第05讲 数列求和(十三大题型)(讲义)(含答案)第六章 数列 2025年高考数学一轮复习讲练测(新教材新高考)

资源下载
  1. 二一教育资源

第05讲 数列求和(十三大题型)(讲义)(含答案)第六章 数列 2025年高考数学一轮复习讲练测(新教材新高考)

资源简介

第 05 讲 数列求和
目录
01 考情透视·目标导航 .........................................................................................................................2
02 知识导图·思维引航 .........................................................................................................................3
03 考点突破·题型探究 .........................................................................................................................4
知识点 1:数列求和常用方法.............................................................................................................4
解题方法总结........................................................................................................................................5
题型一:通项分析法............................................................................................................................8
题型二:公式法....................................................................................................................................9
题型三:错位相减法..........................................................................................................................10
题型四:分组求和法..........................................................................................................................11
题型五:裂项相消法之等差型..........................................................................................................13
题型六:裂项相消法之根式型..........................................................................................................15
题型七:裂项相消法之指数型..........................................................................................................16
题型八:裂项相消法之三角型..........................................................................................................18
题型九:倒序相加法..........................................................................................................................20
题型十:分段数列求和......................................................................................................................21
题型十一:并项求和法之 + +( ― ) = + 型...............................................................22
题型十二:并项求和法之 = ( ― ) ( )型................................................................................23
题型十三:先放缩后裂项求和..........................................................................................................24
04 真题练习·命题洞见........................................................................................................................25
05 课本典例·高考素材........................................................................................................................26
06 易错分析·答题模板........................................................................................................................28
易错点:用错位相减法求和时项数处理不恰当出错......................................................................28
答题模板:错位相减法求前 n 项和..................................................................................................28
考点要求 考题统计 考情分析
高考对数列求和的考查相对稳定,考
(1)公式法 查内容、频率、题型、难度均变化不
(2)奇偶讨论、并项分类 2023 年甲卷(理)第 17 题,12 分 大.数列的求和主要考查等差、等比数列
(3)倒序相加法 2023 年 II 卷第 18 题,12 分 的前 项和公式及非等差、等比数列的求和
(4)裂项相消法 2023 年 I 卷第 20 题,12 分 方法,其综合性较强.数列求和问题以解
(5)错位相减法 答题的形式为主,偶尔出现在选择填空题
当中,常结合函数、不等式综合考查.
复习目标:
(1)熟练掌握等差、等比数列的前 n 项和公式.
(2)掌握非等差数列、非等比数列求和的几种常见方法.
知识点 1:数列求和常用方法
一.公式法
n(a + a ) n(n -1)
(1)等差数列 an 的前 n 项和 S 1 nn = = na1 + d ,推导方法:倒序相加法.2 2
ìna1 ,q = 1
(2)等比数列 an 的前 n 项和 Sn =

ía1(1- q
n ) ,推导方法:乘公比,错位相减法.
,q 1
1- q
(3)一些常见的数列的前 n 项和:
n n
① k = 1+ 2 + 3 +L + n 1= n(n +1); 2k = 2 + 4 + 6 +L + 2n = n(n +1)
k =1 2 k =1
n
② (2k -1) = 1+ 3 + 5 +L+ (2n -1) = n2 ;
k =1
n
③ k 2 = 12 + 22 1+ 32 +L+ n2 = n(n +1)(2n +1);
k =1 6
n
④ k 3 13 23 33 L n3 [n(n + 1)= + + + + = ]2
k =1 2
二.几种数列求和的常用方法
(1)分组转化求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和
时可用分组求和法,分别求和后相加减.
(2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前
n 项和.
(3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那
么求这个数列的前 n项和即可用错位相减法求解.
(4)倒序相加法:如果一个数列 an 与首末两端等“距离”的两项的和相等或等于同一个常数,那么
求这个数列的前 n项和即可用倒序相加法求解.
【诊断自测】已知等差数列 an 的前 n项和为 Sn , S6 = 9S2,且 a2n = 2an +1.
(1)求数列 an 的通项公式;
14
(2)设bn = an + ,数列 bn 的前 n项和为Mn ,定义 x 为不超过 x 的最大整数,例如 1.6 =1a ,n × an+1
5.4 = 5,求数列 M n 的前 n项和Tn .
n
12 22 32 n2 n +1 2n +1 (说明: + + + ×××+ = )
6
解题方法总结
常见的裂项技巧
积累裂项模型 1:等差型
1 1 1 1( ) = -
n(n +1) n n +1
2 1 1 (1 1( ) = - )
n(n + k) k n n + k
(3 1 1 ( 1 1) = - )
4n2 -1 2 2n -1 2n +1
4 1 1 é 1 1 ù( ) = -
n(n +1)(n + 2) 2 ê n(n +1) (n +1)(n + 2)
ú

5 1 1 1 ( 1 1( ) 2 = = - )n(n -1) n(n -1)(n +1) 2 (n -1)n n(n +1)
2
6 n 1 é1 1 ù( ) = +
4n2 -1 4 ê (2n +1)(2n -1) ú
7 3n +1 4(n +1) - (n + 3) 4( 1 1 ) ( 1 1( ) = = - - - )
(n +1)(n + 2)(n + 3) (n +1)(n + 2)(n + 3) n + 2 n + 3 n +1 n + 2
1
(8) n(n +1) = n(n +1)(n + 2) - (n -1)n(n +1) .
3
(9) n(n +1)(n + 2) 1= n(n +1)(n + 2)(n + 3) - (n -1)n(n +1)(n + 2)
4
1 1 é 1 1 ù
(10) = -
n(n +1)(n + 2)(n + 3) 3 ê n(n +1)(n + 2) (n +1)(n + 2)(n + 3)
ú

11 2n +1 1 1( ) 2 = -n (n +1)2 n2 (n +1)2
12 n +1 1 é 1 1 ù( )
n2 (n + 2)2
= ê 2 -4 n (n + 2)
2 ú

积累裂项模型 2:根式型
1
(1) = n +1 - n
n +1 + n
(2 1 1) = ( n + k - n)
n + k + n k
3 1 1( ) = ( 2n +1 - 2n -1)
2n -1 + 2n +1 2
4 1 1 1 n(n +1) +1 1 1( ) +
n2
+ 2 = = 1+ -(n +1) n(n +1) n n +1
1
(5)
3 n2 + 2n +1 + 3 n2 -1 + 3 n2 - 2n +1
3 3
3 n 1 3 n n +1 - n= + - -1( 3 n2 + 2n +1 + 3 n2 -1 + 3 n2 - 2n +1) =
2
1 (n +1) n - n n +1 (n +1) n - n n +1 1 1
(6) = = = -
(n +1) n + n n +1 2é(n +1) n ù - (n n +1)2 n(n +1) n n +1
积累裂项模型 3:指数型
2n (2n+1 -1) - (2n -1) 1 1
(1) = =
(2n+1 -1)(2n -1) (2n+1 -1)(2n -1) 2n
-
-1 2n+1 -1
3n 1 ( 1 1(2) = - )
(3n -1)(3n+1 -1) 2 3n -1 3n+1 -1
n + 2 2(n +1) - n 2 1 1 1 1
(3) = = - × = -
n(n +1) × 2n n(n +1) × 2n è n n +1÷ 2n n × 2n-1 (n +1) × 2n
n-1 n+1 n-1
(4 (4n -1) ×3 1 é 9 1 ù 1 3 3) = - ×3n-1 = -
n(n + 2) 2 ê (n + 2) n
ú 2 n + 2 n ÷ è
(2n +1) × (-1)n (-1)n (-1)n+1
(5) = -
n(n +1) n n +1
(6) an = n × 3
n-1 ,设 an = (an + b)3
n - [a(n -1) + b] ×3n-1 1 1,易得 a = ,b = - ,
2 4
于是 a 1n = (2n -1)3
n 1- (2n - 3) ×3n-1
4 4
n 2 n n 2 (-1)n én2 + n + 2(n +1) + nù
(7 (-1) (n + 4n + 2)2 (-1) (n + 4n + 2)) = =
n × 2n × (n +1)2n+1 n × (n +1)2n+1 n × (n +1)2n+1
(-1)n ( 1)n é 1 1 ù 1 1
é (-1)n (-1)n+1 ù
= n+1 + - ê n + n+1 ú = (- )
n + -
2 n × 2 (n +1) × 2 2 2
ê
n × 2
n (n +1) × 2n+1 ú
积累裂项模型 4:对数型
log an+1a = log
an+1
a - loga aa nn
积累裂项模型 5:三角型
1 1 1( ) = (tana - tan b )
cosa cos b sin(a - b )
1 1
(2) = tan(n +1)° - tan n°
cos n°cos(n +1)° sin1°
(3) tana tan b 1= (tana - tan b ) -1
tan(a - b )
(4) an = tan× tan(n -1); tan1 = tan n - (n -1)
tan n - tan(n -1)
= ,
1+ tan n × tan(n -1)
tan n tan(n 1) tan n - tan(n -1) 1,a tan n - tan(n -1)则 × - = - n = -1tan1 tan1
积累裂项模型 6:阶乘
1 n 1 1( ) = -
(n +1)! n! (n +1)!
2 n + 2 n + 2 1 n +1 1 1( ) = = = = -
n!+ (n +1)!+ (n + 2)! n!(n + 2)2 n!(n + 2) (n + 2)! (n +1)! (n + 2)!
常见放缩公式:
1 1 1 1
(1) 2 < = - n 2 ;n n -1 n n -1 n
1 1 1 1
(2) > = - ;
n2 n n +1 n n +1
1 4 4 1 1
(3) 2 = 2 < 2 = 2

-


n 4n 4n -1 è 2n -1 2n +1÷
T C r 1 n! 1 1 1 1 1(4) r+1 = n × r = × < < = - r 2 ;n r! n - r ! nr r! r r -1 r -1 r
5 1 1
n
1 1 1
( ) + ÷ < 1+1+ + +L+ < 3;
è n 1 2 2 3 n -1 n
6 1 2 2( ) = < = 2 - n -1 + n n 2 ;
n n + n n -1 + n
1 2 2
(7) = > = 2 - n + n +1 ;
n n + n n + n +1
8 1 2 2 2 2( ) = < = = 2 - 2n -1 + 2n +1 ;
n n + n n 1 n 1 2n -1 + 2n +1- + +
2 2
9 2
n 2n 2n 2n-1 1 1
( ) 2 = < = = n 2 n 2n -1 2n -1 2n -1 2n - 2 2n -1 2n-1 -1 2n-1
- n ;
2 -1 -1 2 -1
10 1 1 1 n +1 - n -1 1( ) = < = ×
n3 n × n2 n -1 n n +1 n -1 n n +1 n +1 - n -1
é
ê 1 1
ù
ú 1= - × = 2 1 1 n +1 + n -1
ê
- ÷ ×
n -1 n n n +1 ú n +1 - n -1 è n -1 n +1 2 n
< 2 1 1 - ÷ n 2 ;
è n -1 n +1
11 1 2 2 2( ) = < =
n3 n2 × n + n × n2 n n -1 + n -1 n n -1 n n + n -1
-2 n -1 - n 2 2
= = - n 2 ;
n -1 n n -1 n
(12 1 1 1 2 2 2)
2n
= < = = - ;
-1 1+1 n -1 C0n + C1 2n + Cn -1 n n +1 n n +1
n-1
(13 1 2 1 1) < = - n 2 .
2n -1 2n-1 n n-1 n -1 2 -1 2 -1 2 -1
14 2 1 2( ) 2( n + 1 - n) = < < = 2( n - n - 1).
n + 1 + n n n + n - 1
题型一:通项分析法
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1【典例 1-1】观察如下规律: , , , , , , , , , , , , , , , ,L ,该组数据的前 2025项和
3 3 3 5 5 5 5 5 7 7 7 7 7 7 7
为 .
1-2 S = 3+ 2 + 32 + 3 × 2 + 22 n n-1 n-2 2 n【典例 】求和 n + ×××+ 3 + 3 × 2 + 3 × 2 + ×××+ 2 .
【方法技巧】
先分析数列通项的特点,再选择合适的方法求和是求数列的前 项和问题应该强化的意识.
【变式 1-1】数列 9,99,999, 的前 n项和为 (   )
A 10. (10n 10-1) + n B.10n -1 C. (10n 1) D 10- . (10n -1) - n
9 9 9
【变式 1-2】求数列 1, (1+ 2) , (1+ 2 + 22 ), , (1+ 2 + 22 + + 2n-1) , 的前 n项之和.
【变式 1-3】(2024·上海徐汇·模拟预测)如图,在杨辉三角中,斜线 l上方,从 1 开始箭头所示的数组
成一个锯齿数列:1,3,3,4,6,5,10,…,记其前 n项和为 Sn ,则 S19 等于 .
题型二:公式法
【典例 2-1】(2024·湖北黄冈·一模)已知等比数列 an 的前 n项和为 Sn ,且 an+1 = 2 + Sn 对一切正整数
n恒成立.
(1)求数列 an 的通项公式;
(2)求数列 Sn 的前 n项和Tn .
【典例 2-2】(2024·高三·四川·学业考试)已知等差数列 an 的前 n项和为 Sn , a1 = 2, S3 =12 .
(1)求数列 an 的通项公式 an ;
(2)设b an *n = 2 n N ,求 bn 的前 n项和Tn .
【方法技巧】
针对数列的结构特征,确定数列的类型,符合等差或等比数列时,直接利用等差、等比数列相应公式
求解.
【变式 2-1】已知等差数列 an 的前四项和为 10,且 a2 ,a3 ,a7 成等比数列
(1)求通项公式 an
(2) a设b nn = 2 ,求数列bn 的前n项和 Sn
【变式 2-2】已知数列 a *n 为等差数列,数列 bn 为等比数列,且bn N ,若
a1 = b2 = 2, a1 + a2 + a3 = b1 + b2 + b3 + b4 =15.
(1)求数列 an , bn 的通项公式;
(2)设由 an , bn 的公共项构成的新数列记为 cn ,求数列 cn 的前 5 项之和 S5 .
题型三:错位相减法
【典例 3-1】设 Sn 为数列 an 的前 n项和,且 2Sn = 3an - 4n .
(1) l 为何值时, an + l 是等比数列;
n
(2) b a + 2 若 n = n ,求数列 bn 的前 n项和Tn .2
【典例 3-2】(2024·陕西西安·模拟预测)记 Sn 为等差数列 an 的前 n项和,已知 S3 =15, S5 = 35 .
(1)求 an 的通项公式;
(2)设b
a
n =
n
n ,求数列 b2 n 的前 n项和Tn .
【方法技巧】
错位相减法求数列{an}的前 n 项和的适用条件
若{an}是公差为 d (d 0) 的等差数列,{bn}是公比为 q(q 1)的等比数列,求数列{an·bn}的前 n 项和 Sn .
【变式 3-1】(2024·青海海南·二模)已知数列 an 的各项均为正数,其前 n项和为 Sn , Sn 是等比数列,
a3 = a1a2 ,2S5 = a6 .
(1)求数列 Sn 的通项公式;
(2)设bn = an × log3 Sn ,求数列 bn 的前 n项和Tn .
【变式 3-2】已知在等差数列 an 中,公差大于 0, a1 = 2,且 a2,a3 + 2, a6成等比数列,数列 an
的前 n项和为 Sn .
(1)求数列 an 的通项公式;
(2)若b = 2n-1n an ,求数列 bn 的前 n项和Tn .
【变式 3-3】(2024·浙江·三模)已知等比数列 an 和等差数列 bn ,满足 an+1 > an , a1 = b1 =1, a2 = b2,
3a3 = 4b3 .
(1)求数列 an , bn 的通项公式;
n ì Tn ü(2) a ×b T n P P 2
n+1
记数列 n n 的前 项和为 n ,数列 íb b 的前 项和为 n.证明:× n < -1. n n+1 n +1
【变式 3-4】(2024·河北衡水·三模)已知数列 an 满足: a1 =1, a2 = 2, an + an+1 = 2an+2 .
(1)请写出 a3 - a2,a4 - a3,a5 - a4 的值,给出一个你的猜想,并证明;
(2)设bn = 3na2n+1,求数列 bn 的前 n项和 Sn .
题型四:分组求和法
2 *
【典例 4-1】已知数列 an 的前 n项和为 Sn ,满足 Sn = an -1 ,n N .3
(1)求数列 an 的通项公式;
(2)记b a

n = n ×cos ,求数列 bn 的前 100 项的和T2 100 .
5
【典例 4-2】在等比数列{ an }中, a1 + a2 = 5a2 = .4
(1)求{ an }的通项公式;
3
(2)求数列{ a + 2n -1}的前 n 项和 Sn.
4 n
【方法技巧】
(1)分组转化求和
数列求和应从通项入手,若无通项,则先求通项,然后通过对通项变形,转化为等差数列或等比数列
或可求前 n 项和的数列求和.
(2)分组转化法求和的常见类型
【变式 4-1】在递增的等比数列 an 中, a1 ×a2 = 8, a1 + a2 = 6 ,其中 n N* .
(1)求数列 an 的通项公式;
(2)若bn = 2an + 3,求数列 bn 的前 n 项和Tn .
【变式 4-2】等比数列 an 的公比为 2,且 a2 , a3 + 2, a4 成等差数列.
(1)求数列 an 的通项公式;
(2)若bn = log2 an + an ,求数列 bn 的前 n项和Tn .
【变式 4-3】已知等差数列{an}满足 an + an-1 = 8n + 2( n 2),数列{bn}是公比为 3 的等比数列,
a2 + b2 = 20.
(1)求数列{an}和{bn}的通项公式;
(2)数列{an}和{bn}中的项由小到大组成新的数列{cn},记数列{cn}的前 n 项和为 Sn ,求 S50.
题型五:裂项相消法之等差型
【典例 5-1】已知公比为q的等比数列 an 的前 n项和为 Sn ,且满足 a2 - 2a1 = 8, S *3 = 84, q N .
(1)求数列 an 的通项公式;
log a
(2) 2 n+1
log2an
若bn = + b n Tlog2an log a
,求数列 n 的前 项和 n .
2 n+1
【方法技巧】
1 1 1 (1 1( ) = - )
n(n + k) k n n + k
2 1 1 é 1 1 ù( ) = -
n(n +1)(n + 2) 2 ê n(n +1) (n +1)(n + 2)
ú

(3) n(n +1) 1= n(n +1)(n + 2) - (n -1)n(n +1) .
3
(4) n(n +1)(n 1+ 2) = n(n +1)(n + 2)(n + 3) - (n -1)n(n +1)(n + 2)
4
(5 2n +1 1 1) 2 = -n (n +1)2 n2 (n +1)2
【典例 5-2】已知数列 an , bn n,其中数列 an 是等差数列,且满足bn - an = -1 n2 , a1 +b1 =1,
a2 + b2 = 8,n N
*

(1)求数列 an 和 bn 的通项公式;
c 1(2)若 n = a a ,求数列 cn 的前 n项和 Sn ;n n+1
5 2 1 *
【变式 5-1】已知数列 an 的前 n项和为 Sn , Sn = n - n n N .2 2
(1)求 an 的通项公式;
1
(2)若bn = b n Tana
,求数列 n 的前 项和 n .
n+1
【变式 5-2】(2024·湖北武汉·模拟预测)在等差数列 an ( n N*)中,a1 + a2 =11, a3 =10 .
(1)求 an 的通项公式;
(2)若b
1
n = a a a ,数列的 bn 前 n
1
项和为Tn ,证明Tn < .
n n+1 n+2 168
【变式 5-3】(2024·河北衡水·模拟预测)记各项均为正数的数列 an 的前 n项和为 Sn ,已知 Sn 是
an -1 an + 3与 的等差中项.
2 2
(1)求 an 的通项公式;
a 2
(2) b = n+1
an+1
设 n +S S ,数列 bS S n 的前 n项和为Tn ,证明:Tn - 4n < 2 .n n+1 n n+1
【变式 5-4】设数列 an 为等差数列,前 n项和为 Sn , a3 + a7 =18, S10 =100.
(1)求数列 an 的通项公式;
2n2
(2)设bn = 的前 n
n 1
项和为Tn ,证明:Tn < + .anan+1 2 4
题型六:裂项相消法之根式型
【典例 6-1】已知数列 an 的前 n 项和为 Sn , a1 =1, S5 = 25,且3Sn+1 - an = 2S + S n N*n n+2 .
(1)求数列 an 的通项公式;
(2)设b
1
n = ,求数列 b 的前 n 项和T .2n -1 + 2n +1 n n
*
【典例 6-2】已知数列 an 的前 n项和为 Sn ,且 2Sn =1- an n N .
(1)求数列 an 的通项公式;
1 bnbn+1
(2)设bn = ,cn =log ,求数列 cn 的前 n项和Tn .1 an n +1 + n
3
【方法技巧】
1 1(1) = ( n + k - n)
n + k + n k
2 1 1 1 n(n +1) +1 1 1( ) + 2 + 2 = = 1+ -n (n +1) n(n +1) n n +1
1
(3)
3 n2 + 2n +1 + 3 n2 -1 + 3 n2 - 2n +1
3
3 n 1 3 n 1( 3 n2 2n 1 3 n2 1 3 n2 2n 1) n +1 -
3 n
= + - - + + + - + - + =
2
【变式 6-1】已知数列 an , an > 0, a1 =1, Sn 为其前 n 项和,且满足 Sn + Sn-1 Sn - Sn-1 =1 n 2 .
(1)求数列 an 的通项公式;
(2)设bn = -1
n 1×
a ,求数列 bn 的前 n 项和Tn .n
2
【变式 6-2】已知数列 an 的前 n 项和为 Sn = n ,
(1)求数列 an 的通项公式 an ;
1 1
(2)设bn = 1+ + ,求数列 bn 的前 n 项和Tn .Sn Sn+1
题型七:裂项相消法之指数型
【典例 7-1 2】已知等比数列{ an }的各项均为正数,2a5,a4,4a6成等差数列, a4 = 4a3 ,数列{bn }的
S (n +1)前 n *项和 n = bn (n N ),且b2 1
=1 .
(1)求{ an }和{bn }的通项公式;
c (b(2) = 2n+1
+ 3)an * 1
设 n n N(b -1)(b +1) ,记数列{ cn }的前 n 项和为 An .求证: An < .2n+1 2n+1 2
【典例 7-2】(2024·新疆·三模)若一个数列从第二项起,每一项和前一项的比值组成的新数列是一个
等比数列,则称这个数列是一个“二阶等比数列”,如:1,3,27,729,…….已知数列 an 是一个二阶等
比数列, a1 =1, a2 = 4 , a3 = 64 .
(1)求 an 的通项公式;
n + 2
(2)设bn = 1 ,求数列 b 的前 n项和 S .
an
n n
n × log2 an+1
【方法技巧】
3n 1 1 1
(1) = ( - )
(3n -1)(3n+1 -1) 2 3n -1 3n+1 -1
n + 2 2(n +1) - n 2 1 1 1 1
(2) = = - × = -
n(n +1) × 2n n(n +1) × 2n è n n +1÷ 2n n × 2n-1 (n +1) × 2n
(4n -1) ×3n-13 1 é 9 1 ù 1
3n+1 3n-1
( ) = - ×3n-1 = -
n(n + 2) 2 ê (n + 2) n
ú 2 ÷ è n + 2 n
【变式 7-1】(2024·黑龙江双鸭山·模拟预测)记 Sn 为数列 an 的前 n 项和, Sn - n 是首项与公差均
为 1 的等差数列.
(1)求数列 an 的通项公式;
(-1)n an +1 (2)设bn = ,求数列 bn 的前 2024 项的和TS 2024 .n
【变式 7-2】(2024·全国·模拟预测)已知 Sn 是正项等差数列 an 的前 n项和,满足 2Sn = anan+1.
(1)求数列 an 的通项公式.
(2)设bn = n2 + 4n + 3 ×2an ,求数列 bn 的前 n项和Tn .
【变式 7-3】(2024·云南昆明·三模)正项数列 an 的前 n项和为 Sn ,等比数列 bn 的前 n项和为Tn ,
4Sn = a
2
n + 2an +1
2
, 4Tn = bn + 2bn +1
(1)求数列 an , bn 的通项公式;
a +1
(2)已知数列 cn 满足 cn = b nn × a a ,求数列 cn 的前 n项和Hn.n n+1
【变式 7-4】(2024·福建泉州·二模)已知数列 an 和 bn 的各项均为正,且a3 =18b1, bn 是公比 3 的
等比数列.数列 an 的前 n 项和 Sn 满足 4S 2n = an + 2an .
(1)求数列 an , bn 的通项公式;
b
(2)设 c n+3n = + a cos nπ bn+3 - 3 b -1 n ,求数列
cn 的前 n 项和Tn .
n+3
题型八:裂项相消法之三角型
8-1 a a n S S =1 a2【典例 】数列 n 各项均为正数, n 的前 项和记作 n ,已知 1 , n - an - 2Sn-1 = 0, (n 2).
(1)求 an 的通项公式;
(2)设bn = tan an × tan an+1 ,求数列 bn 的前 2023 项和.
【典例 8-2】已知数列 an 中, a2 =1,设 Sn 为 an 前 n 项和, 2Sn = nan .
(1)求 an 的通项公式;
b sin1(2)若 n = cos a +1 cos a +1 ,求数列 bn 的前 n 项和Tnn n+1
【方法技巧】
1 1(1) = (tana - tan b )
cosa cos b sin(a - b )
1 1
(2) = tan(n +1)° - tan n°
cos n°cos(n +1)° sin1°
3 tana tan b 1( ) = (tana - tan b ) -1
tan(a - b )
(4) an = tan× tan(n -1); tan1 = tan n (n 1)
tan n - tan(n -1)
- - = ,
1+ tan n × tan(n -1)
tan n tan(n 1) tan n - tan(n -1) 1,a tan n - tan(n -1)则 × - = - n = -1tan1 tan1
【变式 8-1】已知在数列 an 中, a1 =1, nan+1 - (n +1)an =1.
(1)求数列 an 的通项公式;
π
(2)若数列 bn 满足bn = sin( a2 n+1) + cos(πan ),求数列 bn 的前 2024 项和T2024 .
【变式 8-2】(2024·高三·江西·开学考试)同余定理是数论中的重要内容.同余的定义为:设
a,b Z, m N+ 且m > 1.若m∣(a - b),则称 a 与 b 关于模 m 同余,记作 a b(mod m)(“|”为整除符号).
(1) x2解同余方程: + 2x 0 mod3 x Z ;
(2)设(1)中方程的所有正根构成数列 an ,其中 a1 < a2 < a3 ①若bn = an+1 - an n N+ ,数列 bn 的前 n 项和为 Sn ,求S4048 ;
②若Cn = tan a2n+3 × tan a2n+1 n N+ ,求数列 Cn 的前 n 项和Tn .
【变式 8-3】已知数列 an 的前 n 项和为 Sn , a1 =1, a2 = 3, Sn+1 + Sn-1 = 2 Sn +1 (n 2)
(1)求 Sn ;
b 4n cos(n +1)π(2)若 n = a ×a ,求数列 bn 的前 1012 项和T1012.n n+1
题型九:倒序相加法
【典例 9-1】(2024·高三·浙江·开学考试)已知函数 f x 满足 f x = f 1- x , f x 为 f x 的导函数,
g x = f x 1+ , x R a = g n .若 n ÷,则数列 an 的前 2023 项和为 .3 è 2024
【典例 9-2】德国大数学家高斯年少成名,被誉为数学界的王子.在其年幼时,对1+ 2 + 3 +L+100的
求和运算中,提出了倒序相加法的原理,该原理基于所给数据前后对应项的和呈现一定的规律生成.因此,
4x
此方法也称为高斯算法.现有函数 f x =
4x
,则
+ 2
f ( 1 ) + f ( 2 ) + f ( 3 ) +L f (2017) f (2018+ + )的值为 .
2019 2019 2019 2019 2019
【方法技巧】
将一个数列倒过来排列,当它与原数列相加时,若有规律可循,并且容易求和,则这样的数列求和时
可用倒序相加法(等差数列前 n项和公式的推导即用此方法).
1
【变式 9-1】在数列 an 中, an = 1+ 22011-2n ,则 S = a1 + a2 + … +a2010的值是 .
f 1 【变式 9-2】已知函数 x + ÷为奇函数,且 g x = f x +1 a = g
n
,若 n ,则数列 a 的前
è 2 è 2023 ÷ n
2022 项和为 .
x 1 2 n +1
【变式 9-3】若函数 f (x) πx 4= sin2 + ,且数列{an}满足: an = f ÷ + f
+L+ f
2 4x + 2 è n + 2 è n + 2 ÷ n + 2 ÷
,则数列
è
{an}的通项公式为 an = ;以 an , a *n+1, an+2 (n N )为三角形三边的长,作一系列三角形,若这一系列
三角形所有内角的最大值为A ,则 tanA = .
题型十:分段数列求和
【典例 10-1】在数列 an 中, a1 = 8, a4 = 2 ,且满足 an+2 - 2a *n+1 + an = 0 n N .
(1)求数列 an 的通项公式;
(2)设Tn = a1 + a2 +L+ an ,求Tn .
【典例 10-2】已知数列 an 的前 n项和 Sn 满足 Sn = 2an -1,则 a1 -18 + a2 -18 +L a10 -18 = .
【方法技巧】
(1)分奇偶各自新数列求和
(2)要注意处理好奇偶数列对应的项:
①可构建新数列;②可“跳项”求和
【变式 10-1】(2024·山西·三模)已知等差数列 an 的公差 d > 0,前 n项和为 Sn ,且 a3a6 = -5,
S8 = -16 .
(1)求数列 an 的通项公式;
ìa , n = 2k -1
(2)若bn =
n
í n k N
* b 2n T
2 ,n = 2k
,求数列 n 的前 项和 2n .
【变式 10-2】已知数列 an 是公差不为 0 的等差数列,其前 n 项和为 Sn , S3 = 3, a2,a3, a6成等比
数列.
(1)求 an 的通项公式;
b ì
an + 3, n = 2k,(2)若 n = í , *a ,求数列 b 2 , n 2k 的前 100 项和T . n = -1, k N n 100
【变式 10-3】(2024·陕西安康·模拟预测)记 Sn 为数列 an 的前 n项和,已知
a1 =1, nSn+1 - n +1 Sn = n2 + n .
(1)求 an 的通项公式;
(2)若bn = (-1)
n an + é (-1)
n +1ù 2n ,求数列 bn 的前 2n项和T2n .
【变式 10-4】(2024·山东·二模)已知 an 是公差不为 0 的等差数列,其前 4 项和为 16,且 a1,a2 ,a5 成
等比数列.
(1)求数列 an 的通项公式;
ì2an , n为奇数
b (2)设 n = í 1 , n ,求数列
bn 的前 2n项和T2n .
为偶数
anan+2
题型十一:并项求和法之 + +( ― ) = + 型
【典例 11-1 n】数列 an 满足 an+2 + -1 an = 4n -1,前 12 项的和为 298,则 a1 = .
【典例 11-2】已知数列 an 的前 n项和为 Sn , a1 =1 .当 n 2时, an + 2Sn-1 = n,则 S2019 = .
【方法技巧】
四四并项求和.
n n+1
【变式 11-1】(2024·浙江·模拟预测)已知数列 an 满足 a1 + a2 = 0 , a + -1 2 a = 2,则数列n+2 n
an 的前 2020 项的和为 .
【变式 11-2】已知数列 an 满足 an+1 + -1 n an = n,则数列 an 的前 4n项和为 .
【变式 11-3】数列{an}满足 an+2 + (-1)
n an = 3n +1,前 8 项的和为 106,则 a1 =
【变式 11-4】数列{an}满足 an+2 + (-1)n+1an = 3n -1,前 16 项和为 540,则 a2 = .
【变式 11-5】已知数列 an 中, Sn 为前 n项和,且 a1 =1, an + an+1 = 3,则 S2017 =
题型十二:并项求和法之 = ( ― ) ( )型
2n -1 p
【典例 12-1】已知数列 an 的通项公式为 an = 2n -1 cos

, an 的前 n项和为 Sn ,则3
S2017 = .
{a } a n sin np cos np 【典例 12-2】(2024·云南保山·二模)数列 n 的通项公式 n = + ÷,其前 n项和为 S3 3 n

è
则 S2018 = .
【方法技巧】
两两并项求和.
【变式 12-1】(2024·辽宁沈阳·模拟预测)已知数列 an 满足 a1 =1, an > 0, Sn 是数列 an 的前 n项
和,对任意 n N*,有 2Sn = 2a
2
n + an -1
(1)求数列 an 的通项公式;
(2) b = (-1)n-1设 n an,求 bn 的前 100 项的和.
【变式 12-2 *】在数列 an 中,a1 = 5,且 an+1 = 2an -1 n N .
(1)求 an 的通项公式;
(2) n令bn = (-1) × an,求数列 bn 的前 n项和 Sn .
【变式 12-3】已知等差数列 an 中的前 n 项和为 Sn ,且 a2 , a5 , a14 成等比数列, S5 = 25 .
(1)求数列 an 的通项公式;
(2)若数列 an 为递增数列,记bn = -1
n Sn ,求数列 bn 的前 40 项的和T40 .
a a ncos np p【变式 12-4】数列 n 通项为 n = + *2 6 ÷ n N , Sn 为其前 n项的和,则 S2015 = .è
题型十三:先放缩后裂项求和
【典例 13-1】设数列 an 前 n项和为 Sn ,且满足 2 S *n - 2 = n +1 an - 2 , n N ,a1 = 0,数列 bn
满足 4bn = an+1an+2 .
(1)求 an 、 bn 的通项公式;
1 3
(2)记 cn = 2 2 ,求证: c1 + c2 + ×××+ cn ì S -1ü
【典例 13-2 n】记 Sn 为数列 an 的前 n项和,已知 í 是首项为 3,公差为 1 的等差数列.
n
(1)求 an 的通项公式;
1 1 L 1 an -1 1(2)证明:当 n 2时, + + + < -S2 S3 Sn an +1 2
.
【方法技巧】
先放缩后裂项,放缩的目的是为了“求和”,这也是凑配放缩形式的目标.
【变式 13-1】(2024·河南·模拟预测)若数列 an 满足 a1 =1, an+1 - an = 2n.
(1)求 an 的通项公式;
1 1 L 1(2)证明: + + + < 2a1 a2 a

n
【变式 13-2】(2024·天津河北·二模)已知 an 是等差数列,其前 n项和为 Sn, bn 是等比数列,已知
a1 =1,S3 = 6,b1 = a2,a8是a4和b4的等比中项.
(1)求 an 和 bn 的通项公式;
ìa ü
(2)求数列 í n 的前 n项和T ;
b
n
n
c b -1= n n 1 1
n n 1 1
(3)记 n b -1,求证:
- + < c < - + .
n+1 2 2 2n+1
i n+2
i=1 2 4 2
【变式 13-3】如图,已知点列 An xn , yn 在曲线 y2 = x 上,点列Bn an ,0 在 x 轴上, A1 1,1 ,B1 0,0 ,
△Bn AnBn+1为等腰直角三角形.
(1)求 a1, a2,a3;(直接写出结果)
(2)求数列 an 的通项公式;
* n n +1 n n + 2(3) 设 n N ,证明: < a2 + a3 +L+ an+1 < .2 2
4
【变式 13-4】(2024·山东烟台·三模)在数列 an 中,已知 2an = an+1 + anan+1, a1 = .3
(1)求数列 an 的通项公式;
(2)若b
4
n = a
2
n - an, Sn 为数列 bn 的前 n 项和,证明: ≤ S9 n <1 .
1.(2021 年浙江省高考数学试题)已知数列 a 满足a1 = 1,a
a
= nn+1 n N*n 1+ a .记数列 an 的前 n 项和为n
Sn ,则( )
3
A. < S100 < 3 B.3 < S100 < 4 C.4 < S
9 9
100 < D. < S2 2 2 100
< 5
2.(2021 年全国新高考 I 卷数学试题)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对
称轴把纸对折,规格为 20dm 12dm的长方形纸,对折 1 次共可以得到10dm 12dm , 20dm 6dm两种规格
的图形,它们的面积之和 S1 = 240dm
2
,对折 2 次共可以得到5dm 12dm,10dm 6dm , 20dm 3dm三种
2
规格的图形,它们的面积之和 S2 =180dm ,以此类推,则对折 4 次共可以得到不同规格图形的种数为 ;
n
如果对折 n次,那么 S = dm2k .
k =1
3.(2024 年高考全国甲卷数学(文)真题)已知等比数列 an 的前 n项和为 Sn ,且 2Sn = 3an+1 - 3 .
(1)求 an 的通项公式;
(2)求数列 Sn 的前 n 项和.
4.(2024 年天津高考数学真题)已知数列 an 是公比大于 0 的等比数列.其前 n项和为 Sn .若
a1 =1, S2 = a3 -1.
(1)求数列 an 前 n项和 Sn ;
ìk, n = a
(2)设b kn = í , k N*, k 2b . n-1 + 2k, ak < n < ak +1
(ⅰ)当 k 2, n = ak +1时,求证:bn-1 ak ×bn ;
Sn
(ⅱ)求 bi .
i=1
1.已知等差数列 an 的前 n 项和为 Sn ,且 S4 = 4S2 , a2n = 2an +1(n N*).
(1)求数列 an 的通项公式;
(2)若bn = 3
n-1
,令 cn = anbn,求数列 cn 的前 n 项和Tn .
m m
2.有理数都能表示成 (m, n Z ,且 n 0,m 与 n 互质)的形式,进而有理数集Q={ | m, n Z 且 n 0,
n n
m m
m 与 n 互质}.任何有理数 都可以化为有限小数或无限循环小数.反之,任一有限小数也可以化为 的
n n
形式,从而是有理数;那么无限循环小数是否为有理数?
思考下列问题:
(1)1.2& 是有理数吗?请说明理由.
(2)1.2&4& 是有理数吗?请说明理由.
3 3a
3.已知数列 an 的首项 a1 = ,且满足 a n5 n+1
=
2an +1

ì 1 ü
(1)求证:数列 í -1 为等比数列.
an
1 1 1 1
(2)若 + + +L+ <100a a a a ,求满足条件的最大整数 n.1 2 3 n
4.求和:
(1)( 2 - 3 5-1) + (4 - 3 5-2 ) +L+ (2n - 3 5-n ) ;
(2)1+ 2x + 3x2 +K+ nxn-1.
5.求下列数列的一个通项公式和一个前 n 项和公式:
1,11,111,1111,11111,….
6.在数列 an 中,已知 an+1 + an = 3 ×2n , a1 =1.
(1)求证: an - 2n 是等比数列.
(2)求数列 an 的前 n 项和 Sn .
7.若数列 an 的首项 a1 =1,且满足 an+1 = 2an +1,求数列 an 的通项公式及前 10 项的和.
易错点:用错位相减法求和时项数处理不恰当出错
易错分析:在利用错位相减法去求和时,对相减后的项处理不恰当,容易导致漏掉项或者添加项出错.
答题模板:错位相减法求前 n 项和
1、模板解决思路
错位相减法求前 n 项和是一种巧妙的方法,特别适用于等比数列。其核心思路在于,首先将原数列的
每一项都乘以公比,形成错位后的新数列。然后,将原数列与新数列进行相减,从而消去大部分项,简化
求和过程。最后,通过简单的代数运算即可求出前 n 项和。
2、模板解决步骤
第一步:写出等比数列的前 n 项和公式,明确首项、公比和项数。
第二步:将数列的每一项都乘以公比,形成错位后的新数列。
第三步:将原数列与新数列进行相减,消去大部分项,得到简化的表达式。
第四步:对简化后的表达式进行代数运算,求出前 n 项和。
【易错题 1】已知数列 an 的前 n项和为 Sn ,且满足 a1 = 4,当 n 2时, Sn = 2 an +1 .
(1)求数列 an 的通项公式;
(2)若bn = nan,求数列 bn 的前 n项和Tn .
a a a2 a3 L a【易错题 2】已知数列 满足 nn 1 + + + + = 2n n N* .2 3 n
(1)求数列 an 的通项公式;
(2)已知数列 b an 满足bn = n2n 1 .求数列 b+ n 的前 n 项和Tn ;第 05 讲 数列求和
目录
01 考情透视·目标导航 .........................................................................................................................2
02 知识导图·思维引航 .........................................................................................................................3
03 考点突破·题型探究 .........................................................................................................................4
知识点 1:数列求和常用方法.............................................................................................................4
解题方法总结........................................................................................................................................5
题型一:通项分析法............................................................................................................................9
题型二:公式法..................................................................................................................................11
题型三:错位相减法..........................................................................................................................13
题型四:分组求和法..........................................................................................................................17
题型五:裂项相消法之等差型..........................................................................................................20
题型六:裂项相消法之根式型..........................................................................................................25
题型七:裂项相消法之指数型..........................................................................................................27
题型八:裂项相消法之三角型..........................................................................................................31
题型九:倒序相加法..........................................................................................................................35
题型十:分段数列求和......................................................................................................................38
题型十一:并项求和法之 + +( ― ) = + 型...............................................................41
题型十二:并项求和法之 = ( ― ) ( )型................................................................................44
题型十三:先放缩后裂项求和..........................................................................................................47
04 真题练习·命题洞见........................................................................................................................52
05 课本典例·高考素材........................................................................................................................56
06 易错分析·答题模板........................................................................................................................59
易错点:用错位相减法求和时项数处理不恰当出错......................................................................59
答题模板:错位相减法求前 n 项和..................................................................................................59
考点要求 考题统计 考情分析
高考对数列求和的考查相对稳定,考
(1)公式法 查内容、频率、题型、难度均变化不
(2)奇偶讨论、并项分类 2023 年甲卷(理)第 17 题,12 分 大.数列的求和主要考查等差、等比数列
(3)倒序相加法 2023 年 II 卷第 18 题,12 分 的前 项和公式及非等差、等比数列的求和
(4)裂项相消法 2023 年 I 卷第 20 题,12 分 方法,其综合性较强.数列求和问题以解
(5)错位相减法 答题的形式为主,偶尔出现在选择填空题
当中,常结合函数、不等式综合考查.
复习目标:
(1)熟练掌握等差、等比数列的前 n 项和公式.
(2)掌握非等差数列、非等比数列求和的几种常见方法.
知识点 1:数列求和常用方法
一.公式法
n(a + a ) n(n -1)
(1)等差数列 an 的前 n 项和 S 1 nn = = na1 + d ,推导方法:倒序相加法.2 2
ìna1 ,q = 1
(2)等比数列 an 的前 n 项和 Sn =

ía1(1- q
n ) ,推导方法:乘公比,错位相减法.
,q 1
1- q
(3)一些常见的数列的前 n 项和:
n n
① k = 1+ 2 + 3 +L + n 1= n(n +1); 2k = 2 + 4 + 6 +L + 2n = n(n +1)
k =1 2 k =1
n
② (2k -1) = 1+ 3 + 5 +L+ (2n -1) = n2 ;
k =1
n
③ k 2 = 12 + 22 1+ 32 +L+ n2 = n(n +1)(2n +1);
k =1 6
n
④ k 3 13 23 33 L n3 [n(n + 1)= + + + + = ]2
k =1 2
二.几种数列求和的常用方法
(1)分组转化求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和
时可用分组求和法,分别求和后相加减.
(2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前
n 项和.
(3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那
么求这个数列的前 n项和即可用错位相减法求解.
(4)倒序相加法:如果一个数列 an 与首末两端等“距离”的两项的和相等或等于同一个常数,那么
求这个数列的前 n项和即可用倒序相加法求解.
【诊断自测】已知等差数列 an 的前 n项和为 Sn , S6 = 9S2,且 a2n = 2an +1.
(1)求数列 an 的通项公式;
14
(2)设bn = an + ,数列 bn 的前 n项和为Mn ,定义 xa × a 为不超过 x 的最大整数,例如 1.6 =1,n n+1
5.4 = 5,求数列 M n 的前 n项和Tn .
n n +1 2n +1
(说明:12 + 22 + 32 + ×××+ n2 = )
6
【解析】(1)设等差数列 an 的公差为d ,
ì6a 6 5+ d = 9 2a 2 1ìS + d

6 = 9S2 1 2 1 2 ÷ ìa1 =1由 í è
a2n = 2a 1
得: í ,解得: í
n + d = 2

a1 + 2n -1 d = 2 éa1 + n -1 d ù +1
\an =1+ 2 n -1 = 2n -1.
14 1 1
(2)由(1)得:bn = 2n -1 + = 2n -1 + 7 - 2n -1 2n +1 è 2n -1 2n +1÷,
M 1 1 1 1 1 1 1\ n = é1+ 2 + 3+ ×××+ 2n -1 ù + 7 1- + - + - ×××+ -3 3 5 5 7 2n -1 2n +1÷è
n 1+ 2n -1 7 1 1= + -

÷ = n
2 7+ 7 - ,
2 è 2n +1 2n +1
ì5,n =1
\ M n = í9, n = 2 ;

n
2 + 6, n 3
则当 n =1时,T1 = M1 = 5;当 n = 2时,T2 = M1 + M 2 = 5 + 9 =14;
当 n 3时,Tn = M1 + M 2 + M3 + ×××+ M 2 2 2n-1 + M n = 5 + 9 + 3 + 6 + 4 + 6 + ×××+ n + 6
2 2 2 n n +1 2n +1 2 2 n n +1 2n +1=14 + 6 n - 2 + 3 + 4 + ×××+ n = 6n + 2 + -1 - 2 = 6n - 3 + ;
6 6
ì
5,n =1

综上所述:Tn = í14, n = 2 .

n n +16n 3 2n +1 - + , n 3
6
解题方法总结
常见的裂项技巧
积累裂项模型 1:等差型
1 1 1 1( ) = -
n(n +1) n n +1
2 1 1 (1 1( ) = - )
n(n + k) k n n + k
1 1
(3) 2 = (
1 1
- )
4n -1 2 2n -1 2n +1
1 1 é 1 1 ù
(4) = -
n(n +1)(n + 2) 2 ê n(n +1) (n +1)(n + 2)
ú

1 1 1 1 1
(5)
n(n2
= = ( - )
-1) n(n -1)(n +1) 2 (n -1)n n(n +1)
n26 1 é( ) 2 = ê1
1 ù
+
4n -1 4 (2n +1)(2n -1)
ú

7 3n +1 4(n +1) - (n + 3)( ) = = 4( 1 1- ) - ( 1 1- )
(n +1)(n + 2)(n + 3) (n +1)(n + 2)(n + 3) n + 2 n + 3 n +1 n + 2
8 n(n 1) 1( ) + = n(n +1)(n + 2) - (n -1)n(n +1) .
3
1
(9) n(n +1)(n + 2) = n(n +1)(n + 2)(n + 3) - (n -1)n(n +1)(n + 2)
4
10 1 1 é 1 1 ù( ) = -
n(n +1)(n + 2)(n + 3) 3 ê n(n +1)(n + 2) (n +1)(n + 2)(n + 3)
ú

11 2n +1 1 1( ) = -
n2 (n +1)2 n2 (n +1)2
12 n +1 1 é 1 1 ù( )
n2 (n + 2)2
= -
4 ên2 (n + 2)2 ú
积累裂项模型 2:根式型
(1 1) = n +1 - n
n +1 + n
2 1 1( ) = ( n + k - n)
n + k + n k
3 1 1( ) = ( 2n +1 - 2n -1)
2n -1 + 2n +1 2
4 1 1 1 n(n +1) +1 1 1( ) + 2 + 2 = = 1+ -n (n +1) n(n +1) n n +1
1
(5)
3 n2 + 2n +1 + 3 n2 -1 + 3 n2 - 2n +1
3 3
= 3 n +1 - 3 n -1( 3 n2 + 2n +1 + 3 n2 -1 + 3 n2 - 2n 1) n +1 - n+ =
2
6 1 (n +1) n - n n +1 (n +1) n - n n +1 1 1( ) = = = -
(n +1) n + n n +1 2é
(n +1) n ù - (n n +1)
2 n(n +1) n n +1
积累裂项模型 3:指数型
2n (2n+1 -1) - (2n -1) 1 1
(1) =
(2n+1 -1)(2n -1) (2n+1
= -
-1)(2n -1) 2n -1 2n+1 -1
3n 1 1 1
(2)
(3n -1)(3n+1
= ( - )
-1) 2 3n -1 3n+1 -1
n + 2 2(n +1) - n 2 1 1 1 1
(3)
n(n +1) × 2n
=
n(n +1) × 2n
= - ÷ × = -
è n n +1 2n n × 2n-1 (n +1) × 2n
n-1
4 (4n -1) ×3 1 é 9 1 ù 1
3n+1 3n-1n-1 ( ) = ê - ú ×3 = -n(n + 2) 2 (n + 2) n 2

è n + 2 n
÷

(2n +1) × (-1)n (-1)n (-1)n+1
(5) = -
n(n +1) n n +1
(6) an = n × 3
n-1 ,设 an = (an + b)3
n - [a(n -1) + b] ×3n-1 a 1,易得 = ,b 1= - ,
2 4
1
于是 an = (2n 1)3
n 1- - (2n - 3) ×3n-1
4 4
(-1)n (n2 + 4n + 2)2n (-1)n (n2 + 4n + 2) (-1)
n én2 + n + 2(n +1) + nù
(7) = =
n × 2n × (n +1)2n+1 n × (n +1)2n+1 n × (n +1)2n+1
(-1)n n é 1 1 ù 1 1 é (-1)n (-1)n+1 ù= n+1 + (-1) ê n + n+1 ú = (- )
n + -
2 n × 2 (n +1) × 2 2 2 ê n × 2n (n +1) × 2n+1 ú
积累裂项模型 4:对数型
log an+1 = logan+1a a - log aa a nn
积累裂项模型 5:三角型
(1 1 1) = (tana - tan b )
cosa cos b sin(a - b )
(2 1 1) = tan(n +1)° - tan n°
cos n°cos(n +1)° sin1°
(3) tana tan b 1= (tana - tan b ) -1
tan(a - b )
(4) an = tan× tan(n -1); tan1 = tan n - (n 1)
tan n - tan(n -1)
- = ,
1+ tan n × tan(n -1)
tan n tan(n 1) tan n - tan(n -1) 1,a tan n - tan(n -1)则 × - = - n = -1tan1 tan1
积累裂项模型 6:阶乘
1 n 1 1( ) = -
(n +1)! n! (n +1)!
2 n + 2 n + 2 1 n +1 1 1( ) = = = = -
n!+ (n +1)!+ (n + 2)! n!(n + 2)2 n!(n + 2) (n + 2)! (n +1)! (n + 2)!
常见放缩公式:
1 1 1 1
(1) 2 < = - n 2 ;n n -1 n n -1 n
1 1 1 1
(2) 2 > = - ;n n n +1 n n +1
1 4 4 1 1
(3) 2 = 2 < = 2
- ;
n 4n 4n2 -1 è 2n -1 2n +1÷
T r 1 n! 1 1 1 1 1(4) r+1 = Cn × r = × r < < = - r 2 ;n r! n - r ! n r! r r -1 r -1 r
n
5 1 1 1 1 1 1 L 1( ) + n ÷
< + + + + + < 3;
è 1 2 2 3 n -1 n
(6 1 2 2) = < = 2 - n -1 + n n 2 ;
n n + n n -1 + n
1 2 2
(7) = > = 2 - n + n +1 ;
n n + n n + n +1
8 1 2 2 2 2( ) = < = = 2 - 2n -1 + 2n +1 ;
n n + n n 1 n 1 2n -1 + 2n +1- + +
2 2
n n n n-1
(9 2 2 2 2 1 1)
n 2
= < = = n-1 - n 2 ;
2 -1 2n -1 n

2 -1 2n -1 2n - 2 2n -1 2n-1 -1 2 -1 2n -1
10 1 1 1 n +1 - n -1 1( ) = < = ×
n3 n × n2 n -1 n n +1 n -1 n n +1 n +1 - n -1
é
ê 1 1
ù 1 1 1 n +1 + n -1
= - ú × = 2 - ×
ê n -1 n n n +1 ú n +1 - n -1

è n -1 n +1
÷
2 n
2 1 1 < - n 2 ;
è n -1 n +1
÷

1 2 2 2
(11) = < =
n3 n2 × n + n × n2 n n -1 + n -1 n n -1 n n + n -1
-2 n -1 - n 2 2
= = - n 2 ;
n -1 n n -1 n
12 1 1 1 2 2 2( ) n = < = = - ;2 -1 1+1 n -1 C0 + C1 + C 2n n n -1 n n +1 n n +1
13 1 2
n-1 1 1
( ) n < = - n 2 .2 -1 2n-1 -1 2n -1 2n-1 -1 2n -1
14 2( ) 2 1 2( ) n + 1 - n = < < = 2( n - n - 1).
n + 1 + n n n + n - 1
题型一:通项分析法
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
【典例 1-1】观察如下规律:1, , , , , , , , , , , , , , , ,L ,该组数据的前 2025项和
3 3 3 5 5 5 5 5 7 7 7 7 7 7 7
为 .
【答案】45
【解析】设数列 an 是等差数列,且 an = 2n -1,
1 1 1 1
则题中数列的和可以看成 a1 + aa 2
+ a
a 3
K+ an = na a ,1 2 3 n
又因为题中数列的项数等于数列 an 的前 n项和,
n 1+ 2n -1
所以 = n2 = 2025 n = 45,
2
故题中数列的前 2025项的和为 45 .
故答案为: 45 .
1-2 S = 3+ 2 + 32 + 3 × 2 + 22 + ×××+ 3n + 3n-1 n-2 2【典例 】求和 n × 2 + 3 × 2 + ×××+ 2n .
é 2 n ù
∵ a = 3n + 3n-1 ×2 + 3n-2 2
2 2 2
【解析】 n × 2 + ×××+ 2
n = 3n ê1+ + ÷ + ××× +3 3 3 ÷ ú ê è è ú
é n+1 ù
ê1
2- 3 ÷ ú= 3n × ê è ú = 3n+12 - 2
n+1
ê ú ,
ê 1- 3 ú
n
∴ S = 32 + 33 + ×××+ 3n+1 - 22 + 23 + ×××+ 2n+1 9(1- 3 )= - (2n+2n - 4) .1- 3
3n+2S 2n+2 1n = - -2 2
【方法技巧】
先分析数列通项的特点,再选择合适的方法求和是求数列的前 项和问题应该强化的意识.
【变式 1-1】数列 9,99,999, 的前 n项和为 (   )
A 10. (10n -1) + n B.10n -1 C 10. (10n -1) D 10. (10n -1) - n
9 9 9
【答案】D
【解析】Q数列通项 an = 10
n -1,
\Sn = (10 +10
2 +103 + +10n ) - n
10(1-10n )
= - n
1-10
10
= (10n -1) - n .
9
故选: D .
【变式 1-2】求数列 1, (1+ 2) , (1+ 2 + 22 ), , (1+ 2 + 22 + + 2n-1) , 的前 n项之和.
2n
【解析】由于 a = 1+ 21 + 22 + + 2n-1 -1n = = 2
n -1,
2 -1
所以前 n项之和T = (21 -1) + (22 -1) + + (2nn -1)
= (21 + 22 + 23 + + 2n ) - (1+1+ +1)
2 (2n -1)
= - n
2 -1
= 2n+1 - n - 2.
【变式 1-3】(2024·上海徐汇·模拟预测)如图,在杨辉三角中,斜线 l上方,从 1 开始箭头所示的数组
成一个锯齿数列:1,3,3,4,6,5,10,…,记其前 n项和为 Sn ,则 S19 等于 .
【答案】283
【解析】 a1 =1, a3 = 3 =1+ 2, a5 = 6 =1+ 2 + 3,…, a19 =1+ 2 + 3+ +10,
而 a2 = 3, a4 = 4 , a6 = 5,…, a18 =11,
\前 19 项的和 S19 = é 1+ 1+ 2 + 1+ 2 + 3 + + 1+ 2 + +10 ù + 3+ 4 + 5 + +11
3 +11 9= 1+ 3 + 6 + + 55 +
2
= 220 + 63 = 283.
故答案为:283.
题型二:公式法
【典例 2-1】(2024·湖北黄冈·一模)已知等比数列 an 的前 n项和为 Sn ,且 an+1 = 2 + Sn 对一切正整数
n恒成立.
(1)求数列 an 的通项公式;
(2)求数列 Sn 的前 n项和Tn .
【解析】(1)当 n 2时,an = 2+Sn-1与 an+1 = 2 + Sn 两式相减得 an+1 = 2an (n 2) .
∵数列是等比数列,∴公比 q = 2, a2 = 2a1 .
又 a2 = 2 + S1 = 2 + a1,∴ a1 = 2,
∴ a = 2nn
2 ∵ a = 2 + S S = 2n+1( ) 由 n+1 n 得 n - 2,
∴T = 22 + 23 +… + 2n+1n - 2n
22 1- 2n
= - 2n = 2n+2 - 2n - 4
1- 2
【典例 2-2】(2024·高三·四川·学业考试)已知等差数列 an 的前 n项和为 Sn , a1 = 2, S3 =12 .
(1)求数列 an 的通项公式 an ;
(2) a设b = 2 nn n N* ,求 bn 的前 n项和Tn .
【解析】(1)设等差数列 an 的公差为d ,
因为 a1 = 2, S3 =12,
所以 a1 + a2 + a3 = 3a2 =12 ,即 a2 = 4 ,
所以 d = a2 - a1 = 2 ,
所以 an = 2 + 2 n -1 = 2n ,即 an = 2n;
(2 2n)由(1)可知,bn = 2 ,
b 22n+2n+1
所以 =
b 2n
= 4 ,
n 2
又b1 = 4,所以 bn 是首项为 4,公比为 4的等比数列,
4 1- 4n 4n+1所以 bn 的前 n项和T - 4n = = .1- 4 3
【方法技巧】
针对数列的结构特征,确定数列的类型,符合等差或等比数列时,直接利用等差、等比数列相应公式
求解.
【变式 2-1】已知等差数列 an 的前四项和为 10,且 a2 ,a3 ,a7 成等比数列
(1)求通项公式 an
(2) b = 2a设 nn ,求数列bn 的前n项和 Sn
4 3
【解析】(1)设等差数列 an 的公差为d ,则 4a1 + d =10,即 2a1 + 3d = 5,2
又 a2 ,a3 ,a
2 2
7 成等比数列,所以a3 = a2a7 ,即 (a1 + 2d ) = (a1 + d )(a1 + 6d ),
2
整理得 2d + 3a d 0 d
3
1 = ,得 d = 0 或 = - a1,2
5 5
若 d = 0 ,则 a1 = , an = a1 + (n -1)d = ,2 2
若 d
3
= - a 91,则 2a2 1
- a1 = 5,得 a2 1
= -2, d = 3, an = 3n - 5 .
5
综上所述: an = 或 an = 3n - 5 .2
5 5
(2)若 an = ,则2 bn = 2
2 = 4 2 , Sn = 4 2n;
n n n
若 an = 3n - 5 b 23n-5
8 S 1 8(1-8 ) 8 -1,则 n = = ,32 n
= × = .
32 1-8 28
【变式 2-2】已知数列 an 为等差数列,数列 bn 为等比数列,且bn N*,若
a1 = b2 = 2, a1 + a2 + a3 = b1 + b2 + b3 + b4 =15.
(1)求数列 an , bn 的通项公式;
(2)设由 an , bn 的公共项构成的新数列记为 cn ,求数列 cn 的前 5 项之和 S5 .
【解析】(1)设数列 an 的公差为d ,数列 bn 的公比为q,
因为 a1 = 2, a1 + a2 + a3 =15
ìa1 = 2 ìa1 = 2
则 í
2a
,解得 ,
1 + 3d =13
í
d = 3
所以 an = a1 + (n -1)d = 2 + 3(n -1) = 3n -1,
因为b2 = 2,b1 + b2 + b3 + b4 =15,
ìb1q = 2
所以 í 32 3 ,则 2q + 2q
2 -13q + 2 = 0
b b q b q 13 , 1 + 1 + 1 =
所以 (q - 2)(2q2 + 6q -1) = 0,
b N*因为 n ,所以 q = 2,b1 =1,
b = 2n-1所以 n .
(2)设数列 an 的第m项与数列 bn 的第n项相等,
a = b 3m -1 = 2n-1则 m n ,m, n N* ,
2n-1m +1所以 = ,m, n N* ,
3
因为m, n N* ,
2
所以当 n = 1时,m = N*,当 n = 2
5 *
时,m =1,则 c1 = 2 ,当n = 3时,m = N ,3 3
17
当 n = 4时,m = 3,则 c2 = 8,当 n = 5时,m = N*,3
65
当 n = 6时,m =11,则 c3 = 32,当 n = 7时,m = N*3
257
当 n = 8时,m = 43,则 c4 =128,当n = 9 时,m = N
*
3
当 n =10 时,m =171,则 c5 = 512,
故 cn 的前 5 项之和 S5 = 2 + 8 + 32 +128 + 512 = 682.
题型三:错位相减法
【典例 3-1】设 Sn 为数列 an 的前 n项和,且 2Sn = 3an - 4n .
(1) l 为何值时, an + l 是等比数列;
n an + 2(2)若b n = ,求数列 bn 的前 n项和Tn .2
【解析】(1)当 n =1时, 2a1 = 3a1 - 4,即 a1 = 4,所以 a1 + 2 = 6,
当 n 2时, 2Sn = 3an - 4n ①, 2Sn-1 = 3an-1 - 4 n -1 ②,
① - ②得: 2an = 3an - 3an-1 - 4,即 an = 3an-1 + 4,所以 an + 2 = 3 an-1 + 2 ,
所以,当l = 2时, an + l 是等比数列,首项为 6,公比为 3.
2 1 a + 2 = 6 3n-1 2 3n
n an + 2 ( )由第( )问得, nn = ,所以bn = = n 3 ,2
所以Tn =1 3 + 2 3
2 + 3 33 +L+ n 3n ,
3Tn =1 3
2 + 2 33 +L+ n -1 3n + n 3n+1,
n
n+1 2 n 3 3 -1 1 n+1 3
故 2Tn = n 3 - 3+ 3 +L+ 3 = n 3n+1 - = n - ÷ 3 +
3-1 è 2 2
T (2n -1)3
n+1 + 3
所以 n = .4
【典例 3-2】(2024·陕西西安·模拟预测)记 Sn 为等差数列 an 的前 n项和,已知 S3 =15, S5 = 35 .
(1)求 an 的通项公式;
a
(2)设bn = n2n ,求数列 bn 的前 n项和Tn .
【解析】(1)设 an 的公差为d ,则 S3 = 3a1 + 3d = 15, S5 = 5a1 +10d = 35,
解得 a1 = 3, d = 2 .
故 an = 3+ n -1 2 = 2n +1.
2n +1
(2)由(1)可得bn = 2n

T 1 1 1 1所以 n = 3 + 5 2 + 7 3 + ×××+ 2n +1 n ,①2 2 2 2
1 1 1 1
则 Tn = 3 2 + 5 + 7 + ×××+ 2n +1
1
,②
2 2 23 24 2n+1
① -
1 1
②,得 Tn = 3 + 2
1 1 1 1
2 + 3 + ×××+
- 2n +1
2 2 è 2 2 2n ÷ 2n+1
1 1
1-

3
= + 2 è 2
n-1 ÷
1 - 2n +1
1 5 2n + 5
n+1 = - n+1 ,2 1- 2 2 2
2
2n + 5
所以Tn = 5 - 2n
.
【方法技巧】
错位相减法求数列{an}的前 n 项和的适用条件
若{an}是公差为 d (d 0) 的等差数列,{bn}是公比为 q(q 1)的等比数列,求数列{an·bn}的前 n 项和 Sn .
【变式 3-1】(2024·青海海南·二模)已知数列 an 的各项均为正数,其前 n项和为 Sn , Sn 是等比数列,
a3 = a1a2 ,2S5 = a6 .
(1)求数列 Sn 的通项公式;
(2)设bn = an × log3 Sn ,求数列 bn 的前 n项和Tn .
【解析】(1)
由 Sn 是等比数列,设公比为q,则由2S5 = a6 得 2S5 = S6 - S5 ,所以 S6 = 3S5,
所以 q = 3,所以 S2 = 3S1, S3 = 3S2 = 9S1 ,故由 a3 = a1a2 得 S3 - S2 = S1 S2 - S1 ,
6S = S 2S S = 3 S = 3 3n-1 = 3n所以 1 1 1,所以 1 ,所以 n ;
(2 n)由(1)可得 Sn = 3 ,当 n =1时, a1 = S1 = 3 .
当 n 2 n时, an = Sn - Sn-1 = 3 - 3
n-1 = 2 ×3n-1 .经检验 a1 = 3不适合 an = 2 ×3
n-1

3, n =1 3, n =1
所以 a
ì ì
n = í2 3n-1, n 2,所以
bn = an × log3 S =× n í2n ×3n-1 , n

2
则数列 bn 的前 n项和Tn = 3+ 4 ×3 + 6 ×32 + 8 ×33 +L+ 2 n -1 ×3n-2 + 2n ×3n-1,
3Tn = 9 + 4 ×3
2 + 6 ×33 + 8 ×34 +L+ 2 n -1 ×3n-1 + 2n ×3n ,
n
两式相减可得-2T = 2 3 + 32 + 33 +L+ 3n-1n - 2n ×3n = 2 3- 3 - 2n ×3n = -3 + 1- 2n ×3n ,1- 3
3 1 n
所以Tn = + n - ÷ ×3 .2 è 2
【变式 3-2】已知在等差数列 an 中,公差大于 0, a1 = 2,且 a2,a3 + 2, a6成等比数列,数列 an
的前 n项和为 Sn .
(1)求数列 an 的通项公式;
(2)若bn = 2
n-1an ,求数列 bn 的前 n项和Tn .
【解析】(1)设等差数列 an 的公差为d .
因为 a2,a3 + 2, a
2
6成等比数列,得 a3 + 2 = a2a6 ,又因为 a1 = 2,
则 (4 + 2d )2 = (2 + d )(2 + 5d ),解得 d = -2 (舍去)或 d = 6,
则数列 an 的通项公式为 an = 2 + 6(n -1) = 6n - 4 .
2 1 b = 2n-1a = 2n-1( )由( )得 n n (6n - 4) = (3n - 2) ×2n,
1
所以Tn =1 2 + 4 2
2 + 7 23 +L+ (3n - 2) ×2n ,①
则 2Tn =1 2
2 + 4 23 + 7 24 +L+ (3n - 5) × 2n + (3n - 2) × 2n+1 ,②
n-1
①-②得 -Tn = 2 + 3 22 + 23 +L+ 2n - 3n - 2 ×2n+1 4 1- 2 = 2 + 3 - (3n - 2) × 2n+1
1- 2
= (5 - 3n)2n+1 -10 = (10 - 6n)2n -10 ,
所以Tn = (6n -10)2
n +10 .
【变式 3-3】(2024·浙江·三模)已知等比数列 an 和等差数列 bn ,满足 an+1 > an , a1 = b1 =1, a2 = b2,
3a3 = 4b3 .
(1)求数列 an , bn 的通项公式;
ì T ü n+1
(2)记数列 an ×b 的前 n项和为T ,数列 í nn n 的前 n项和为P 2b b n.证明:Pn < -1. n × n+1 n +1
【解析】(1)等比数列 an 满足 an+1 > an , a1 =1,所以 an 单调递增,
ì
1+ d = q
设 an 的公比为 q q >1 ,等差数列 bn 的公差为d ,依题意可得 í 2
3q = 4 1+ 2d

ìq 2=
ìq = 2 3
解得 íd 1或 í 1 (舍去), = d = -
3
a = 2n-1所以 n ,bn = n.
n-1
(2)由(1)可得 an ×bn = n 2 ,
T =1 20 + 2 21所以 n + 3 2
2 + ×××+ n 2n-1
2Tn =1 2
1 + 2 22 + ×××+ n -1 2n-1 + n 2n
n
所以Tn = - 20 + 21 1- 2+ 22 + ×××+ 2n-1 + n 2n = - + n 2n = n -1 2n +1,1- 2
Tn n -1 2n +1 n -1 2n 1
故 = = + ,
bn ×bn+1 n n +1 n n +1 n n +1
n -1 2n 2n+1 2n 1 1 1
又 = - ,
= -
n n +1 n +1 n n n +1 n n +1,
T 2n+1n 2
n 1 1
即 = - + - ,
bn ×bn+1 n +1 n n n +1
22 21 1 1 23P 2
2 1 1 2n+1 2n 1 1
所以 n = - + - + - + - +L+ - + -2 1 1 2 3 2 2 3 n +1 n n n +1
22 21 23 22 2n+1L 2
n 1 1 1 1 1 1
= - + - + + - +

2 1 3 2 n +1 n ÷
- + - +L+ - ÷
è è1 2 2 3 n n +1
2n+1 n+1 n+1
= - 2 1 1 2 1 1 2+ - = - - < -1.
n +1 n +1 n +1 n +1 n +1
【变式 3-4】(2024·河北衡水·三模)已知数列 an 满足: a1 =1, a2 = 2, an + an+1 = 2an+2 .
(1)请写出 a3 - a2,a4 - a3,a5 - a4 的值,给出一个你的猜想,并证明;
(2)设bn = 3na2n+1,求数列 bn 的前 n项和 Sn .
【解析】(1)因为 a1 =1, a2 = 2, an + a
1 3 1
n+1 = 2an+2 ,可得 a3 = a2 + a1 = ,a3 - a2 = - ,2 2 2
a 1 74 = a3 + a2 = , a a
1 a 1 a a 13 a a 1- = , = + = , - = - ,
2 4 4 3 4 5 2 4 3 8 5 4 8
1
因此猜想 an+1 - an 是以 1 为首项,- 为公比的等比数列; 2
下面证明:
1 1 a - a 1
因为 an+2 - an+1 = an + an+1 - an+1 = - a - a n+2 n+1n = -2 2 +1 n ,即 an+1 - an 2

1
又因为 a2 - a1 =1,故 an+1 - an 是以 1 为首项,- 为公比的等比数列,2
n-1
所以数列 an+1 - an 的通项公式为 a
1
- a = - n+1 n ÷ .
è 2
2 n-2
2 1 n 2 a - a =1, a 1- a = - ,a - a = 1- ,L,a 1- a = - ( )由( )知,当 时, 2 1 3 2 ,2 4 3 è 2 ÷ n n-1 ÷ è 2
1 n-1
2 n-2 1- - ÷ n-1
累加得 a 1 1 1 è 2 2 2 1 ,n -1 =1+ - ÷ + - ÷ +L+ - ÷ = 1 = - - ÷è 2 è 2 è 2 1+ 3 3 è 2
2
a 5 2 1
n-1
所以 n = -

-

÷ ,3 3 è 2
n-1
当 n =1 a =1 5 2 1时, 1 满足题意,所以 an = -

-
*
÷ 对"n N 成立; 3 3 è 2
b 2n
1 2 n
故 n = 5n - n ,可得 Sn = 5(1+ 2 + 3+L+ n) - 2 1 +4 è 4 42
+L+
4n ÷
1 2 n(n +1)其中 + + 3 +L+ n = ,
2
1 2 n 1 1 2 n
设Tn = 1 + 2 +L+ n ,则 T = + +L+ ,4 4 4 4 n 42 43 4n+1
3 T 1 1 1 n 4 1 1 n 4 3n + 4两式相减得 n = 1 + 2 +L+ n - n+1 = - n+1 ÷ - n+1 ,即Tn = - , 4 4 4 4 4 3 è 4 4 4 9 9 4n
综上可得,数列 b n S 5n(n +1) 6n + 8 8n 的前 项和 n = + n - .2 9 4 9
题型四:分组求和法
2
【典例 4-1 *】已知数列 an 的前 n项和为 Sn ,满足 Sn = an -1 ,n N .3
(1)求数列 an 的通项公式;

(2)记bn = an ×cos ,求数列 bn 的前 100 项的和T100 .2
a
【解析】(1)当 n 2时, an = S
2 2 n
n - Sn = -2-1 = an -1 - an-1 -1 ,整理得 ,又 a S
2
1 = 1 = a1 -1a ,得3 3 n-1 3
a1 = -2
则数列 an 是以-2 为首项,-2 为公比的等比数列.
则 an = (-2)
n , n N*
(2)当 n = 4k, k N* 时,b4k = ( 2)
4k cos 4kπ- × = 24k
2
4k -1 π
当 n = 4k -1,k N*时,b4k -1 = (-2)
4k -1 ×cos = 0 ,
2
4k - 2 π
当 n = 4k - 2, k N*时,b4k -2 = (-2)
4k -2 ×cos = -24k -2,
2
4k - 3 π
当 n = 4k - 3,k N* 时,b4k -3 = (-2)
4k -3 ×cos = 0,
2
则T100 = b1 + b2 + b3 + +b100
= - 22 + 26 + +298 + 24 + 28 + +2100
22 - 298 24 24 - 2100 24
= - +
1- 24 1- 24
2102 - 4
=
5
【典例 4-2】在等比数列{ an }中, a1 + a2 = 5a
5
2 = .4
(1)求{ an }的通项公式;
3
(2)求数列{ an + 2n -1}的前 n 项和 Sn.4
1 q a 1【解析】(1)由题设 a1 =1, a2 = ,则{an}的公比 =
2 = ,
4 a1 4
a 1所以 n = 4n-1
.
3 3
(2)由(1)知: an + 2n -1 = n + 2n -1,4 4
1
1 1 (1
1
- n )
所以 Sn = 3 ( + 2 + ...
1
+ ) + 2 (1+ 2 + ...+ n) - n = 3 4 4 2 n(n +1)+ - n =1 1- + n2 .
4 4 4n n1 1- 2 4
4
【方法技巧】
(1)分组转化求和
数列求和应从通项入手,若无通项,则先求通项,然后通过对通项变形,转化为等差数列或等比数列
或可求前 n 项和的数列求和.
(2)分组转化法求和的常见类型
【变式 4-1】在递增的等比数列 an 中, a1 ×a2 = 8, a1 + a2 = 6 ,其中 n N* .
(1)求数列 an 的通项公式;
(2)若bn = 2an + 3,求数列 bn 的前 n 项和Tn .
【解析】(1)由 a1 ×a2 = 8,a1 + a2 = 6,等比数列 an 是递增数列,得 a1 = 2, a2 = 4,
因此数列 an q
a
= 2的公比 = 2a ,则 an = a1q
n-1 = 2n ,
1
所以数列 a 的通项公式是 a = 2nn n .
(2 n+1)由(1)得,bn = 2an + 3 = 2 + 3,
4(1- 2nT )n = b1 + b2 +L+ bn = + 3n = 2
n+2 + 3n - 4 .
1- 2
【变式 4-2】等比数列 an 的公比为 2,且 a2 , a3 + 2, a4 成等差数列.
(1)求数列 an 的通项公式;
(2)若bn = log2 an + an ,求数列 bn 的前 n项和Tn .
【解析】(1)已知等比数列 an 的公比为 2,且 a2 , a3 + 2, a4 成等差数列,
\2(a3 + 2) = a2 + a4 , \2 4a1 + 2 = 2a1 + 8a1 , 解得 a1 = 2,
\a = 2 2n-1 = 2n , n N*n ;
(2 b = log 2n + 2n n) n 2 = n + 2 ,
\T = (1+ 2 +L+ n) + 2 + 22n +L+ 2n .
n(n +1)
= + 2n+1 - 2 ;
2
n n +1
综上,T = + 2n+1n - 22
【变式 4-3】已知等差数列{an}满足 an + an-1 = 8n + 2( n 2),数列{bn}是公比为 3 的等比数列,
a2 + b2 = 20.
(1)求数列{an}和{bn}的通项公式;
(2)数列{an}和{bn}中的项由小到大组成新的数列{cn},记数列{cn}的前 n 项和为 Sn ,求 S50.
【解析】(1) an + an-1 = 8n + 2,①, an-1 + an-2 = 8n - 6( n 3),②,
① - ② 得: an - an-2 = 8,
∵{an}为等差数列,∴ 2d = 8, d = 4,
an + an-1 = 8n + 2,即 an + an - d = 8n + 2,
∴ an = 4n + 3,
因为数列{bn}是公比为 3 的等比数列, a2 + b2 = 20,
即11+ 3b1 = 20,解得:b1 = 3,
所以bn = 3
n

(2)由(1)可知, an = 4n + 3,bn = 3
n

且数列{an}和{bn}中的项由小到大组成新的数列{cn},
4 5
其中b4 = 3 = 81,b5 = 3 = 243,此时 a46 = 4 46 + 3 =187,
所以数列{cn}中数列{an}有 46项,数列{bn}有 4项,
S 1 2 3 450 = c1 + c2 +L+ c50 = (3 + 3 + 3 + 3 ) + (7 +11+L+187),
=120 + 4462 = 4582.
题型五:裂项相消法之等差型
【典例 5-1 *】已知公比为q的等比数列 an 的前 n项和为 Sn ,且满足 a2 - 2a1 = 8, S3 = 84, q N .
(1)求数列 an 的通项公式;
b log2an+1 log a(2) 2 n若 n = +log a log a ,求数列 bn 的前 n项和Tn .2 n 2 n+1
【解析】(1)由 a2 - 2a1 = 8,有 a1q - 2a1 = 8,①
2
又由 S3 = 84,有 a1 + a1q + a1q = 84,②
q - 2 8
① ②得 =1+ q + q2 84 ,
11
整理为 2q2 -19q + 44 = 0 ,解得 q = 4或 q = ,
2
由 q N* ,可得 q = 4, a1 = 4,
可得数列 an n的通项公式为 an = 4 ;
n
(2)由 log2an = log2 4 = log 2
2n
2 = 2n, log2an+1 = 2n + 2,
b 2n + 2 2n 2 1 1有 n = + = + - ,2n 2n + 2 n n +1

所以Tn = 2n + 1
1
- +
1 1
-
1 1
+L+
2 ÷ 2 3 ÷
- ÷
è è è n n +1
2
= 2n 1+ 1- 2n n 2n + 3n ÷ = + = .
è n +1 n +1 n +1
【方法技巧】
1 1 1 (1 1( ) = - )
n(n + k) k n n + k
2 1 1 é 1 1 ù( ) =
n(n +1)(n + 2) 2 ê
-
n(n +1) (n +1)(n + 2)
ú

1
(3) n(n +1) = n(n +1)(n + 2) - (n -1)n(n +1) .
3
(4) n(n +1)(n 1+ 2) = n(n +1)(n + 2)(n + 3) - (n -1)n(n +1)(n + 2)
4
5 2n +1 1 1( ) 2 = -n (n +1)2 n2 (n +1)2
【典例 5-2】已知数列 an , bn ,其中数列 an n是等差数列,且满足bn - an = -1 n2 , a1 +b1 =1,
a2 + b2 = 8,n N
*

(1)求数列 an 和 bn 的通项公式;
1
(2)若 cn = ,求数列 cn 的前 n项和 Sa n ;nan+1
【解析】(1)因为b nn - an = -1 n2 ,所以b1 - a1 = -1,b2 - a2 = 4,
因为 a1 + b1 =1, a2 + b2 = 8,所以 a1 =1,b1 = 0 , a2 = 2,b2 = 6,
又数列 an 是等差数列,所以 an 的公差 d = a2 - a1 =1,
故数列 an 的通项公式 an =1+ n -1 = n ,
b n 2 n所以 2n = an + -1 n = n + -1 n ,
即 bn n的通项公式bn = n + -1 n2.
1 1 1
(2)由(1)知 cn = = -n n +1 n n +1,
S 1 1 1 1 1 1 1 n则 n = - + - +L+ - =1- = .1 2 2 3 n n +1 n +1 n +1
5 1
【变式 5-1 2 *】已知数列 an 的前 n项和为 Sn , Sn = n - n n N .2 2
(1)求 an 的通项公式;
(2)若b
1
n = a a ,求数列 bn 的前 n项和Tn .n n+1
5 2 1
【解析】(1)Qn N*,有 Sn = n - n,2 2
\当 n 2
5 1
时,有 Sn-1 = (n -1)
2 - n -1 ,
2 2
5 1 5
两式相减得 an = Sn - Sn-1 = n
2 - n - éê (n -1)
2 1- n -1 ùú = 5n - 3,2 2 2 2
S 5 n2 1当 n =1时,由 n = - n,得 a2 2 1
= 2,
检验:当 n =1时也满足 an = 5n- 3,
*
所以 an = 5n - 3n N
b 1 1 1 1 1 (2)由(1)知, n = = = -anan+1 5n - 3 5n + 2 5 è 5n - 3 5n + 2 ÷


所以Tn = b1 + b2 +L+ bn
1 1 1 1= - + 1 1 1 1 1 ÷ -

÷ +L+

-

5 è 2 7 5 è 7 12 5 è 5n - 3 5n + 2 ÷
1 1 1 n n= - = =
5 è 2 5n + 2 ÷ 2 5n + 2 10n + 4 ,
n
所以Tn = .10n + 4
【变式 5-2】(2024·湖北武汉·模拟预测)在等差数列 a ( n N*n )中,a1 + a2 =11, a3 =10 .
(1)求 an 的通项公式;
1
(2)若bn = a a a ,数列的 bn 前 n
1
项和为Tn ,证明Tn < .
n n+1 n+2 168
【解析】(1)设等差数列 an 的公差为d ,
ìa1 + a2 =11 ì2a1 + d =11 ìa1 = 4
由 ía 10 ,即 í 3 = a
,解得 í
1 + 2d =10 d 3

=
所以 an = a1 + n -1 d = 4 + 3 n -1 = 3n +1,
所以数列 an 的通项公式为 an = 3n +1;
1 1
(2)∵ an = 3n +1,∴ bn = =a a ,n n+1an+2 3n +1 3n + 4 3n + 7
1 1
(方法一)bn = =anan+1an+2 3n +1 3n + 4 3n + 7
1 1 1 1 1= × - × ,
6 è 3n +1 3n + 4 3n + 4 3n + 7 ÷
T 1 é
n 1 1 n 1 1 ù
∴ n = 18 ê - -3k +1 3k + 4 ÷ - ÷ k =1 è k =1 è 3k + 4 3k + 7 ú
1 é 1 1 1 1 ù
化简得:Tn = ê - - - ,18 è 4 3n + 4
÷
è 7 3n + 7 ÷ ú
∴T
1 1 1
n = - <168 6 3n + 4 3n + 7 168 .
1 1 1 é 1 ù
(方法二)bn = = =anan+1a
ê ú
n+2 3n +1 3n + 4 3n + 7 3n + 4 ê 3n +1 3n + 7 ú
1 1 1 1 1 1 1 1 1=
6 3n + 4
- = × - × ,
è 3n +1 3n + 7 ÷ 6 è 3n +1 3n + 4 3n + 4 3n + 7 ÷
T 1 é 1 1 1 1 1 1 1 1 ù∴ n = -6 ê 4 7 7 10 ÷
+ - + ××× + × - ×
è è 7 10 10 13
÷
è 3n +1 3n + 4 3n + 4 3n + 7 ÷ ú
1 1 1 1 1 1 1 1 1= - × ÷ = -
× < .
6 è 28 3n + 4 3n + 7 168 6 è 3n + 4 3n + 7 ÷ 168
【变式 5-3】(2024·河北衡水·模拟预测)记各项均为正数的数列 an 的前 n项和为 Sn ,已知 Sn 是
an -1 a + 3与 n 的等差中项.
2 2
(1)求 an 的通项公式;
2
(2)设b
an+1 a= + n+1n bS S ,数列 n S S 的前 n项和为Tn ,证明:Tn - 4n < 2 .n n+1 n n+1
a -1 a + 3
【解析】(1)由题意,得 2 Sn = n + n ,2 2
2
即 2 Sn = an +1,即 4Sn = an +1 ①,
所以4S 2n-1 = an-1 +1 n 2 ②,
①-② 2 2,得 4an = an + 2an - an-1 - 2an-1,
即 an + an-1 an - an-1 - 2 = 0 .
又 an > 0,所以 an - an-1 = 2 n 2 .
由 S
an -1 a是 与 n
+ 3
n 的等差中项,得当 n =1时,2 2
2 a a1 -1 a1 + 31 = + ,解得 a1 =1,2 2
所以 an 是以 1 为首项,2 为公差的等差数列,
故 an = 2n -1.
(2)由(1 S 2)得 n = n ,则
b 2n +1 (2n +1)
2 1 1 4 1 1n = 2 2 + = - + + -n (n +1) n n +1 n2 (n +1)2 n n ,+1
n
T b 1 1 1 1 é 1 1 ù 1 1 1 1 1所以 n = n = - 2 ÷ + 2 - 2 ÷ +L+ ê 2 - 2 ú + 4n + 1- + ÷ - ÷ +L+ -
i=1 è 2
÷
è 2 3 n (n +1) è 2 è 2 3 è n n +1
=1 1- + 4n 1+1-
(n +1)2 n +1
= 4n 1 1+ 2 - 2 -(n +1) n ,+1
所以Tn - 4n = 4n + 2
1 1 1 1
- 2 - - 4n = 2 - 2 - < 2(n 1) n 1 (n 1) n ,+ + + +1
所以Tn - 4n < 2 .
【变式 5-4】设数列 an 为等差数列,前 n项和为 Sn , a3 + a7 =18, S10 =100.
(1)求数列 an 的通项公式;
b 2n
2
= n n 1(2)设 n 的前 项和为Ta a n ,证明:
Tn < + .
n n+1 2 4
【解析】(1) a3 + a7 = 2a5 =18 a5 = 9,
10
S a1 + a10 10 a由 = = 5 + a6 10 =100 a5 + a6 = 20 ,2 2
所以 d = a6 - a5 = 2, a1 = a5 - 4d =1,
所以 an = a1 + (n -1)d = 2n -1.
2n2 1 4n2b -1+1 1 1 (2) n = = × = 1+(2n -1)(2n +1) 2 (2n -1)(2n +1) 2 è (2n -1)(2n +1)
÷

1 1 1 1 1 1 1= + × = + × -
2 2 (2n -1)(2n +1) 2 4 è 2n -1 2n +1÷
T n 1 é= + 1 1 1 1 1 1 1 ù所以 n 2 4 ê
1- ÷ + - ÷ + - ÷ + ××× + -
è 3 è 3 5 è 5 7
÷
è 2n -1 2n +1 ú
n 1 1 1 n 1 1 n 1= + - = + - < +
2 4 è 2n +1÷ 2 4 8n + 4 2 4
题型六:裂项相消法之根式型
【典例 6-1 *】已知数列 an 的前 n 项和为 Sn , a1 =1, S5 = 25,且3Sn+1 - an = 2Sn + Sn+2 n N .
(1)求数列 an 的通项公式;
b 1(2)设 n = ,求数列 bn 的前 n 项和T .2n -1 + 2n +1 n
【解析】(1)由3Sn+1 - an = 2Sn + Sn+2 得:
-an = 2Sn - 3Sn+1 + Sn+2 = 2Sn - 2Sn+1 + Sn+2 - Sn+1 = -2an+1 + an+2
即 2an+1 = an + an+2 ,
所以数列 an 为等差数列,
由 S5 = 5a3 = 25得 a3 = 5,
设公差为 d, a3 = 5 = a1 + 2d =1+ 2d ,得 d = 2,
所以 an =1+ n -1 2 = 2n -1,
故数列 an 的通项公式为 an = 2n -1.
1 1
(2)bn = = 2n +1 - 2n -1 ,2n -1 + 2n +1 2
T 1所以 n = 3 -1+ 5 - 3 + 7 - 5 +L+ 2n +1 - 2n -1 1= 2n +1 -1 .2 2
【典例 6-2】已知数列 a *n 的前 n项和为 Sn ,且 2Sn =1- an n N .
(1)求数列 an 的通项公式;
b 1
bnbn+1
(2)设 n = ,cn =log a n +1 + n ,求数列 cn 的前 n项和Tn .1 n
3
1
【解析】(1)当 n =1时,由 2Sn =1- an ,得: a1= .3
由 2Sn =1- an ,
2Sn-1 =1- an-1 n 2 ,
1
由上面两式相减,得: an = an-1 n 2 3
1 1 1 *
所以数列 an 是以首项为 ,公比为 的等比数列,得: a =3 3 n 3n n N
b 1 = 1 1n = = ,
(2) log1 an 1
n
n
3 log1 3 ÷3 è
c n +1 - n 1 1n = = - ,
n n +1 n n +1
T =c c Lc 1 1 1 1 1 1 n 1 + 2 + n = - ÷ + - ÷ + - ÷ +L
1 1 1
+ - ÷ =1-
è 2 è 2 3 è 3 4 è n n +1 n +1
【方法技巧】
1 1 1( ) = ( n + k - n)
n + k + n k
2 1 1 1 n(n +1) +1 1 1( ) + + = = 1+ -
n2 (n +1)2 n(n +1) n n +1
1
(3)
3 n2 + 2n +1 + 3 n2 -1 + 3 n2 - 2n +1
3 3
= 3 n +1 - 3 n 1( 3 n2 n +1 - n- + 2n +1 + 3 n2 -1 + 3 n2 - 2n +1) =
2
【变式 6-1】已知数列 an , an > 0, a1 =1, Sn 为其前 n 项和,且满足 Sn + Sn-1 Sn - Sn-1 =1 n 2 .
(1)求数列 an 的通项公式;
n 1
(2)设bn = -1 × a ,求数列 bn 的前 n 项和Tn .n
2 2
【解析】(1)由题可知 Sn - Sn-1 =1 n 2 数列是 S 2n 等差数列,
S 2 = S 2所以 n 1 + n -1 = n ,
Sn = n an = Sn - Sn-1 = n - n -1 n 2 ,
又因为 a1 = 1 - 0 = 1,所以 an = n - n -1;
2 b -1
n -1 n
( ) n = = = -1
n n + n -1 .a n n - n -1
所以Tn = - 1 - 0 + 2 + 1 - 3 - 2 + 4 + 3LL+ -1
n n + n -1 = -1 n n ;
【变式 6-2】已知数列 an 的前 n 项和为 Sn = n2,
(1)求数列 an 的通项公式 an ;
b 1 1 1(2)设 n = + + ,求数列 bn 的前 n 项和Tn .Sn Sn+1
【解析】(1)由当 n 2时,bn = Sn - Sn-1 = 2n -1,
当 n =1时,b1 = S1 =1满足上式,所以bn = 2n -1,
b 1 1 1 1 1 1(2) n = + + = +S 2
+ 2
n Sn+1 n n +1
2
én n +1 +1ù n n +1 +1 1 1 1= 2 = =1+ =1+ - ,
én n +1 ù n n +1 n n +1 n n +1
1 1 1 1 1 1 1 n2 + 2n
故Tn = b1 + b2 + ×××+ bn = 1+ - ÷ + 1+ - ÷ + ××× + 1+ - ÷ = n +1- = .
è 1 2 è 2 3 è n n +1 n +1 n +1
题型七:裂项相消法之指数型
【典例 7-1】已知等比数列{ an }的各项均为正数,2a5,a4,4a6成等差数列, a4 = 4a
2
3 ,数列{bn }的
前 n 项和 S
(n +1)
n = bn (n N
*),且b1 =1 .2
(1)求{ an }和{bn }的通项公式;
(b
(2) c = 2n+1
+ 3)an
设 n n N * 1(b -1)(b +1) ,记数列{ cn }的前 n 项和为 An .求证: An < .2n+1 2n+1 2
【解析】(1)设等比数列{an}的公比为q > 0 ,Q 2a5 ,a4,4a6成等差数列,
\2a 14 = 2a5 + 4a6,即 a4 = a4 × q + 2a4 × q2,化为: 2q2 + q -1 = 0 ,解得 q = .2
Qa = 4a2 q 4a 1 4 a (1 24 3 ,\ = 3 ,即 = 1 ) ,解得 a
1
=
2 2 1 ,2
\a 1= ( )nn .2
Q {b } n S (n +1)数列 n 的前 项和 n = bn (n N *) ,且b1 =12 ,
… b b\n 2 (n +1) n时,bn = Sn - Sn-1 = bn - b ,化为: n = n-12 2 n-1 ,n n -1
Q b1 1 \ b= , 数列{ n }是每项都为 1 的常数列,
1 n
\ bn =1,化为b = n.
n n
(2n + 4) × (1)n
(2)证明: c 2 1 1n = = - ,2n × (2n + 2) n × 2n (n +1) × 2n+1
{c } n A 1 1 1 1 1 1 1 1 1数列 n 的前 项和为 n = - + - + + - = - <1 2 2 22 2 22 3 23 n × 2n (n +1) × 2n+1 2 (n +1) × 2n+1 2 ,
\ A 1n < 2 .
【典例 7-2】(2024·新疆·三模)若一个数列从第二项起,每一项和前一项的比值组成的新数列是一个
等比数列,则称这个数列是一个“二阶等比数列”,如:1,3,27,729,…….已知数列 an 是一个二阶等
比数列, a1 =1, a2 = 4 , a3 = 64 .
(1)求 an 的通项公式;
n + 2
(2)设bn = 1 ,求数列 b 的前 n项和 S .
a nn × log a
n n
2 n+1
a a a
【解析】(1 n+1)设 = c 2 3a n ,由题意得数列 cn 是等比数列, c1 = = 4, c2 = =16a a ,n 1 2
a
c = 4n n+1 n则 n ,即 = 4a ,n
an an-1 a× × n-2 a a× × × × × × × × 3 × 2 = 4n-1 4n-2 4n-3由累乘法得: ××× 42 4a ,n-1 an-2 an-3 a2 a1
an = 41+2+3+×××+(n-2)+(n-1) n(n-1)于是 ,故 a = 4 2 = 2n(n-1)a .1 n
b n + 2 n + 2 n + 22 1 n = 1 = =( )由( )得 1 n-1 a n log a 2n(n-1) n log 2n(n+1) n(n +1) ×2n 2 n+1 2
2n (n + 2) 2 1 1 = n-1 n = n-1 - ,n ×2 × (n +1) ×2 è n ×2 (n +1) ×2
n ÷

令 d
1
n = n ×2n-1
,则bn = 2 dn - dn+1 ,
∴ Sn = b1 + b2 + ×××+ bn = 2 d1 - d2 + d2 - d3 + ×××+ dn - dn+1 = 2 d1 - dn+1
2 1 1 1= - = 2 -
è (n +1)2
n ÷
n +1 2n-1
.
【方法技巧】
3n 1 ( 1 1 (1) = -
(3n -1)(3n+1 -1) 2 3n -1 3n+1
)
-1
n + 2 2(n +1) - n 2 1 1 1 1
(2) = = - × = -
n(n +1) × 2n n(n +1) × 2n è n n +1÷ 2n n × 2n-1 (n +1) × 2n
3 (4n -1) ×3
n-1 1 é 9 1 ù 1 3n+1 3n-1
( ) = - n-1
n(n + 2) 2 ê (n + 2) n ú
×3 = - ÷
2 è n + 2 n
【变式 7-1】(2024·黑龙江双鸭山·模拟预测)记 Sn 为数列 an 的前 n 项和, Sn - n 是首项与公差均
为 1 的等差数列.
(1)求数列 an 的通项公式;
(-1)n
b an +1 (2)设 n = ,求数列 bn 的前 2024 项的和TS 2024 .n
【解析】(1)由 Sn - n 是首项与公差均为 1 的等差数列得 Sn - n =1+ (n -1) 1 = n,
则 S = n2n + n
2
,当 n 2时, Sn-1 = (n -1) + (n -1),
两式相减得, an = 2n,
当 n =1时, a1 = S1 = 2,也满足上式,故数列 an 的通项公式为 an = 2n.
(-1)n a +1 n
(2)由(1)得,b n
(-1) (2n +1) 1 1
n = = = (-1)
n
S n(n +1)
+ ÷,
n è n n +1
所以数列 bn 的前 2024 项的和为:
T 1 1 1= - 1+ + + - 1 1 1 1 2024 ÷ ÷ + ÷ +L+ +
è 2 è 2 3 è 3 4 è 2024 2025 ÷
1 2024
= -1+ = - .
2025 2025
【变式 7-2】(2024·全国·模拟预测)已知 Sn 是正项等差数列 an 的前 n项和,满足 2Sn = anan+1.
(1)求数列 an 的通项公式.
(2)设b 2 ann = n + 4n + 3 ×2 ,求数列 bn 的前 n项和Tn .
【解析】(1)设等差数列 an 的公差为d .
因为 2Sn = anan+1.所以令 n =1,得 2a1 = a1a2 .
因为a1 > 0,所以 a2 = 2.
令 n = 2,得 2S2 = a2a3 ,即 2 a1 + a2 = 2a3 ,
所以 a3 - a1 = 2d = a2 = 2,所以公差 d =1,则 a1 = a2 - d =1.
所以数列 an 是首项为 1,公差为 1 的等差数列,所以 an =1+ n -1 1 = n.
b = n2 + 4n + 3 × 2n = é n +1 22 1 +1ù × 2n+1 - n2( )由( )可得 n +1 × 2
n

所以Tn = b1 + b + b é
2 2 2 1 ù é 2 3 2 2 ù
2 3 + ×××+ bn = 2 +1 × 2 - 1 +1 × 2 + 3 +1 × 2 - 2 +1 × 2
+ é 42 +1 × 24 - 32 +1 × 23 ù + ××× + é n +1 2 +1ù × 2n+1 - n2 +1 × 2n
= é n +1
2 +1ù ×2
n+1 - 12 +1 ×21 = n2 + 2n + 2 × 2n+1 - 4.
【变式 7-3】(2024·云南昆明·三模)正项数列 an 的前 n项和为 Sn ,等比数列 bn 的前 n项和为Tn ,
4S 2n = an + 2an +1, 4Tn = b
2
n + 2bn +1
(1)求数列 an , bn 的通项公式;
a +1
(2) n已知数列 cn 满足 cn = bn × ,求数列 cn 的前 na a 项和Hn.n n+1
【解析】(1)当 n =1时, 4S1 = a
2
1 + 2a1 +1,即 4a1 = a
2
1 + 2a1 +1, a1 -1
2 = 0 ,
所以 a1 =1,同理b1 =1.
当 n 2时, an = Sn - S
1 2 2 1
n-1 = an - an-1 + an - an-1 ,化简得:4 2
1 an + an-1 an - an-1 - 2 = 0,因为 an > 0,所以 an - an-1 = 2,4
即 an - an-1 = 2,故 d = 2,又 a1 =1,所以 an = 2n -1.
同理,bn + bn-1 = 0或bn - bn-1 = 2,
因为 b n-1n 是等比数列,所以bn + bn-1 = 0,即 q = -1 ,所以bn = -1 .
n-1
2 1 c 1 n-1 an +1 1 n-1 2n -1 1 1= - × = - × = + ( )由( )知 n ,ana ÷n+1 2n -1 2n +1 2 è 2n -1 2n +1
所以当 n为奇数时,Hn = c1 + c2 + ×××+ cn
1 é 1 1 1 1 1 1 1 1 ù= ê + ÷ - + ÷ + ××× + + + + ,2 è 3 è 3 5 è 2n - 3 2n -1
÷
è 2n -1 2n +1÷ ú
1
= 1 1+
2 2n +1÷

è
1 1
同理当 n为偶数时,Hn = 1-2 2n .è +1÷
ì1
1
1
- , n为偶数
2 2n +1÷
所以H =
è
n í .
1 1
1+ ÷ ,n为奇数 2 è 2n +1
【变式 7-4】(2024·福建泉州·二模)已知数列 an 和 bn 的各项均为正,且a3 =18b1, bn 是公比 3 的
2
等比数列.数列 an 的前 n 项和 Sn 满足 4Sn = an + 2an .
(1)求数列 an , bn 的通项公式;
(2)设 c
b
= n+3n + a cos nπ b - 3 b -1 n ,求数列 cn 的前 n 项和Tn .n+3 n+3
2
【解析】(1)由题设,当 n =1时 4S1 = a1 + 2a1,\a1 = 2或a1 = 0(舍),
由 4S = a2 2n n + 2an ,知 4Sn-1 = an-1 + 2an-1,
两式相减得 an + an-1 an - an-1 - 2 = 0,
\an + an-1 = 0(舍)或 an - an-1 - 2 = 0,即 an - an-1 = 2,
∴数列 an 是首项为 2,公差为 2 的等差数列,\an = 2n .
1 n-2
又 a3 =18b1 = 6, \b1 = , \bn = 3 .3
b n+1
2 c = n+3
3
( ) n + an cos nπ = + -1
n 2n
bn+3 - 3 bn+3 -1 3n+1 - 3 3n+1 -1
3n 1 1 1
= + (-1)n 2n = - + (-1)n 2n
3n -1 3n+1 -1 2 è 3n -1 3n+1 -1÷
T 1 é 1 1 1 1 1 1 ù= n则 n 2 ê
- +
è 3-1 32 -1÷ è 32
- 3 ÷ + + n - n+1 ÷ú +2 é(-1+ 2) + (-3 + 4) + .+ (-1) nù -1 3 -1 è 3 -1 3 -1
1 1 1
当 n 为偶数时,Tn = - + n;2 è 2 3n+1 -1÷
T 1 1 1 n 1 1 n 3当 n 为奇数时, n = - - + = - - -2 è 2 3n+1 -1÷ 2 3n+1 -1 4 .
ì 1 1 1
-

n+1 ÷ + n,当n为偶数
2 è 2 3 -1
所以Tn = í
1
.
- - n 3- ,当n为奇数
2 3n+1 -1 4
题型八:裂项相消法之三角型
【典例 8-1】数列 an 各项均为正数, an 的前 n 项和记作 Sn ,已知 S1 =1, a2n - an - 2Sn-1 = 0, (n 2).
(1)求 an 的通项公式;
(2)设bn = tan an × tan an+1 ,求数列 bn 的前 2023 项和.
ìa2
1 n 2 í n+1
- an+1 = 2Sn 2 2
【解析】( )当 时,有 2 相减得 an+1 - an + an - an+1 = 2an ,即 an+1 - an -1 an + an+1 = 0,
an - an = 2Sn-1
an 各项均为正数,
所以 an+1 = an +1 n 2 ,
2
又当 n = 2时, a2 - a2 - 2S1 = a
2
2 - a2 - 2 = 0,
解得 a2 = 2或 a2 = -1(舍),
所以对任意正整数 n,均有 an+1 = an +1,
故 an 是以首项为 1,公差以 1 的等差数列,
所以 a *n = n n N .
(2)由于 tan1 = tan (n +1) n tan(n +1) - tan n- = 1+ tan(n +1) tan n ,
tan(n 1) tan n tan(n +1) - tan n故 + = -1,
tan1
由(1)得bn = tan(an ) tan(an+1) = tan n × tan(n +1),
记 bn 前 n 项和为Tn ,则Tn = b1 + b2 + b3 + ... + bn
1
= tan(n +1) - tan n + tan n - tan(n -1) + ...+ tan 2 - tan1 - n
tan1
1
= tan(n +1) - tan1 - n
tan1
tan(n +1)
= - n -1,
tan1
tan 2024
所以T2023 = - 2024 .tan1
【典例 8-2】已知数列 an 中, a2 =1,设 Sn 为 an 前 n 项和, 2Sn = nan .
(1)求 an 的通项公式;
sin1
(2)若bn = cos an +1 cos a +1
,求数列 bn 的前 n 项和Tn
n+1
【解析】(1)数列 an 中, a2 =1, Sn 为 an 前 n 项和,
当 n =1时, 2S1 = a1 2a1 = a1,\a1 = 0 ,
当 n 2时, 2Sn = nan ①,
2Sn+1 = n +1 an+1 ②,
由②-①得: 2Sn+1 - 2Sn = n +1 an+1 - nan , 2 Sn+1 - Sn = n +1 an+1 - nan ,
即 nan = n -1 an+1,
a
n 2 n+1
n a n -1 a 3 a 2
当 时, = n 4 3a n -1,递推可得:
= L = =
n an-1 n - 2
, , a ,3 2 a 1

2
an+1 an
由累乘法可得: × L
a4 a3 n n -1× = L 3 2
an an-1 a a

3 2 n -1 n - 2 2 1
an+1 = n ,又因为 a2 =1a ,所以
an+1 = n ,即 an = n -1,经检验,当 n =1时a1 = 0符合上式,
2
所以 an = n -1;
(2)由(1)可知 an = n -1, an+1 = n ,所以:
b sin1n = cos an +1 cos an+1 +1
sin1
=
cos n cos n +1
sin é
=
n +1 - n ù
cos n cos n +1
sin n +1 cos n - cos n +1 sin n
=
cos n cos n +1
sin n +1 cos n cos n +1 sin n
= -
cos n cos n +1 cos ncos n +1
= tan n +1 - tan n,
所以Tn = b1 + b2 + b3 +Lbn
= tan 2 - tan1 + tan 3- tan 2 +L+ é tan n - tan n -1 ù + étan n +1 - tan n ù
= tan n +1 - tan1;
所以数列 bn 的前 n 项和Tn = tan n +1 - tan1 .
【方法技巧】
1 1(1) = (tana - tan b )
cosa cos b sin(a - b )
2 1 1( ) = tan(n +1)° - tan n°
cos n°cos(n +1)° sin1°
(3) tana tan b 1= (tana - tan b ) -1
tan(a - b )
(4) an = tan× tan(n -1); tan1 = tan n (n 1)
tan n - tan(n -1)
- - = ,
1+ tan n × tan(n -1)
则 tan n × tan(n -1) tan n - tan(n -1) tan n - tan(n -1)= -1,a = -1
tan1 n tan1
【变式 8-1】已知在数列 an 中, a1 =1, nan+1 - (n +1)an =1.
(1)求数列 an 的通项公式;
b b sin(π(2)若数列 n 满足 n = a2 n+1) + cos(πan ),求数列 bn 的前 2024 项和T2024 .
a
1 na n+1
an 1 1 1
【解析】( )因为 n+1 - (n +1)an =1,可得 - = = -n ,+1 n n(n +1) n n +1
n 2 a2 a1
a3 a2 L an an-1 1 1 1 1 1 1所以,当 时, - + - + + - = - + - +L+ - =1
1
- ,
2 1 3 2 n n -1 1 2 2 3 n -1 n n
a
即 n
1
-1 =1- ,又因为 a1 =1,则 an = 2n -1;n n
当 n =1时, a1 =1成立,所以 an = 2n -1.
b sin(π(2)由(1)知, n = an+1) + cos(πan ) = sin[
π
× (2n +1)]+ cos[π(2n -1)] = cos nπ - cos 2nπ,
2 2
所以T2n = b1 + b2 +L+ b2n = cos π + cos 2π +L+ cos(2n -1)π + cos 2nπ
- écos 2π + cos 4π +L+ cos 4n - 2 π + cos 4nπù ,
因为 cos[(2n -1)π]+ cos 2nπ = -cos 2nπ + cos 2nπ = 0,cos 2nπ =1,
于是 (cos π + cos 2π) +L+ [cos(2n -1)π + cos 2nπ] = 0,
cos 2π + cos 4π +L+ cos[(4n - 2)π]+ cos 4nπ = 2n,
所以T2n = -2n,所以数列 bn 的前 2024项的和为-2024 .
【变式 8-2】(2024·高三·江西·开学考试)同余定理是数论中的重要内容.同余的定义为:设
a,b Z, m N+ 且m > 1.若m∣(a - b),则称 a 与 b 关于模 m 同余,记作 a b(mod m)(“|”为整除符号).
(1) 2解同余方程: x + 2x 0 mod3 x Z ;
(2)设(1)中方程的所有正根构成数列 an ,其中 a1 < a2 < a3 ①若bn = an+1 - an n N+ ,数列 bn 的前 n 项和为 Sn ,求S4048 ;
②若Cn = tan a2n+3 × tan a2n+1 n N+ ,求数列 Cn 的前 n 项和Tn .
【解析】(1)由题意 x x + 2 0(mod3),所以 x = 3k或 x + 2 = 3k ( k Z ),
即 x = 3k或 x = 3k - 2( k Z ).
ì3n -1
n为奇数
(2 2)由(1)可得 an 为 1,3,4,6,7,9,10,··· ,所以 an = í n . 3 n为偶数 2
ì2 n为奇数
①因为bn = an+1 - an ( n N+ ),所以bn = í .
1 n为偶数
则 S4048 = b1 + b2 + b3 +L+ b4048 = 3 2024 = 6072.
② cn = tan a2n+3 × tan a2n+1 = tan 3n + 4 × tan 3n +1 ( n N+ ).
tan 3n + 4 - tan 3n +1因为 tan 3n + 4 × tan 3n 1 + = -1,
tan 3
tan 7 - tan 4 tan10 - tan 7 tan 3n + 4 - tan 3n +1
所以Tn = c1 + c2 +Lcn = -1÷ + -1 +L+ -1
è tan 3 è tan 3 ÷

è tan 3
÷

tan 3n + 4 - tan 4
= - n.
tan 3
【变式 8-3】已知数列 an 的前 n 项和为 Sn , a1 =1, a2 = 3, Sn+1 + Sn-1 = 2 Sn +1 (n 2)
(1)求 Sn ;
b 4n cos(n +1)π(2)若 n = a ×a ,求数列 bn 的前 1012 项和T1012.n n+1
【解析】(1)当 n 2时,因为 Sn+1 + Sn-1 = 2 Sn +1 ,所以 Sn+1 - Sn = Sn - Sn-1 + 2,
即 an+1 - an = 2 .又 a2 - a1 = 2 ,所以 an 是首项为 1,公差为 2 的等差数列,
S na n(n -1)d n 1 2n(n -1)= + = + = n2所以 n 1 .2 2
(2)由(1)知, an =1+ 2(n -1) = 2n -1,
b 4n cos(n +1)π 4nn = = cos(n +1)π =
1 1
+

÷cos(n +1)πa a ,n × n+1 (2n -1) × (2n +1) è 2n -1 2n +1
而 cos ì
1, n为奇数,
n +1 π = í 所以T1012 = b1 + b2 + b3 + b4 +L+ b-1, n , 1010
+ b1011 + b1012
为偶数
1 1 1 1 1 1 1 1 1 1 1 1= 1 1 + ÷ - + ÷ + +3 3 5 5 7 ÷
- + +L- + + + -7 9 ÷ 2019 2021÷ 2021 2023 ÷
+ ÷
è è è è è è è 2023 2025
1 1 2024= - = .
2025 2025
题型九:倒序相加法
【典例 9-1】(2024·高三·浙江·开学考试)已知函数 f x 满足 f x = f 1- x , f x 为 f x 的导函数,
g x = f x 1+ , x R .若 a n= g ,则数列 a 的前 2023 项和为 .
3 n è 2024 ÷ n
2023
【答案】
3
【解析】由题意知 f x = f 1- x ,所以 f x = - f 1- x ,即 f x + f 1- x = 0,
又因为 g x = f x 1+ ,所以 g x + g 1- x = f x + f 1 x 2 2- + = ,
3 3 3
a + a + a +L+ a 1= g + g 2 3 所以 1 2 3 2023 + g +L
2023
+ g ①,
è 2024 ÷ ÷ ÷ ÷ è 2024 è 2024 è 2024
a1 + a2 + a3 +L a
2023 2022 2021 1
+ 2023 = g
+ g 2024 ÷ ÷
+ g ÷ +L+ g2024 2024 2024 ÷
②,
è è è è
2023 2
将①②两式相加可得: a a a L a 3 20231 + 2 + 3 + +
.
2023 = =2 3
2023
故答案为: .
3
【典例 9-2】德国大数学家高斯年少成名,被誉为数学界的王子.在其年幼时,对1+ 2 + 3 +L+100的
求和运算中,提出了倒序相加法的原理,该原理基于所给数据前后对应项的和呈现一定的规律生成.因此,
4x
此方法也称为高斯算法.现有函数 f x = ,则
4x + 2
f ( 1 ) 2+ f ( ) 3+ f ( ) +L 2017 2018+ f ( ) + f ( )的值为 .
2019 2019 2019 2019 2019
【答案】1009
4x x 1-x x xf x f (x) f (1 x) 4 4 4 4 4 2【解析】由函数 = x ,得 + - = x + 1-x = x + x = x + x =1,4 + 2 4 + 2 4 + 2 4 + 2 4 + 2 4 4 + 2 2 + 4
令 S = f (
1 ) f ( 2+ ) + f ( 3 ) +L+ f (2017) f (2018+ ),
2019 2019 2019 2019 2019
S f (2018) f (2017则 = + ) + f (
2016) +L+ f ( 2 ) 1+ f ( ),
2019 2019 2019 2019 2019
两式相加得 2S =1 2018,解得 S =1009,
所以所求值为 1009.
故答案为:1009
【方法技巧】
将一个数列倒过来排列,当它与原数列相加时,若有规律可循,并且容易求和,则这样的数列求和时
可用倒序相加法(等差数列前 n项和公式的推导即用此方法).
1
【变式 9-1】在数列 an 中, an = 1+ 22011 2n ,则 S = a1 + a2 + … +a- 2010的值是 .
【答案】1005
1 1 1 22011-2n
【解析】由 an = 2011-2n 得 a2011-n = 2011 2 2011 n =1+ 2 1+ 2 - - 1+ 2-2011+2n
=
1+ 22011-2n

1 22011-2n
所以 an + a2011-n = 1+ 22011-2n
+
1+ 22011-2n
=1,
所以 S = a1 + a2 +L+ a2010 , S = a2010 + a2009 +L+ a2 + a1相加可得 2S = a1 + a2010 2010 S =1005 ,
故答案为:1005
f x 1+ n【变式 9-2】已知函数 ÷为奇函数,且 g x = f x +1,若 an = g

2 2023 ÷
,则数列 an 的前
è è
2022 项和为 .
【答案】2022
1 1 1
【解析】由于函数 f x + 2 ÷
为奇函数,则 f -x + ÷ = - f x + ÷,
è è 2 è 2
即 f
1
- x

÷ + f
1
+ x

÷ = 0,所以 f x + f 1- x = 0,
è 2 è 2
所以 g x + g 1- x = é f x +1 ù + é f 1- x +1ù = 2,
2 a é+ a +L+ a = 2 g 1 + g 2 L 2022 ù所以 1 2 2022 ê ÷ ÷ + + g

è 2023
÷
è 2023 è 2023 ú
ég 1 g 2022 ù ég 2 g 2021 ù é 2022= + + + 1 ùê è 2023 ÷ 2023 ÷ú ê ÷ ÷ è è 2023 è 2023 ú
+L+ êg ÷ + g ÷ú = 2 2022,
è 2023 è 2023
因此数列 an 的前 2022 项和为 a1 + a2 +L+ a2022 = 2022,
故答案为:2022
9-3 f (x) sin2 πx 4
x
{a } a f 1 f 2= + n +1 【变式 】若函数 = + +L+ f
2 4x
,且数列
+ 2 n
满足: n ÷ ÷ ÷ ,则数列
è n + 2 è n + 2 è n + 2
{an}的通项公式为 an = ;以 an , an+1, an+2 (n N*)为三角形三边的长,作一系列三角形,若这一系列
三角形所有内角的最大值为A ,则 tanA = .
【答案】 n +1 - 15
x
【解析】由 f (x) sin2
πx 4
= + x ,可得2 4 + 2
x π 1- x 1-x x
f (x) f (1 x) sin2 πx 4 sin2 4 πx 4 πx 2+ - = + x + + = sin
2 + + cos2 + = 2 ,
2 4 + 2 2 41-x + 2 2 4x + 2 2 2 + 4x
a 1 n +1 又因为 n = f +L+ f
è n + 2 ÷ è n + 2 ÷


所以根据倒序相加法计算,
可得 2a
é 1 n +1 ù é 2 n ù é n +1= 1 ùn ê f ÷ + f ÷ú + ê f ÷ + f +L + f + f = 2 + 2 +L+ 2 = n +1 2
è n + 2 è n + 2 è n + 2 è n + 2
÷ú ê n + 2 ÷ n + 2 ÷ú , è è
所以 an = n +1;
因为三角形以 an , an+1, an+2 (n N*)为三边长,又 an+2 > an+1 > an ,所以以 an+2 为长度的边所对的角 An 是三
个内角中最大的,
所以 An 的最大值就是这一系列三角形所有内角的最大值,
a2
2 2 2
+ a2 - a2
根据余弦定理 cosA = n n+1 n+2
n +1 + n + 2 - n + 3 n - 2 n + 2 n - 2 1 3
n = = = = -2anan+1 2 n +1 n + 2 2 n +1 n + 2 2 n

+1 2 2 n +1
故 cosAn 是递增数列,所以当 n =1时, cosAn 取最小值, An 取最大值,
所以这一系列三角形所有内角的最大值为 A1,
1 3 1 2
因为 cosA1 = - = - tanA
sin A
= 1 1- cos A1
2 2 1+1 4 ,所以 1 cos A = = - 15 .1 cosA1
故答案为: n +1;- 15 .
题型十:分段数列求和
*
【典例 10-1】在数列 an 中, a1 = 8, a4 = 2 ,且满足 an+2 - 2an+1 + an = 0 n N .
(1)求数列 an 的通项公式;
(2)设Tn = a1 + a2 +L+ an ,求Tn .
【解析】(1)∵ an+2 - 2an+1 + an = 0,∴ an+2 - an+1 = an+1 - an ,
∴数列 an 是等差数列,设其公差为 d.
∵ a1 = 8, a4 = 2 ,∴ d
a - a
= 4 1 = -2,
4 -1
∴ an = a1 + n -1 d =10 - 2n, n N*
(2)设数列 an
n n -1
的前 n 项和为 Sn ,则由(1)可得, Sn = 8n

+ -2 = 9n - n2 , n N*
2
由(1)知 an =10 - 2n,令 an = 0,得 n = 5,
∴当n > 5时, an < 0,
则Tn = a1 + a2 +L+ an = a1 + a2 +La5 - a6 + a7 +L+ an
= S5 - Sn - S5 = 2S5 - Sn = 2 9 5 - 25 - 9n - n2 = n2 - 9n + 40;
当 n 5时, an 0,则Tn = a1 + a2 +L+ an = a1 + a2 +L+ an = 9n - n
2

ì9n - n2 , n 5,n N*
∴Tn = í 2
n - 9n + 40, n 6,n N
*
【典例 10-2】已知数列 an 的前 n项和 Sn 满足 Sn = 2an -1,则 a1 -18 + a2 -18 +L a10 -18 = .
【答案】961
【解析】因为 Sn = 2an -1,故当 n =1时, a1 = S1 = 2a1 -1 a1 =1,
因为 an = Sn - Sn-1 = 2an - 2an-1,即 an = 2an-1,
a
故等比数列 a q = nn 的公比为 = 2a ,所以 a
n-1
n = 2 ;
n-1
n-1
由 an = 2 18 n 6 ,\ a1 -18 + a2 -18 +L+ a10 -18 = (18 - a1) +L(18 - a5 ) + (a6 -18) +L(a10 -18)
= 5 18 - (a1 + a2 +L+ a5 ) + (a + a +La 5 6 9 0 1 46 7 10 ) - 5 18 = (2 + 2 +L2 ) - (2 + 2 +L2 ) = 961
故答案为:961.
【方法技巧】
(1)分奇偶各自新数列求和
(2)要注意处理好奇偶数列对应的项:
①可构建新数列;②可“跳项”求和
【变式 10-1】(2024·山西·三模)已知等差数列 an 的公差 d > 0,前 n项和为 Sn ,且 a3a6 = -5,
S8 = -16 .
(1)求数列 an 的通项公式;
ìa , n = 2k -1
(2)若bn =
n
í2n ,n 2k k N
* ,求数列 b
= n
的前 2n项和T2n .

【解析】(1)因为 a3a6 = -5, S8 = -16,
ì a1 + 2d a1 + 5d = -5 ìa1 = -9 ìa1 = 5
所以 í 8 8 -1 ,解得 í
8a + d = -16 d = 2
或 í
d = -2

1 2
ìa1 = -9
因为 d > 0,所以 í ,则 an = a1 + n -1 d = 2n -11
d = 2

ìa
2 1 b = n
, n = 2k -1 ì2n -11, n = 2k -1 *
( )由( )可得 n í n = í n k N
2 ,n = 2k 2 ,n 2k

=
所以T2n = é -9 - 5 -1+ 3 + 7 +L+ 4n -13 ù + 22 + 24 + 26 +L + 22n
n é-9 + 4n -13 ù 2
2
1- 22n = +
2 1- 22
n+1
= 2n2 11n 4 - 4- + .
3
【变式 10-2】已知数列 an 是公差不为 0 的等差数列,其前 n 项和为 Sn , S3 = 3, a2,a3, a6成等比
数列.
(1)求 an 的通项公式;
a + 3, n = 2k,
(2)若b
ì
n =
n
í a , k N* ,求数列 bn 2 , n 2k 1, 的前 100 项和T100 . n = -
【解析】(1)设数列 an 的首项为 a1,公差为d ,
ìa1 + a2 + a3 = 3, ìa1 + d =1,
根据题意得 í 2
a3 = a2a6 ,
即 í 2
a1 + 2d = a1 + d a1 + 5d ,
ìa1 = -1, ìa1 =1,
解得 íd 2, 或 =
í
d = 0

ìa = -1,
又因 d 0 1,所以 í .
d = 2
所以 an 的通项公式为 an = 2n - 3.
ì2n,n = 2k,
(2)由(1)得bn = í k N
2
2n-3 ,n .= 2k +1,
即数列 bn 的偶数项是以 4 为首项,4 为公差的等差数列,
1
奇数项是以 2 为首项,16 为公比的等比数列.
数列 bn 的前 100 项中偶数项有 50 项,奇数项有 50 项,
数列 bn 的前 100 项和Tn = b1 + b2 + b3 + ×××× × × +b99 + b100.
1 1-1650 200
b1 + b3 + b5 + ×××× × × +b
2 -1
97 + b 2

99 = =1-16 30
b b 50 492 + 4 + b6 + ×××× × × +b98 + b100 = 50 4 + 4 = 5100 .2
2200T 5100 -1所以 100 = + .30
【变式 10-3】(2024·陕西安康·模拟预测)记 Sn 为数列 an 的前 n项和,已知
a1 =1, nS
2
n+1 - n +1 Sn = n + n .
(1)求 an 的通项公式;
(2)若bn = (-1)
n an + é (-1)
n +1ù 2n ,求数列 bn 的前 2n项和T2n .
nS - n +1 S = n2 + n nS - n +1 S = n n +1 Sn+1 S【解析】(1)由 n+1 n ,可得 nn+1 n ,所以 - = 1n 1 n ,+
a =1 S1 a= 1 =1 ì
Sn ü
又由 1 ,所以 ,所以数列 í 是以 1 为首项,1 为公差的等差数列,1 1 n
S 2
所以 n =1+ n -1 1 = n,则 S
n n
= n ,
当 n 2 2 2时, S 2n-1 = (n -1) ,所以 Sn - Sn-1 = an = n - (n -1) = 2n -1,
又当 n =1时, a1 =1满足上式,
所以 an 的通项公式为 an = 2n -1.
(2)由(1)可知当 n为奇数时,bn = -an =1- 2n;
n n+1
当 n为偶数时,bn = an + 2 2 = 2n -1+ 2 ,
所以T2n = b1 + b2 + b3 + b4 +L+ b2n
= b1 + b3 + b5 +L+ b2n-1 + b2 + b4 + b6 +L+ b2n
= 2n + 23 + 25 + 27 + 29 +L+ 22n+1 = 2n + 8 1+ 22 + 24 + 26 +L+ 22n-2
n
= 2n + 8 1- 4 2 = 2n + 4n+1 8- .
1- 4 3 3
【变式 10-4】(2024·山东·二模)已知 an 是公差不为 0 的等差数列,其前 4 项和为 16,且 a1,a2 ,a5 成
等比数列.
(1)求数列 an 的通项公式;
ì2an , n为奇数

(2)设bn = í 1 ,求数列 bn , n 的前 2n项和T2n . 为偶数
anan+2
ìa1 + a2 + a + a =16 ì4a1 + 6d =163 4
【解析】(1)设 an 的公差为 d d 0 ,由题意知 ía 2 ,即 í 2 , 2 = a1a5 a1 + d = a1 a1 + 4d
ì2a1 + 3d = 8
即有 í ,因为 d 0,可得 a1 =1, d = 2
d = 2a

1
所以 an = 2n -1;
(2)设数列 bn 的前 2n项中的奇数项之和为A ,偶数项之和为 B ,
2 1-16n
则 A = 2a1 + 2a3 +L+ 2a2 n-1 = 21 + 25 +L+ 24n-3 =
1-16
2 - 24n+1 24n+1 - 2
= = ,
1-16 15
B 1 1 1= + +L+
a2a4 a4a6 a2na2n+2
1 1 1 1 1 1 1
= - + - +L+ -2d è a
÷
2 a4 a4 a6 a2n a2n+2
1 1 1
=
2d
-
a a ֏ 2 2n+2
1 1 1
= -
1 1
÷ = - ,4 è 3 4n + 3 12 16n +12
24n+1 - 2 1 1 24n+1 1 1
所以T2n = A + B = + - = - - .15 12 16n +12 15 20 16n +12
题型十一:并项求和法之 + +( ― ) = + 型
【典例 11-1】数列 an 满足 an+2 + -1
n an = 4n -1,前 12 项的和为 298,则 a1 = .
【答案】4
【解析】当 n为偶数时, an+2 + an = 4n -1,
所以 a4 + a2 = 7, a8 + a6 = 23, a12 + a10 = 39,
所以 a2 + a4 + a6 + a8 + a10 + a12 = 69 ;
当 n为奇数时, an+2 - an = 4n -1,即 an+2 = an + 4n -1
所以 a3 = a1 + 3, a5 = a3 +11 = a1 +14, a7 = a5 +19 = a1 + 33, a9 = a7 + 27 = a1 + 60,
a11 = a9 + 35 = a1 + 95,
所以 S12 = a2 + a4 + a6 + a8 + a10 + a12 + a1 + a3 + a5 + a7 + a9 + a11
= 69 + 6a1 + 205 = 298,所以 a1 = 4 .
故答案为: 4 .
【典例 11-2】已知数列 an 的前 n项和为 Sn , a1 =1 .当 n 2时, an + 2Sn-1 = n,则 S2019 = .
【答案】1 010
【解析】由 an + 2Sn-1 = n, n 2,得 an+1 + 2Sn = n +1,
两式作差可得 an+1 - an + 2an =1, n 2,
即 an+1 + an =1( n 2),
2018
所以 S2019 = a1 + a2 + a3 + a4 + a5 +L+ a2018 + a2019 =1+ =1010 .2
故答案为:1010.
【方法技巧】
四四并项求和.
n n+1
【变式 11-1】(2024·浙江·模拟预测)已知数列 an 满足 a1 + a2 = 0 , a + -1 2 a = 2,则数列n+2 n
an 的前 2020 项的和为 .
【答案】2020
n n+1
【解析】在 a + -1 2 a = 2中,分别令 n =1,2,得 a3 - a1 = 2, a4 - a2 = 2 ,两式相加,得n+2 n
a3 + a4 = a1 + a2 + 4 = 4.
n n+1
在 a + -1 2 a = 2中,分别令 n = 3,4,得 a5 + a3 = 2, a6 + a4 = 2 ,两式相加,得 a3 + a4 + a5 + a6 = 4,所以n+2 n
a5 + a6 = 0 .
……
依此类推,可得 a4k -3 + a4k -2 = 0 , a4k -1 + a4k = 4, k N*,
所以数列 an 的前 2020 项,有 505 组 a1 + a2 + a3 + a4 = 4,故和为505 4 = 2020.
故答案为:2020.
【变式 11-2】已知数列 an n满足 an+1 + -1 an = n,则数列 an 的前 4n项和为 .
【答案】 4n2 + 2n
n+1
【解析】当 n为奇数时, an+1 = -1 an + n = an + n
an+2 = -1
n+2 an+1 + n +1 = -an+1 + n +1 = - an + n + n +1 = -an +1
a n+3n+3 = -1 an+2 + n + 2 = an+2 + n + 2 = -an +1 + n + 2 = -an + n + 3
\an + an+1 + an+2 + an+3 = 2n + 4
令bn = a4n-3 + a4n-2 + a4n-1 + a4n = 2 4n - 3 + 4 = 8n - 2,此数列前 4n项的和
S4n = a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 +L+ a4n-3 + a4n-2 + a4n-1 + a4n
= b1 + b2 + b3 +L+ bn
n 6 + 8n - 2= 6 +14 + 22 +L+ 8n 2 - = = 4n2 + 2n
2
故答案为: 4n2 + 2n
【变式 11-3】数列{an}满足 an+2 + (-1)
n an = 3n +1,前 8 项的和为 106,则 a1 =
【答案】8
n
【解析】 an+2 + (-1) an = 3n +1,
当 n为奇数时, an+2 = an + 3n +1;
当 n为偶数时, an+2 + an = 3n +1 .
设数列{an}的前 n项和为 Sn , S8 = a1 + a2 + +L+ a8 = a1 + a3 + a5 + a7 + (a2 + a4 ) + (a6 + a8 )
= a1 +(a1 + 4) +(a1 +14) +(a1 + 30) + (a2 + a4 ) + (a6 + a8 )
= 4a1 + 48 + 7 +19 = 4a1 + 74 =106,解得 a1 = 8 .
故答案为:8 .
【变式 11-4】数列{an}满足 a n+1n+2 + (-1) an = 3n -1,前 16 项和为 540,则 a2 = .
【答案】-2
【解析】因为数列{an}满足 a n+1n+2 + (-1) an = 3n -1,
当 n为奇数时,an+2 + an = 3n -1,
所以 a3 + a1 = 2, a7 + a5 = 14 , a11 + a9 = 26 , a15 + a13 = 38,
则 a1 + a3 + a5 + a7 + a9 + a11 + a13 + a15 = 80,
当 n为偶数时, an+2 - an = 3n -1,
所以 a4 - a2 = 5, a6 - a4 =11, a8 - a6 = 17, a10 - a8 = 23, a12 - a10 = 29 , a14 - a12 = 35, a16 - a14 = 41,
故 a4 = 5 + a2 , a6 = 16 + a2 , a8 = 33 + a2 , a10 = 56 + a2 , a12 = 85 + a2 , a14 = 120 + a2, a16 = 161+ a2 ,
因为前 16 项和为 540,
所以 a2 + a4 + a6 + a8 + a10 + a12 + a14 + a16 = 540 - 80 = 460,
所以8a2 + 476 = 460,解得 a2 = -2.
故答案为:-2.
【变式 11-5】已知数列 an 中, Sn 为前 n项和,且 a1 =1, an + an+1 = 3,则 S2017 =
【答案】3025
【解析】因为 an + an+1 = 3,所以 an+1 + an+2 = 3,
所以 a = a , n N*n+2 n ,即数列 an 为周期数列,周期为 2,
因为 a1 =1,所以 a2 = 2,
所以 S2017 =1008 a1 + a2 + a1 =1008 3 +1 = 3025
故答案为:3025
题型十二:并项求和法之 = ( ― ) ( )型
12-1 a a 2n 1 cos 2n -1 p【典例 】已知数列 n 的通项公式为 n = - , an 的前 n项和为 S3 n ,则
S2017 = .
4033
【答案】
2
【解析】当 n = 3k 2 k N * 6k - 5 6k - 5- 时,则 a3k -2 = 6k - 5 cos p3 ÷ = ,è 2
当 n = 3k -1 k N * 时,则 a3k -1 = 6k - 3 cos é 2k -1 p ù = -6k + 3,
当 n = 3k k N * 时, a3k = 6k -1 cos 6k -1p 6k -1 ÷ = .
è 3 2
a a 6k - 5 6k -1\ 3k -2 + 3k -1 + a3k = - 6k + 3 + = 0,2 2
Q2017 3 672 1 6 673- 5 4033= + ,因此, S2017 = 672 0 + a2017 = a3 673-2 = = .2 2
4033
故答案为 .
2
np np
【典例 12-2】(2024·云南保山·二模)数列{an}的通项公式 an = n sin + cos3 3 ÷
,其前 n项和为 Sn ,
è
则 S2018 = .
2015 + 2019 3
【答案】
2
【解析】 a1 + a2 + a3 + a4 + a5 + a6 = 3 - 3 3 ,
a7 + a8 + a9 + a10 + a11 + a12 = 3 - 3 3 ,
L ,
a6m+1 + a6m+2 + a6m+3 + a6m+4 + a6m+5 + a6m+6 = 3- 3 3 , m N
∴ S 2015 + 2019 32018 = 2
2015 + 2019 3
故答案为
2
【方法技巧】
两两并项求和.
【变式 12-1】(2024·辽宁沈阳·模拟预测)已知数列 an 满足 a1 =1, an > 0, Sn 是数列 an 的前 n项
2
和,对任意 n N*,有 2Sn = 2an + an -1
(1)求数列 an 的通项公式;
(2)设bn = (-1)
n-1an,求 bn 的前 100 项的和.
【解析】(1)由 2Sn = 2a
2
n + an -1
2
, 2Sn-1 = 2an-1 + an-1 -1 n 2 ,
两式相减得 2an = 2a
2
n - 2a
2
n-1 + an - an-1,即 an + an-1 2an - 2an-1 -1 = 0,
因为 an > 0,所以 2an - 2a
1
n-1 -1 = 0,即 an - an-1 = (n 2),2
1
故 an 是首项为1,公差为 2 的等差数列,
1
所以 an = (n +1)2 ;
(2)由(1)知bn = (-1)
n-1 a ( 1)n-1 1n = - (n +1),2
b b 1所以 2n-1 + 2n = - ,2
记 c
1
n = b2n-1 + b2n ,则 cn = - ,2
\b1 + b2 + ......+ b = c
1
100 1 + c2 + ......+ c50 = - 2 ÷
50 = -25
è
【变式 12-2】在数列 an 中,a1 = 5,且 an+1 = 2an -1 n N* .
(1)求 an 的通项公式;
(2)令b nn = (-1) × an,求数列 bn 的前 n项和 Sn .
【解析】(1) an+1 -1 = 2an - 2 = 2 an -1 , a1 -1 = 4
\ an -1 是公比为 2 的等比数列.
\an -1 = 4 × 2
n-1 = 2n+1,
\a n+1n = 2 +1,n N
* .
n n+1 n n+1 n *
(2)bn = (-1) × 2 +1 = (-1) × 2 + (-1) , n N ,
所以bn + b = -1
n × 2n+1 +1 + -1 n+1 × 2n+2 +1 = -2 · -2 n = -2 n+1n+1 .
当 n 为偶数,\Sn = b1 + b2 + b3 + b4 +L+ b 2 4n-1 + bn = 2 + 2 +L+ 2n
n
4 × 1- 42 ÷ 4 4 2n+2n - 4
= è
= × 2 - = .
3 3 3
1- 4
当 n 为奇数
n+2
\S = S + b 4= × 2n-1 4- - 2n+1 4 7 2 + 7n n-1 n -1 = - × 2n - = -3 3 3 3 3
ì2n+2 - 4

,n为偶数
S = 3综上: n í n+2 .
2 + 7
- ,n为奇数 3
【变式 12-3】已知等差数列 an 中的前 n 项和为 Sn ,且 a2 , a5 , a14 成等比数列, S5 = 25 .
(1)求数列 an 的通项公式;
(2) n若数列 an 为递增数列,记bn = -1 Sn ,求数列 bn 的前 40 项的和T40 .
ìa 25 = a ì2 ×a14 a1 + 4d
2 = a1 + d × a1 +13d 【解析】(1)设公差为d ,则 í ,即
S5 = 5a1 +10d = 25
í
S5 = 5a1 +10d = 25
ìa1 = 5 ìa1 =1
解得 í 或 í a = 5d 0 d 2 ,所以 n 或
an = 2n -1;
= =
n(1+ 2n -1)
(2 2 n n 2)因为数列 an 为递增数列,\an = 2n -1, Sn = = n ,bn = (-1) S2 n = (-1) × n ,
T = -12 2所以 30 + 2 - 3
2 + 42 +L- 392 + 402
= 2 -1 × 1+ 2 + 4 - 3 × 3+ 4 +L+ 40 - 39 × 39 + 40
40 (1+ 40)
=1+ 2 + 3 + 4 +L+ 39 + 40 = = 820;
2
所以T40 = 820 .
a a ncos np p 【变式 12-4 *】数列 n 通项为 n = + ÷ n N , Sn 为其前 n项的和,则 S2 6 2015 = .è
【答案】504 - 504 3
【解析】当 n = 4k 时, a p p 3n = ncos

2kp +

÷ = ncos = n;
è 6 6 2
1
同理可得:当 n = 4k -1时, an = n;2
当 n = 4k - 2 3时, an = - n ;2
当 n = 4k
1
- 3时, an = - n .2
∴ a1 + a2 + a3 + a4 =1+ 3 ,
a4k -3 + a
3 1
4k -2 + a4k -1 + a4k = 4k + 4k -1
3 1
- 4k - 2 - 4k - 3 = 3 +1,
2 2 2 2
∴ S2015 = S503 4+3 = 503 1+ 3 + a2013 + a2014 + a2015

S 1 3 12015 = S503 4+3 = 503 1+ 3 + 2013 - ÷ + 2014 2 è - 2 ÷÷ + 2015 è 2
S2015 = S503 4+3 = 503 1+ 3 +1-1007 3
= 504 - 504 3 .
故答案为:504 - 504 3 .
题型十三:先放缩后裂项求和
【典例 13-1】设数列 an 前 n项和为 Sn ,且满足 2 Sn - 2 = n +1 an - 2 , n N*,a1 = 0,数列 bn
满足 4bn = an+1an+2 .
(1)求 an 、 bn 的通项公式;
c 1= c c c 3(2)记 n b2 - S 2 ,求证: 1
+ 2 + ×××+ n < .
n n 2
【解析】(1)对任意的 n N*, 2 Sn - 2 = n +1 an - 2 ,
当 n 2时,由 2 Sn - 2 = n +1 an - 2 可得 2 Sn-1 - 2 = n an-1 - 2 ,
上述两个等式作差得 2an = n +1 an - nan-1 - 2 ,所以, n -1 an = nan-1 + 2,
an a= n-1 2 a+ = n-1 2 2+ - an + 2 a所以, ,所以, = n-1
+ 2
n n -1 n n -1 n -1 n -1 n ,n n -1
t an + 2令 n = ,则 tn = tn-1 n 2 ,故数列 t t
an + 2
n 为常数列,且 n = = a1 + 2 = 2 ,n n
所以, an = 2 n -1 ,
a1 = 0也满足 an = 2 n -1 ,故对任意的 n N*, an = 2 n -1 .
故 4bn = an+1an+2 = 2n × 2 n +1 ,所以,bn = n n +1 .
(2)因为 2 Sn - 2 = n +1 an - 2 = 2 n +1 n - 2 ,解得 Sn = n2 - n,
所以, c
1 1 1
n = = =
b2n - S
2 n2n n +1 2 - n2 n -1 2 2 n3 ,
c 1 3当 n =1时, 1 = < 成立;2 2
1 1 1 1
当 n 2时, cn = = < =2 n3 n2 ×n + n ×n2 n n -1 + n -1 n n -1 n n + n -1
n - n -1 1 1
= = -
n n -1 n -1 n ,
c c c 1 1 1 1 1 1 3 1 3此时 1 + 2 + ×××+ n < +1- + - +L+ - = - <2 ,2 2 3 n -1 n 2 n 2
综上所述,对任意的 n N* , c1 + c
3
2 + ×××+ cn < .2
ì Sn -1ü
【典例 13-2】记 Sn 为数列 an 的前 n项和,已知 í 是首项为 3,公差为 1 的等差数列.
n
(1)求 an 的通项公式;
1 1 1 a -1 1
(2)证明:当 n 2时, + +L+ < n -S .2 S3 Sn an +1 2
ì Sn -1ü S -1
【解析】(1)∵ í 是首项为 3,公差为 1 的等差数列,∴ n = 3 + (n -1) ,
n n
∴ Sn = n2 + 2n +1 = (n +1)2 .∴当 n 2时, S 2n-1 = n , an = Sn - Sn-1 = 2n +1 .
又 S1 = a1 = 4不满足 an = 2n +1,
ì4,n =1
∴{an}的通项公式 an = í2n 1 n 2 n N* . + , 且
1 1 1 1 1
(2)当 n 2时, = < = -S (n +1)2 n(n +1) n n +1 ,n
an -1 1 2n 1 n 1- = - = -
a +1 2 2n + 2 2 n +1 2 ,n
1 1 L 1 1 1 1 1 L 1 1 1 1 n 1∴ + + + < - + - + + - = - = -S2 S3 Sn 2 3 3 4 n n +1 2 n +1 n +1 2

1 1 L 1 a -1 1∴ + + + < n -S2 S3 Sn an +1 2
.
【方法技巧】
先放缩后裂项,放缩的目的是为了“求和”,这也是凑配放缩形式的目标.
【变式 13-1】(2024·河南·模拟预测)若数列 an 满足 a1 =1, an+1 - an = 2n.
(1)求 an 的通项公式;
1 1
(2)证明: + +L
1
+ < 2
a .1 a2 an
【解析】(1)因为 an+1 - an = 2n, a1 =1,
所以an = an - an-1 + an-1 - an-2 +L+ a2 - a1 + a1 = 2(n -1) + 2(n - 2) +L+ 2 +1
2n - 2 + 2
= × (n -1) +1 = n2 - n +1,
2
故 an = n
2 - n +1;
1
(2)证明:当 n=1 时, =1 < 2a ;1
1 1 1 1 1
当 n 2时, = 2 < = -an n - n +1 n(n -1) n -1 n

1 1
+ +L 1+ =1 1 1+ + +L 1 1 1 1 1 1 1 1+ < + - + - +L+ - 2 1则 ÷ = - < 2a1 a2 an a

2 a3 an è1 2 2 3 n -1 n n
1 1 1
故 + +L+ < 2a a a ;1 2 n
a = n2综上, n - n +1 .
【变式 13-2】(2024·天津河北·二模)已知 an 是等差数列,其前 n项和为 Sn, bn 是等比数列,已知
a1 =1,S3 = 6,b1 = a2,a8是a4和b4的等比中项.
(1)求 an 和 bn 的通项公式;
ìa
(2) í n
ü
求数列 的前 n项和Tb n

n
c bn -1= n 1 1
n
c n 1 1(3)记 n - + < < - +b -1,求证: n+1 i n+2 .n+1 2 2 2 i=1 2 4 2
3 2
【解析】(1)由题意 a1 =1,S3 = 3a1 + d = 3a1 + 3d = 6,2
\d =1,an =1+ n -1 = n,
2
又b1 = a2 = 2,a8是a4和b4的等比中项,得 a8 = a4b4 ,
3 3
又 a4 = 4,a8 = 8,64 = 4b4,b4 = b1q = 2q =16,解得 q = 2,
\bn = 2 × 2
n-1 = 2n ;
an n
(2) =b 2n ,n
T 1 1 2 1 1 1设 n = + 2 + 3 3 +L+ n × n ,2 2 2 2
1
则 Tn =1
1 1 1 1

2 22
+ 2
23
+ 3
23
+L+ n × n+1 ,2
1 T 1 1 1 L 1将以上两式相减得 n = + 2 + 3 + + n - n
1
×
2 2 2 2 2 2n+1
1 1 1
n
-

2 è 2 ÷ ÷
÷
1 n
= è - n × =1- 1 1 n+1 ÷ - n
1
× ,
1- 2 è 2 2
n+1
2
T 2 n + 2\ n = - 2n ;
c bn -1 2
n -1
(3) n = = n+1 ,bn+1 -1 2 -1
n n
Qc 2 -1 2 -1 1 1n = n+1 > = - ,2 -1 2n+1 2 2n+1
n
c 1 1 1 1 1 1\ i > - 2 ÷ + - +L+ - è 2 2 è 2 23 ÷ è 2 2n+1 ÷i=1
1 n
1
1
- ÷
n 4
2 ÷è ÷
= - è
n 1 1 ,
2 1 1
= - + n+1
- 2 2 2
2
n
Qc 2 -1 1= 1 1 1n 2n+1
= 1- < -
-1 2 è 2n+1 -1÷ 2 2n+2

n
c 1 1 1 1 1 1\ i < - ÷ + - ÷ +L+ - ÷
i=1 è 2 23 è 2 24 è 2 2n+2
1 1 1
n

- ÷
n 8

è 2 ÷ ÷ n 1 1
= - è .
2 1 1
= - +
- 2 4 2
n+2
2
结论得证.
【变式 13-3】如图,已知点列 An xn , y 2n 在曲线 y = x 上,点列Bn an ,0 在 x 轴上, A1 1,1 ,B1 0,0 ,
△Bn AnBn+1为等腰直角三角形.
(1)求 a1, a2,a3;(直接写出结果)
(2)求数列 an 的通项公式;
* n n +1(3) n n + 2 设 n N ,证明: < a2 + a2 3 +L+ an+1 < .2
【解析】(1)由△Bn AnBn+1为等腰直角三角形,所以直线B1A1 的直线斜率为 1,
故直线B1A1 的方程为 y = x ,与抛物线方程联立可得 x2 = x ,可解得 x = 0或 x =1,
从而可得a1 = 0,可得 A1的横坐标为 1,因为 a1 + a2 = 2 1,解得 a2 = 2,
ìa + a = 2x ì 1 2 1
ì 1 1
3 2 2 a3 + = yn + yn + a3 + = y3 + a - a = 2y 4 4 4 2由 í 3 2 2 ,所以 í 1 1 ,可得 í , 2

展开更多......

收起↑

资源列表