020 D. = aa 20202019
1
【例 6-2】(23-24 吉林长春·阶段练习)(多选)已知数列 an 满足a1 = 3,an+1 = 1- a ,记数列 an 的前 n项和为n
Sn ,则下列结论错误的是( )
3 1
A. a2024 = B. S2 3n+1
- S3n = - 2
C. anan+1an+2 = -1 D. S19 = 22
【一隅三反】
1.(2024 山东菏泽)(多选)意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,
2,3,5,….,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列 an 称为
“斐波那契数列”,记 Sn 为数列 an 的前 n 项和,则下列结论正确的是( )
A. a6 = 8 B. S7 = 33
2 2
a a + a + ×××× × × +a
2
C. 1 + a + a + ×××+ a = a D 1 2 20193 5 2019 2020 . = aa 20202019
2.(2024 高三·全国·专题练习)(多选)已知数列 an 满足 a1 = 2, anan+1 + an - an+1 +1 = 0 ,记数列 an 的前 n 项
和为 Sn ,前 n 项积为Tn ,则( )
1
A.数列 an 是周期数列 B. a2024 = 3
C. S2024 > T2024 D.T2024 =1
n(n +1)
3.(2024 2浙江)已知数列 xn 满足: x1 = , xn+1 = xn 2 , n 1,则通项 x = .2 xn + n(n +1) n
2a -1
4 n.(2024 甘肃)已知数列 an 满足 a1 = 2, an+1 = a 4 ,则 a+ n = .n
一.单选题
1(23-24 广东深圳·期末)已知数列 a n S S 3n 的前 项和为 n ,满足 n = an - 3,则 an =( )2
A a = 3n B a = 2 ×3n C a = 6 ×3n. n . n . n D. a
n
n = 6
2.(2024·西藏· k模拟预测)已知数列 an 对任意 k N* 满足 ak × ak +1 = 2 ,则 a1 ×a2024 = ( )
A. 21012 B. 21013 C. 22024 D. 22025
a
3.(23-24 n广东湛江·阶段练习)在数列 an 中, a1 =1, an+1 = ,则 a =3a +1 34 ( )n
34 1 1
A. B. C. D.100
103 104 100
2a
4 n *.(2023·全国·高三专题练习)已知数列 an 的首项 a1 =1,且各项满足公式 an+1 = n Na 2 + ,则数列 an n
的通项公式为( )
A. an = n a
2
B. n = C. a n
2 a 1= D. =
n +1 n n n
5 n+1
5 2024· · 1 1 .( 全国 高三专题练习)已知在数列 an 中, a1 = , an+1 = an + ÷ ,则 an =( )6 3 è 2
3 2 2 3 1 2 2 1
A. n - n B. - C. -2 3 3n 2n 2n 3n
D.
3n
-
2n
6.(23-24 福建厦门·期末)已知数列 an 的前 n项和为 Sn ,若3Sn = an - 2,则 an 的最大值为( )
1
A B - C 1. -1 . . 2 D.12
7.(22-23 福建福州·期末)如图的形状出现在南宋数学家扬辉所著的《详解九章算法·商功》中后人称为“三角
垛”,“三角垛”最上层有 1 个球,第二层有 3 个球,第三层有 6 个球,…,设第 n 层有 an 个球,从上往下 n 层球
的总数为 Sn ,则说法不正确的是( )
A. a5 = 35 B. S5 = 35
C. an+1 - an = n +1 D.不存在正整数m > 2 ,使得am 为质数
8.(2024·全国·模拟预测)已知数列 an 的前 n 项和为 Sn ,则下列说法中正确的是( )
A.若数列 Sn - 4 是等差数列,则数列 an 可能也是等差数列
B.若数列 Sn + 4 是等差数列,则数列 an 可能也是等差数列
C.若数列 an 是等差数列,则数列 Sn 不可能是等差数列
D.若数列 an 是正项等差数列,则数列 Sn - 4 可能是等差数列
二.多选题
9.(广西桂林市 2023-2024 学年高二下学期期末质量检测数学试卷)已知数列 an 的前 n 项和 Sn =1- an ,则下
列结论中正确的是( )
1
A. a1 = B.数列 a2 n 是递增数列
S 1 (1C. n = - )
n D. Sn >12
10.(2024 山西)已知数列 a a =1 a a 1 a 1 a L 1n 满足 1 , n = 1 + 2 2 + 3 3 + + an -1 n-1 n >1 ,则( )
a ì1, n =1
A a =1 B n
n n
. 2 . =a C.
an = D. an = ín
n-1 n -1 2 ,n 2 2
11.(22-23 广东广州·期末)意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,
3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列 an 称为“斐
波那契数列”,记 Sn 为数列 an 的前 n 项和,则下列结论正确的是( ).
A. a6 = 8 B. S7 = 33
C. a1 + a3 + a5 + + a2021 = a2023 D a2 2 2. 1 + a2 + + a2022 = a2022a2023
三.填空题
12.(2024·江西鹰潭·二模)设数列 an 的前 n项和为 Sn , a1 = 2, 2S *n = nan+1, n N ,则 Sn = .
13.(2024·浙江嘉兴·二模)设数列 an 的前 n项和为 Sn ,等比数列 bn 的前 n项和为Tn ,若b1 = -1,b5 = 8b2 ,
1- 2n Sn = n n +1 Tn,则 an = .
14.(2023·广东深圳·二模)已知正项数列 an 的前 n项积为Tn ,且满足 an 3Tn -1 = Tn n N* ,则Tn = .
四.解答题
15.(22-23 北京海淀·期末)求下列数列 an 的通项公式.
(1) a1 =1,2an = 2an-1 +1;
(2) a1 =1,3an = an-1;
(3) S = 3nn - 2;
(4) a n-11 =1, an = an-1 + 3 ;
(5) a
n
1 =1, an = a ;n +1 n-1
2a
(6) a =1, a n1 n+1 = an + 2

(7) 2an = Sn +1;
(8) a1 =1,3an+1 = Sn ;
16.(2024·辽宁沈阳·模拟预测)已知数列 an 满足 a1 =1, an > 0, Sn 是数列 an 的前 n项和,对任意 n N*,
2
有 2Sn = 2an + an -1
(1)求数列 an 的通项公式;
(2)设bn = (-1)
n-1an,求 bn 的前 100 项的和.
17.(24-25 湖北)已知数列 an 的前 n项和 Sn ,且满足 2Sn + an =1 .
(1)求 an 的通项公式;
a8
(2)记数列 an 的前 n项乘积为Tn ,求 nT 的最小值.n
18.(23-24 北京· 2期中)已知数列 an 的前 n项和为 Sn ,且 Sn = n + 6n - 2.
(1)求 an 的通项公式;
(2)证明:数列 a2n 为等差数列.
19.(23-24 山东淄博·阶段练习)已知数列 an 是等差数列,其前 n和为 Sn , a2 = 2, S9 = 45,数列 bn 满足
a1b
n
1 + a2b2 +L+ anbn = n -1 ×2 +1
(1)求数列 an , bn 的通项公式;
(2)若对数列 an , bn ,在 ak 与 ak +1之间插入bk 个 2( k N* ),组成一个新数列 dn ,求数列 dn 的前 83 项
的和T83 .

展开更多......

收起↑

资源列表