资源简介 专题1.1 正数和负数【九大题型】【人教版2024】【题型1 辨别正数和负数】 1【题型2 正数和负数的分类】 3【题型3 判断具有相反意义的量】 5【题型4 正负数的意义】 6【题型5 用正负数表示已知量】 8【题型6 应用正负数的实际意义解决温差问题】 9【题型7 应用正负数的实际意义解决时差问题】 10【题型8 应用正负数的实际意义解决允许偏差问题】 12【题型9 应用正负数的实际意义解决基准量的相关计算问题】 14知识点1:正数和负数的概念大于0的数叫做正数,在正数前面加负号“-”,叫做负数,一个数前面的“+”“-”号叫做它的符号.0既不是正数也不是负数.0是正负数的分界点,正数是大于0的数,负数是小于0的数【题型1 辨别正数和负数】【例1】(23-24七年级上·陕西西安·期中)关于负数有下列4种说法:①在某个数的前面加上符号“-”得到的数;②不大于0的数;③除去正数的其他数;④在正数的前面加上符号“-”得到的数.其中正确的是 (填序号).【变式1-1】(23-24七年级上·山西晋中·阶段练习)中国古代数学成就辉煌,数学著作众多,其中的一部记录了“引入负数及正负数的加减运算法则”,这是世界上至今发现的最早记载.这部数学著作是( )A. 《九章算术》 B. 《周髀算经》C. 《算法统宗》 D. 《几何原本》【变式1-2】(23-24七年级·全国·专题练习)下列说法不正确的是( )A.在小学学过的数前面添上“–”,就是负数B.–5°C比–6°C高1°CC.比0小的数都是负数D.比0大的数都是正数【变式1-3】(23-24七年级上·内蒙古通辽·期中)下列说法:(1)正数前加上一个负号就是负数;(2)不是正数的数就是负数;(3)只有带“”号的数才是正数;(4)既不是正数也不是负数.其中正确的有( )A.个 B.个 C.个 D.个【题型2 正数和负数的分类】【例2】(2024·四川凉山·中考真题)下列各数中:,负数有( )A.1个 B.2个 C.3个 D.4个【变式2-1】(23-24七年级上·陕西西安·期中)在,,,中,正数有 个,负数有 个.【变式2-2】(23-24七年级下·黑龙江哈尔滨·阶段练习)在,,0,,中,正数有( )A.1个 B.2个 C.3个 D.4个【变式2-3】(23-24七年级上·湖南永州·开学考试)以下各数:,,,,0,,368中,正数有 ;负数有 .知识点2:具有相反意义的量一般地,对于具有相反意义的量,我们可以把其中一种意义的量规定为正的,并用正数来表示,把与它意义相反的量规定为负的,并用负数来表示.【题型3 判断具有相反意义的量】【例3】(23-24七年级上·河北邢台·期末)在下列选项中、具有相反意义的量是( )A.收入20元与支出30元B.上升了6米和后退了7米C.向东走3千米与向南走4千米D.足球比赛胜5场与平2场【变式3-1】(2024·河北唐山·七年级期末)下列选项中,可以用来表示一个问题中具有相反意义的量的是( )A.1和2 B.和 C.和2 D.和0【变式3-2】(23-24七年级上·浙江温州·阶段练习)思考下面各对量:气温下降与气温为;小南向东走与小南向西走;收入元与亏损元;胜三局与负六局其中具有相反意义的量有 .(填序号)【变式3-3】(23-24七年级上·浙江绍兴·阶段练习)在下列选项中,不是具有相反意义的量的是( )A.气温升高3度与下降5度 B.盈利100元与支出100元C.伸长与缩短 D.胜3局与负2局【题型4 正负数的意义】【例4】(2024·江苏扬州·一模)《九章算术》中对正负数的概念注有“今两算得失相反,要令正负以名之”.如:粮库把运进30吨粮食记为“”,则“”表示 .【变式4-1】(23-24七年级上·河南许昌·期中)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数,若其意义相反,则分别叫做正数与负数.若盈余2万元记作+2万元,则万元表示( )A.亏损万元 B.盈余2万元 C.亏损2万元 D.不盈余不亏损【变式4-2】(2024·辽宁大连·二模)随着国际油价的波动和国内成品油价格调整机制的运行,92号汽油的价格也随之变化.如果每升92号汽油的价格上涨元,记作元,那么元表示每升92号汽油的价格( )A.上涨元 B.上涨元 C.下降元 D.下降元【变式4-3】(23-24七年级上·甘肃定西·阶段练习)若用表示某产品的出口额比上一年减少,则表示该产品的出口额比上一年( )A.增加 B.增加 C.减少 D.减少【题型5 用正负数表示已知量】【例5】(23-24七年级上·四川乐山·期末)中国是最早采用正负数表示相反意义的量的国家,一艘潜水艇向上浮50米记为米,则向下潜15米记为 米.【变式5-1】(23-24七年级上·河南郑州·阶段练习)小明转动转盘,如果用圈表示逆时针方向转了2圈,那么沿顺时针方向转了4圈记作( )A.圈 B.圈 C.圈 D.圈【变式5-2】(23-24七年级下·云南昆明·阶段练习)《九章算术》中有注:“今两算得失相反,要令正负以名之.”意思就是:在计算过程中遇到具有相反意义的量,要用正数和负数来区分.如果室内温度为零上,记为,那么室外温度为零下,记为( )A. B. C. D.【变式5-3】(23-24七年级下·云南昭通·阶段练习)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数和负数.若电梯上行5层楼记为,则电梯下行3层楼应记为( )A. B. C. D.【题型6 应用正负数的实际意义解决温差问题】【例6】(23-24七年级上·重庆·期中)2023年10月26日,神舟十七号载人飞船发射成功,成功对接空间站.据悉,在超过200摄氏度的大温差、长期低温、强辐射的空间环境中,飞船舱内环境温度会始终控制在,为航天员营造舒适的温度环境.可知,载人飞船座舱内的最高温度是 .【变式6-1】(23-24七年级上·浙江杭州·期中)我市某天的最高气温为8℃,最低气温为零下2℃,则计算温差列式正确的是( )A. B. C. D.【变式6-2】(23-24七年级上·全国·课后作业)如图所示的是某地12月28日的天气预报,下列关于温度的信息正确的是( )12月28日(周五) 多云转晴 西南风2级 空气良A.当日温差为 B.当日温差为C.最低气温为零下 D.最低气温为零下【变式6-3】(23-24七年级上·全国·课后作业)泗阳10月3日早上的温度是12℃,中午上升了6℃ ,下午由于冷空气南下,到夜间又下降了7℃,则这天的温差是 ℃.【题型7 应用正负数的实际意义解决时差问题】【例7】(23-24七年级上·四川眉山·阶段练习)公元年著名数学家秦九韶完成的著作《数书九章》是中世纪世界数学的最高成就,书中提出的联立一次同余式的解法,比西方早五百七十余年,这个时间我们记作;约公元前年中国现存最早的数学书《算数书》成书,那么这个时间可记作 .【变式7-1】(2024七年级·全国·竞赛)北京与纽约的时差为时(负号表示同一时刻纽约时间比北京时间晚),如果现在是北京时间18时,那么纽约时间是 .【变式7-2】(23-24七年级上·浙江杭州·阶段练习)纽约、悉尼与北京的时差如下表(正数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京时间晚的时数):城市 悉尼 纽约时差/时当北京10月9日23时,悉尼、纽约的时间分别是( )A.10月10日1时;10月9日10时B.10月10日1时;10月8日10时C.10月9日21时;10月9日10时D.10月9日21时;10月10日12时【变式7-3】(23-24七年级上·河南安阳·阶段练习)规定45分钟为1个单位时间,并以每天上午9时记为0,9时以前的时间记为负数,9时以后的时间记为正数,例如:记为;记为依此类推,则上午应记为 .【题型8 应用正负数的实际意义解决允许偏差问题】【例8】(23-24七年级上·内蒙古·阶段练习)在新冠肺炎防控期间学校每天对学生的体温进行测量,学校给每个班级发放两个测温枪,说明书上有如图的参数.小明用测温枪测量的体温是.他的实际体温m的范( )A.B.C.D.【变式8-1】(23-24七年级上·湖北武汉·阶段练习)一种零件,标明的要求是,若某个零件的直径是,此零件为 (填“合格品”或“不合格品”).【变式8-2】(23-24七年级上·河北衡水·阶段练习)水果市场上鸭梨包装箱上印有字样:“”,有一箱鸭梨的质量为,则这箱鸭梨 标准.(填“符合”或“不符合”)【变式8-3】(23-24七年级·全国·专题练习)如图,加工一根轴,图纸上注明它的直径是Φ.其中,Φ45表示直径是45mm,+0.03表示合格品的直径最大只能比规定的直径大0.03mm,–0.04表示合格品的直径最小只能比规定的直径小0.04mm,现有四根轴的直径尺寸(单位:mm),其中不合格的是( )A.45.02 B.45.01 C.44.98 D.44.93【题型9 应用正负数的实际意义解决基准量的相关计算问题】【例9】(23-24七年级上·广东深圳·期末)某学校七年级8班同学的平均体重是,若以此体重为基准,将记为,则记为( )A. B. C. D.【变式9-1】(23-24七年级上·浙江温州·期中)在一次立定跳远测试中,若以为基准.小温的成绩是,记为,小州的成绩是,记为 m.【变式9-2】(23-24七年级上·河北廊坊·期中)古人讲“三十而立”,如果以30岁为基准,张明35岁,记为岁,那么李横今年25岁,记为( )A.岁 B.岁 C.岁 D.岁【变式9-3】(23-24七年级上·广东茂名·阶段练习)某项科学研究,以45分钟为一个时间单位,并以每天上午10时为基准0,10时以前记为负10时以后记为正,例如9:15记为﹣1,10:45记为1,依此类推,上午7:45应记为( )A.3 B.﹣3 C.﹣2.5 D.﹣7.5/ 让教学更有效 精品试卷 | 数学学科21世纪教育网(www.21cnjy.com)专题1.1 正数和负数【九大题型】【人教版2024】【题型1 辨别正数和负数】 1【题型2 正数和负数的分类】 3【题型3 判断具有相反意义的量】 5【题型4 正负数的意义】 6【题型5 用正负数表示已知量】 8【题型6 应用正负数的实际意义解决温差问题】 9【题型7 应用正负数的实际意义解决时差问题】 10【题型8 应用正负数的实际意义解决允许偏差问题】 12【题型9 应用正负数的实际意义解决基准量的相关计算问题】 14知识点1:正数和负数的概念大于0的数叫做正数,在正数前面加负号“-”,叫做负数,一个数前面的“+”“-”号叫做它的符号.0既不是正数也不是负数.0是正负数的分界点,正数是大于0的数,负数是小于0的数【题型1 辨别正数和负数】【例1】(23-24七年级上·陕西西安·期中)关于负数有下列4种说法:①在某个数的前面加上符号“-”得到的数;②不大于0的数;③除去正数的其他数;④在正数的前面加上符号“-”得到的数.其中正确的是 (填序号).【答案】④【分析】根据负数的定义,负数的性质来判断即可.【详解】解:有理数分为正数、0、负数,负数是在正数前面加上一个“-”得到的数;负数是小于0的数;所以①②③表述错误,④正确;故答案为④.【点睛】本题考查了有理数的分类以及负数的定义,解题的关键是准确的认识负数的定义.【变式1-1】(23-24七年级上·山西晋中·阶段练习)中国古代数学成就辉煌,数学著作众多,其中的一部记录了“引入负数及正负数的加减运算法则”,这是世界上至今发现的最早记载.这部数学著作是( )A. 《九章算术》 B. 《周髀算经》C. 《算法统宗》 D. 《几何原本》【答案】A【分析】根据《九章算术》方程一章引入负数概念直接选择即可得到答案;【详解】解:∵我国《九章算术》方程一章引入负数概念,故选:A;【点睛】本题考查《九章算术》方程一章引入负数概念.【变式1-2】(23-24七年级·全国·专题练习)下列说法不正确的是( )A.在小学学过的数前面添上“–”,就是负数B.–5°C比–6°C高1°CC.比0小的数都是负数D.比0大的数都是正数【答案】A【分析】根据正数都大于0,负数都小于0,0既不是正数也不是负数,对每一项进行分析,即可得出答案.【详解】A、在小学学过的数前面添上“–”,就是负数(0除外),故本选项错误;B、–5°C比–6°C高1°C,故本选项正确;C、比0小的数都是负数,故本选项正确;D、比0大的数都是正数,故本选项正确;故选A.【点睛】本题考查正数和负数的概念,解题的关键是掌握正数和负数的概念.【变式1-3】(23-24七年级上·内蒙古通辽·期中)下列说法:(1)正数前加上一个负号就是负数;(2)不是正数的数就是负数;(3)只有带“”号的数才是正数;(4)既不是正数也不是负数.其中正确的有( )A.个 B.个 C.个 D.个【答案】B【分析】根据正数和负数的定义进行判断即可.【详解】(1)正数前加上一个负号就是负数,说法正确;(2)不是正数的数就是负数,说法错误,0既不是正数,也不是负数;(3)只有带“”号的数才是正数,说法错误,如+(-2)是负数;(4)既不是正数也不是负数,说法正确.综合上述可得:说法正确的有(1)、(4),共计2个.故选:B.【点睛】考查了正数与负数:像0.1、1、2、3…这样的数叫做正数,在正数前面加负号“-”,叫做负数,既不是正数也不是负数.【题型2 正数和负数的分类】【例2】(2024·四川凉山·中考真题)下列各数中:,负数有( )A.1个 B.2个 C.3个 D.4个【答案】C【分析】本题考查了对正数和负数定义的理解,难度不大,注意0既不是正数也不是负数.根据正数和负数的定义判断即可,注意:0既不是负数也不是正数.【详解】解:,是正数;,是负数;,是负数;0既不是正数,也不是负数;,是负数;,是正数;负数有,,,共3个.故选:C.【变式2-1】(23-24七年级上·陕西西安·期中)在,,,中,正数有 个,负数有 个.【答案】 4 3【分析】大于0的数是正数,小于0的数是负数,据此进行判断即可.本题考查正数和负数,熟练掌握其定义是解题的关键.【详解】解:是正数,共4个;是负数,共3个;故答案为:4;3.【变式2-2】(23-24七年级下·黑龙江哈尔滨·阶段练习)在,,0,,中,正数有( )A.1个 B.2个 C.3个 D.4个【答案】B【分析】本题考查了正负数的概念,正确熟练掌握基本知识是解决本题的关键.根据正负数的定义即可对本题作出判断.【详解】解:在“,,0,,”中,正数有,,∴有2个,故选:B.【变式2-3】(23-24七年级上·湖南永州·开学考试)以下各数:,,,,0,,368中,正数有 ;负数有 .【答案】 ,,368 ,,【分析】根据正数和负数的定义,即可进行解答.【详解】解:根据题意可得:正数有: ,,368;负数有:,,;故答案为:,,368;,,,.【点睛】本题主要考查了正数和负数的定义,解题的关键是掌握大于0的数是正数,小于0的数是负数,0既不是正数也不是负数.知识点2:具有相反意义的量一般地,对于具有相反意义的量,我们可以把其中一种意义的量规定为正的,并用正数来表示,把与它意义相反的量规定为负的,并用负数来表示.【题型3 判断具有相反意义的量】【例3】(23-24七年级上·河北邢台·期末)在下列选项中、具有相反意义的量是( )A.收入20元与支出30元B.上升了6米和后退了7米C.向东走3千米与向南走4千米D.足球比赛胜5场与平2场【答案】A【分析】本题主要考查了相反意义的量,正数和负数,解题的关键是熟练掌握正数和负数的意义.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:A、收入20元与支出30元是一对相反意义的量,故本选项符合题意;B、上升了6米和后退了7米不是一对相反意义的量,故本选项不符合题意;C、向东走3千米与向南走4千米不是一对相反意义的量,故本选项不符合题意;D、足球比赛胜5场与平2场不是一对相反意义的量,故本选项不符合题意.故选:A.【变式3-1】(2024·河北唐山·七年级期末)下列选项中,可以用来表示一个问题中具有相反意义的量的是( )A.1和2 B.和 C.和2 D.和0【答案】C【分析】此题主要考查了正负数的意义,主要是对相反意义的量的考查,比较简单.解题关键是掌握正负数的意义,根据具有相反意义的量的定义判定即可.【详解】解:A、1和2都是正数,不具有相反意义的量,不符合题意;B、和都是负数,不具有相反意义的量,不符合题意;C、和2,具有相反意义的量,不符合题意;D、和0,0是整数和负数的分界,不具有相反意义的量,不符合题意;故选:C.【变式3-2】(23-24七年级上·浙江温州·阶段练习)思考下面各对量:气温下降与气温为;小南向东走与小南向西走;收入元与亏损元;胜三局与负六局其中具有相反意义的量有 .(填序号)【答案】②④/④②【分析】明确具有相反意义的量,对选项逐一分析,排除错误选项.【详解】解:①气温下降与气温上升意义相反,而气温下降与气温为不具有相反意义,故不符合题意;②小南向东走与小南向西走具有相反意义,故符合题意;③收入与支出,盈利与亏损是相反意义的量,而收入元与亏损元不具有相反意义,故不符合题意;④胜三局与负六局具有相反意义,故符合题意.故答案为:②④.【点睛】本题考查了正数和负数,明确什么是一对具有相反意义的量是解题的关键.【变式3-3】(23-24七年级上·浙江绍兴·阶段练习)在下列选项中,不是具有相反意义的量的是( )A.气温升高3度与下降5度 B.盈利100元与支出100元C.伸长与缩短 D.胜3局与负2局【答案】B【分析】本题主要考查一对具有相反意义的量.解题关键是理解“正”和“负”的相对性,从而确定一对具有相反意义的量.【详解】解:A. 气温升高3度与下降5度,升高和下降是两个意义相反的量,故本选项不符合题意;B. 盈利100元与支出100元,盈利与支出不具有相反意义,盈利对亏损,支出对收入,故本选项符合题意;C. 伸长与缩短,伸长和缩短是两个意义相反的量,故本选项不符合题意;D. 胜3局与负2局,胜与负是两个意义相反的量,故本选项不符合题意;故选:B.【题型4 正负数的意义】【例4】(2024·江苏扬州·一模)《九章算术》中对正负数的概念注有“今两算得失相反,要令正负以名之”.如:粮库把运进30吨粮食记为“”,则“”表示 .【答案】运出30吨粮食【分析】本题考查正数和负数的意义,正数和负数是一组具有相反意义的量,据此即可求得答案.【详解】解: 粮库把运进30吨粮食记为“”,根据正数和负数是一组具有相反意义的量.“”表示粮库运出30吨粮食,故答案为:粮库运出30吨粮食.【变式4-1】(23-24七年级上·河南许昌·期中)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数,若其意义相反,则分别叫做正数与负数.若盈余2万元记作+2万元,则万元表示( )A.亏损万元 B.盈余2万元 C.亏损2万元 D.不盈余不亏损【答案】C【分析】结合题意运用正负数的意义进行求解.【详解】解:与盈余意义相反的量是亏损,盈余2万元记作+2万元,,则万元表示亏损2万元,故选:C.【点睛】此题考查了运用正负数的概念和正负数的意义解决实际问题的能力,关键是能准确理解并运用以上知识.【变式4-2】(2024·辽宁大连·二模)随着国际油价的波动和国内成品油价格调整机制的运行,92号汽油的价格也随之变化.如果每升92号汽油的价格上涨元,记作元,那么元表示每升92号汽油的价格( )A.上涨元 B.上涨元 C.下降元 D.下降元【答案】C【分析】本题考查了正数和负数,根据上涨记为正数,得到下降记为负数是解题的关键.由上涨记为正数,可得下降记为负数,进而可得出元表示每升92号汽油的价格下降元.【详解】解:∵每升92号汽油的价格上涨元,记作元,∴元表示每升92号汽油的价格下降元.故选:C.【变式4-3】(23-24七年级上·甘肃定西·阶段练习)若用表示某产品的出口额比上一年减少,则表示该产品的出口额比上一年( )A.增加 B.增加 C.减少 D.减少【答案】B【分析】本题考查相反意义的量,利用相反意义的量的定义判断即可.【详解】解:根据相反意义的量的定义可知,表示该产品的出口额比上一年增加,故选:B.【题型5 用正负数表示已知量】【例5】(23-24七年级上·四川乐山·期末)中国是最早采用正负数表示相反意义的量的国家,一艘潜水艇向上浮50米记为米,则向下潜15米记为 米.【答案】【分析】本题考查了正数和负数,根据相反意义的量正确地确定符号的正负是解题的关键.根据正负数的意义,直接写出答案即可.【详解】解:因为潜水艇向下潜记为,所以向上浮记为,故答案为:.【变式5-1】(23-24七年级上·河南郑州·阶段练习)小明转动转盘,如果用圈表示逆时针方向转了2圈,那么沿顺时针方向转了4圈记作( )A.圈 B.圈 C.圈 D.圈【答案】B【分析】本题考查了正负数的意义,正负数表示具有相反意义的量,据此即可解答.【详解】解:∵圈表示逆时针方向转了2圈,∴沿顺时针方向转了4圈记作圈.故答案为:B【变式5-2】(23-24七年级下·云南昆明·阶段练习)《九章算术》中有注:“今两算得失相反,要令正负以名之.”意思就是:在计算过程中遇到具有相反意义的量,要用正数和负数来区分.如果室内温度为零上,记为,那么室外温度为零下,记为( )A. B. C. D.【答案】A【分析】本题考查了相反意义的量,熟练掌握正负数的意义是解答本题的关键.在一对具有相反意义的量中,规定其中一个为正,则另一个就用负表示.【详解】解:∵室内温度为零上,记为,∴室外温度为零下,记为.故选A.【变式5-3】(23-24七年级下·云南昭通·阶段练习)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数和负数.若电梯上行5层楼记为,则电梯下行3层楼应记为( )A. B. C. D.【答案】D【分析】本题主要考查了正数和负数,理解相反意义的量是解题的关键.根据正数和负数是一组具有相反意义的量,即可得到答案.【详解】解:由题意得,电梯下行3层楼应记为,故选D.【题型6 应用正负数的实际意义解决温差问题】【例6】(23-24七年级上·重庆·期中)2023年10月26日,神舟十七号载人飞船发射成功,成功对接空间站.据悉,在超过200摄氏度的大温差、长期低温、强辐射的空间环境中,飞船舱内环境温度会始终控制在,为航天员营造舒适的温度环境.可知,载人飞船座舱内的最高温度是 .【答案】【分析】本题考查正数和负数,根据正数和负数的实际意义列式计算即可.【详解】解:,即载人飞船座舱内的最高温度是,故答案为:.【变式6-1】(23-24七年级上·浙江杭州·期中)我市某天的最高气温为8℃,最低气温为零下2℃,则计算温差列式正确的是( )A. B. C. D.【答案】B【分析】最高温度表示为℃,最低气温表示为℃,用最高减最低列式即可.【详解】由题意得,计算温差可列式为,故选B.【点睛】本题考查正负数与加减法在实际生活中的应用,掌握生活中以零上温度为正,零下温度为负,是解题的关键.【变式6-2】(23-24七年级上·全国·课后作业)如图所示的是某地12月28日的天气预报,下列关于温度的信息正确的是( )12月28日(周五) 多云转晴 西南风2级 空气良A.当日温差为 B.当日温差为C.最低气温为零下 D.最低气温为零下【答案】C【分析】根据图片中的信息,利用有理数的减法法则计算即可判断.【详解】解:根据图片中的信息,利用有理数的减法法则计算可得:气温温差为.故A,B两个选项错误;最低气温为零下,故C选项正确,D选项错误.故选:C.【点睛】本题主要考查了有理数的意义,和有理数的减法运算,能从图片中获取准确信息是解题的关键.【变式6-3】(23-24七年级上·全国·课后作业)泗阳10月3日早上的温度是12℃,中午上升了6℃ ,下午由于冷空气南下,到夜间又下降了7℃,则这天的温差是 ℃.【答案】7【分析】温差为一天内最高温度与最低温度的差值,所以可以解得答案.【详解】做高温度为12℃+6℃=18℃,最低温度为18℃-7℃=11℃,则温差为18℃-11℃=7℃.【点睛】本题考查了温差的概念,熟悉掌握概念是解决本题的关键.【题型7 应用正负数的实际意义解决时差问题】【例7】(23-24七年级上·四川眉山·阶段练习)公元年著名数学家秦九韶完成的著作《数书九章》是中世纪世界数学的最高成就,书中提出的联立一次同余式的解法,比西方早五百七十余年,这个时间我们记作;约公元前年中国现存最早的数学书《算数书》成书,那么这个时间可记作 .【答案】【分析】本题考查了正负数的意义.熟练掌握正负数的意义是解题的关键.根据正负数的意义进行作答即可.【详解】解:∵公元记作,∴约公元前可记作,故答案为:.【变式7-1】(2024七年级·全国·竞赛)北京与纽约的时差为时(负号表示同一时刻纽约时间比北京时间晚),如果现在是北京时间18时,那么纽约时间是 .【答案】5时【分析】本题考查了正负数的意义、有理数的减法,根据题意列式计算即可,熟练掌握正负数的意义是解此题的关键.【详解】解:由题意得:纽约时间为时,故答案为:5时.【变式7-2】(23-24七年级上·浙江杭州·阶段练习)纽约、悉尼与北京的时差如下表(正数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京时间晚的时数):城市 悉尼 纽约时差/时当北京10月9日23时,悉尼、纽约的时间分别是( )A.10月10日1时;10月9日10时B.10月10日1时;10月8日10时C.10月9日21时;10月9日10时D.10月9日21时;10月10日12时【答案】A【分析】本题主要考查了正数和负数,掌握题意是解题的关键.由统计表得出,悉尼比北京早小时,纽约比北京晚小时,计算即可.【详解】解:悉尼的时间:10月9日23时小时10月10日1时;纽约的时间:10月9日23时小时10月9日10时.故选A.【变式7-3】(23-24七年级上·河南安阳·阶段练习)规定45分钟为1个单位时间,并以每天上午9时记为0,9时以前的时间记为负数,9时以后的时间记为正数,例如:记为;记为依此类推,则上午应记为 .【答案】【分析】先计算出上午与上午9时相差几个单位时间,再根据“9时以前的时间记为负数”即可得出答案.【详解】解:45分钟为1个单位时间,上午9时前2个单位时间为上午,上午9时记为0,9时以前的时间记为负数,上午应记为.故答案为:.【点睛】本题考查正负数的应用,解题的关键是理解“”和“”的意义.【题型8 应用正负数的实际意义解决允许偏差问题】【例8】(23-24七年级上·内蒙古·阶段练习)在新冠肺炎防控期间学校每天对学生的体温进行测量,学校给每个班级发放两个测温枪,说明书上有如图的参数.小明用测温枪测量的体温是.他的实际体温m的范( )A.B.C.D.【答案】C【分析】根据说明书上的参数可知,测温枪精确度是,即可得出实际体温的范围【详解】解:,实际体温m的范围是.故选C.【点睛】本题考查正数与负数;理解题意,根据测温枪精确度找准体温的变化范围是解题的关键.【变式8-1】(23-24七年级上·湖北武汉·阶段练习)一种零件,标明的要求是,若某个零件的直径是,此零件为 (填“合格品”或“不合格品”).【答案】不合格品【分析】首先要弄清标明的要求是的含义,然后检验直径是是否在要求的范围内,在就是合格,否则不合格.【详解】解:一种零件,标明直径的要求是,这种零件的合格品最大的直径是:;最小的直径是:,,直径是,此零件为不合格品,故答案为:不合格品.【点睛】本题考查实际生活中符号与数学知识的联系,理解“正”和“负”的相对性,确定合格品的直径范围是解决问题的关键.【变式8-2】(23-24七年级上·河北衡水·阶段练习)水果市场上鸭梨包装箱上印有字样:“”,有一箱鸭梨的质量为,则这箱鸭梨 标准.(填“符合”或“不符合”)【答案】符合【分析】根据标准的要求找到鸭梨的质量的范围,将代入其中进行比较,即可得出结论.【详解】解∶, 15-0.2=14.8,∴,故答案为∶符合.【点睛】本题考查了正数和负数的意义,解题的关键是根据标准的要求找到重量的范围.【变式8-3】(23-24七年级·全国·专题练习)如图,加工一根轴,图纸上注明它的直径是Φ.其中,Φ45表示直径是45mm,+0.03表示合格品的直径最大只能比规定的直径大0.03mm,–0.04表示合格品的直径最小只能比规定的直径小0.04mm,现有四根轴的直径尺寸(单位:mm),其中不合格的是( )A.45.02 B.45.01 C.44.98 D.44.93【答案】D【分析】根据题意可得出合格的范围,从而可判断出直径是否合格.【详解】由题意得:合格范围为:45–0.04=44.96到45+0.03=45.03,而44.93<44.96,故可得D不合格.故选D.【点睛】本题考查正数和负数的意义,解题的关键是熟练掌握正数和负数的意义.【题型9 应用正负数的实际意义解决基准量的相关计算问题】【例9】(23-24七年级上·广东深圳·期末)某学校七年级8班同学的平均体重是,若以此体重为基准,将记为,则记为( )A. B. C. D.【答案】A【分析】本题考查正负数的意义,先计算低于标准体重多少千克,再根据正负数的意义表示即可.【详解】解:,低于标准体重,记为,故选:A.【变式9-1】(23-24七年级上·浙江温州·期中)在一次立定跳远测试中,若以为基准.小温的成绩是,记为,小州的成绩是,记为 m.【答案】【分析】本题考查了正数和负数.在一对具有相反意义的量中,先规定其中超过基准量的一个为正,则另一个不到基准量的就用负表示,即可解决.【详解】解:“正”和“负”相对,所以小温跳出了比基准量多,记为,那么小州跳出了,比基准量少,应记作.故答案为:.【变式9-2】(23-24七年级上·河北廊坊·期中)古人讲“三十而立”,如果以30岁为基准,张明35岁,记为岁,那么李横今年25岁,记为( )A.岁 B.岁 C.岁 D.岁【答案】A【分析】根据正负数的意义和相反意义的量即可得到答案.【详解】解:∵以30岁为基准,张明35岁,记为岁,∴李横今年25岁,记为岁.故选:A.【点睛】本题主要考查了正负数的意义和相反意义的量,解题的关键是会用正负数表示具有相反意义的量.【变式9-3】(23-24七年级上·广东茂名·阶段练习)某项科学研究,以45分钟为一个时间单位,并以每天上午10时为基准0,10时以前记为负10时以后记为正,例如9:15记为﹣1,10:45记为1,依此类推,上午7:45应记为( )A.3 B.﹣3 C.﹣2.5 D.﹣7.5【答案】B【分析】先计算出上午7:45到上午10时的时间有多少分钟,再计算出有多少个45分钟,即可计算出结果.【详解】解:以10时为0,向前每45分钟为一个“-1”,因为7:45到10:00共135分钟,含3个45分钟,所以7:45应记为-3,故选B.【点睛】本题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量. 展开更多...... 收起↑ 资源预览