资源简介 中小学教育资源及组卷应用平台专题08 分式方程及其应用(32题)一、单选题1.(2024·四川德阳·中考真题)分式方程的解是( )A.3 B.2 C. D.【答案】D【分析】本题考查分式方程的解法,掌握分式方程的解法与步骤是解题关键.先去分母化分式方程为整式方程,求出方程的解后再检验即可.【详解】解:,去分母,得,解得,当时,,∴是原方程的解.故选D2.(2024·甘肃临夏·中考真题)端午节期间,某商家推出“优惠酬宾”活动,决定每袋粽子降价2元销售.细心的小夏发现,降价后用240元可以比降价前多购买10袋,求:每袋粽子的原价是多少元?设每袋粽子的原价是元,所得方程正确的是( )A. B.C. D.【答案】C【分析】本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,列出相应的分式方程.根据降价后用240元可以比降价前多购买10袋,可以列出相应的分式方程.【详解】解:由题意可得,,故选:C.3.(2024·四川广元·中考真题)我市把提升城市园林绿化水平作为推进城市更新行动的有效抓手,从2023年开始通过拆违建绿、见缝插绿等方式在全域打造多个小而美的“口袋公园”.现需要购买A、B两种绿植,已知A种绿植单价是B种绿植单价的3倍,用6750元购买的A种绿植比用3000元购买的B种绿植少50株.设B种绿植单价是x元,则可列方程是( )A. B.C. D.【答案】C【分析】本题主要考查了分式方程的应用,设B种绿植单价是x元,则A种绿植单价是元,根据用6750元购买的A种绿植比用3000元购买的B种绿植少50株,列出方程即可.【详解】解:设B种绿植单价是x元,则A种绿植单价是元,根据题意得:,故选:C.4.(2024·黑龙江绥化·中考真题)一艘货轮在静水中的航速为,它以该航速沿江顺流航行所用时间,与以该航速沿江逆流航行所用时间相等,则江水的流速为( )A. B. C. D.【答案】D【分析】此题主要考查了分式方程的应用,利用顺水速静水速水速,逆水速静水速水速,设未知数列出方程,解方程即可求出答案.【详解】解:设江水的流速为,根据题意可得:,解得:,经检验:是原方程的根,答:江水的流速为.故选:D.5.(2024·广东省·中考真题)方程的解为( )A. B. C. D.【答案】C【分析】把分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】解:去分母得:,去括号得:,移项、合并同类项得:,解得:x=9,经检验:x=9是原分式方程的解,故选:C.【点睛】本题考查了解分式方程,利用了转化的思想,解题的关键是解分式方程注意要检验,避免出现增根.6.(2024·四川达州·中考真题)甲乙两人各自加工120个零件,甲由于个人原因没有和乙同时进行,乙先加工30分钟后,甲开始加工.甲为了追赶上乙的进度,加工的速度是乙的倍,最后两人同时完成.求乙每小时加工零件多少个?设乙每小时加工个零件.可列方程为( )A. B.C. D.【答案】D【分析】本题主要考查了分式方程的实际应用,设乙每小时加工个零件,则甲每小时加工个零件,再根据时间工作总量工作效率结合甲的工作时间比乙的工作时间少30分钟列出方程即可.【详解】解:设乙每小时加工个零件,则甲每小时加工个零件,由题意得,故选:D.7.(2024·四川泸州·中考真题)分式方程的解是( )A. B. C. D.【答案】D【分析】本题考查解分式方程,根据解分式方程方法和步骤(去分母,去括号,移项,合并同类项,系数化为1,检验)求解,即可解题.【详解】解:,,,,,,经检验是该方程的解,故选:D.8.(2024·山东·中考真题)为提高生产效率,某工厂将生产线进行升级改造,改造后比改造前每天多生产100件,改造后生产600件的时间与改造前生产400件的时间相同,则改造后每天生产的产品件数为( )A.200 B.300 C.400 D.500【答案】B【分析】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.设改造后每天生产的产品件数为,则改造前每天生产的产品件数为,根据“改造后生产600件的时间与改造前生产400件的时间相同”列出分式方程,解方程即可.【详解】解:设改造后每天生产的产品件数为,则改造前每天生产的产品件数为,根据题意,得:,解得:,经检验是分式方程的解,且符合题意,答:改造后每天生产的产品件数.故选:B.9.(2024·黑龙江大兴安岭地·中考真题)已知关于x的分式方程无解,则k的值为( )A.或 B. C.或 D.【答案】A【分析】本题考查了解分式方程无解的情况,理解分式方程无解的意义是解题的关键.先将分式方程去分母,化为整式方程,再分两种情况分别求解即可.【详解】解:去分母得,,整理得,,当时,方程无解,当时,令,解得,所以关于x的分式方程无解时,或.故选:A.10.(2024·黑龙江齐齐哈尔·中考真题)如果关于的分式方程的解是负数,那么实数的取值范围是( )A.且 B. C. D.且【答案】A【分析】本题考查了根据分式方程的解的情况求参数,解分式方程求出分式方程的解,再根据分式方程的解是负数得到,并结合分式方程的解满足最简公分母不为,求出的取值范围即可,熟练掌握解分式方程的步骤是解题的关键.【详解】解:方程两边同时乘以得,,解得,∵分式方程的解是负数,∴,∴,又∵,∴,∴,∴,∴且,故选:.11.(2024·四川遂宁·中考真题)分式方程的解为正数,则的取值范围( )A. B.且C. D.且【答案】B【分析】本题考查了解分式方程及分式方程的解,先解分式方程,求出分式方程的解,再根据分式方程解的情况解答即可求解,正确求出分式方程的解是解题的关键.【详解】解:方程两边同时乘以得,,解得,∵分式方程的解为正数,∴,∴,又∵,即,∴,∴的取值范围为且,故选:.二、填空题12.(2024·四川宜宾·中考真题)分式方程的解为 .【答案】【分析】本题考查的是分式方程的解法,掌握解法步骤是解本题的关键;先去分母,化为整式方程,再解方程并检验即可.【详解】解:,∴,∴,解得:,经检验:是原方程的根,∴方程的根为,故答案为:.13.(2024·四川广元·中考真题)若点满足,则称点Q为“美好点”,写出一个“美好点”的坐标 .【答案】(答案不唯一)【分析】此题考查了解分式方程,先将方程两边同时乘以后去分母,令x代入一个数值,得到y的值,以此为点的坐标即可,正确解分式方程是解题的关键【详解】解:等式两边都乘以,得,令,则,∴“美好点”的坐标为,故答案为(答案不唯一)14.(2024·湖南省·中考真题)分式方程=1的解是 .【答案】x=1【分析】先给方程两边同乘最简公分母x+1,把分式方程转化为整式方程2=x+1,求解后并检验即可.【详解】解:方程的两边同乘x+1,得2=x+1,解得x=1.检验:当x=1时,x+1=2≠0.所以原方程的解为x=1.故答案为:x=1.【点睛】此题考查了解分式方程,掌握解分式方程的一般步骤及方法是解题的关键.15.(2024·湖北武汉·中考真题)分式方程的解是 .【答案】【分析】本题主要考查了解分式方程,熟练掌握解分式方程的方法和步骤是解题关键.首先等号两边同时乘以完成去分母,再按照去括号,移项、合并同类项的步骤求解,检验即可获得答案.【详解】解:,等号两边同时乘以,得 ,去括号,得 ,移项、合并同类项,得 ,经检验,是该分式方程的解,所以,该分式方程的解为.故答案为:.16.(2024·四川达州·中考真题)若关于的方程无解,则的值为 .【答案】或2【分析】本题主要考查了分式方程无解问题,先解分式方程得到,再根据分式方程无解得到或,解关于k的方程即可得到答案.【详解】解:去分母得:,解得:,∵关于的方程无解,∴当或时,分式方程无解,解得:或(经检验是原方程的解),即或,无解.故答案为:或2.17.(2024·北京·中考真题)方程的解为 .【答案】【分析】本题考查了解分式方程,熟练掌握解分式方程的方法和步骤是解题的关键.先去分母,转化为解一元一次方程,注意要检验是否有增根.【详解】解:,解得:,经检验:是原方程的解,所以,原方程的解为,故答案为:.18.(2024·浙江·中考真题)若,则【答案】【分析】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.分式方程去分母转化为整式方程,求出整式方程的解得到的值,经检验即可得到分式方程的解.【详解】解:去分母得:,移项合并得:,解得:,经检验,是分式方程的解,故答案为:19.(2024·四川凉山·中考真题)方程的解是【答案】x=9【分析】观察可得最简公分母是x(x-3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【详解】解:方程的两边同乘x(x-3),得3x-9=2x,解得x=9.检验:把x=9代入x(x-3)=54≠0.∴原方程的解为:x=9.故答案为:x=9.20.(2024·四川成都·中考真题)分式方程的解是 .【答案】x=3【详解】试题分析:分式方程去分母转化为整式方程x=3(x﹣2),求出整式方程的解得到x=3,经检验x=3是分式方程的解,即可得到分式方程的解.考点:解分式方程21.(2024·重庆·中考真题)若关于的一元一次不等式组的解集为,且关于的分式方程的解均为负整数,则所有满足条件的整数的值之和是 .【答案】【分析】本题主要考查了根据分式方程解的情况求参数,根据不等式组的解集求参数,先解不等式组中的两个不等式,再根据不等式组的解集求出;解分式方程得到,再由关于的分式方程的解均为负整数,推出且且a是偶数,则且且a是偶数,据此确定符合题意的a的值,最后求和即可.【详解】解:解不等式①得:,解不等式②得: ,∵不等式组的解集为,∴,∴;解分式方程得,∵关于的分式方程的解均为负整数,∴且是整数且,∴且且a是偶数,∴且且a是偶数,∴满足题意的a的值可以为4或8,∴所有满足条件的整数a的值之和是.故答案为:.22.(2024·黑龙江牡丹江·中考真题)若分式方程的解为正整数,则整数m的值为 .【答案】【分析】此题考查了分式方程的解,方程的解即为能使方程左右两边相等的未知数的值.表示出方程的解,由解是正整数,确定出整数的值即可.【详解】解:,化简得:,去分母得:,移项合并得:,解得:,由方程的解是正整数,得到为正整数,即或,解得:或(舍去,会使得分式无意义).故答案为:.三、解答题23.(2024·内蒙古包头·中考真题)(1)先化简,再求值:,其中.(2)解方程:.【答案】(1),7;(2)【分析】本题考查了整式的运算,二次根式的运算,解分式方程等知识,解题的关键是:(1)先利用完全平方公式、去括号法则化简,然后把x的值代入计算即可;(2)先去分母,去括号,移项,合并同类项,系数化1,检验,解分式方程即可.【详解】解:(1),当时,原式;(2)去分母,得,解得,把代入,∴是原方程的解.24.(2024·四川自贡·中考真题)为传承我国传统节日文化,端午节前夕,某校组织了包粽子活动.已知七(3)班甲组同学平均每小时比乙组多包20个粽子,甲组包150个粽子所用的时间与乙组包120个粽子所用的时间相同.求甲,乙两组同学平均每小时各包多少个粽子.【答案】甲组平均每小时包100个粽子,乙组平均每小时包80个粽子.【分析】本题主要考查了分式方程的实际应用.设乙组每小时包个粽子,则甲组每小时包个粽子,根据时间等于总工作量除以工作效率,即可得出关于的分式方程,解之并检验后即可得出结果.【详解】解:设乙组平均每小时包个粽子,则甲组平均每小时包个粽子,由题意得:,解得:,经检验:是分式方程的解,且符合题意,∴分式方程的解为:,∴答:甲组平均每小时包100个粽子,乙组平均每小时包80个粽子.25.(2024·广东广州·中考真题)解方程:.【答案】【分析】本题考查的是解分式方程,掌握分式方程的解法是解题关键,注意检验.依次去分母、去括号、移项、合并同类项求解,检验后即可得到答案.【详解】解:,去分母得:,去括号得:,移项得:,合并同类项得:,解得:,经检验,是原方程的解,该分式方程的解为.26.(2024·江苏扬州·中考真题)为了提高垃圾处理效率,某垃圾处理厂购进A、B两种机器,A型机器比B型机器每天多处理40吨垃圾,A型机器处理500吨垃圾所用天数与B型机器处理300吨垃圾所用天数相等.B型机器每天处理多少吨垃圾?【答案】B型机器每天处理60吨垃圾【分析】本题考查分式方程的应用,解题的关键是正确找出题中的等量关系,本题属于基础题型.设型机器每天处理吨垃圾,则型机器每天处理吨垃圾,根据题意列出方程即可求出答案.【详解】解:设型机器每天处理吨垃圾,则型机器每天处理吨垃圾,根据题意,得,解得.经检验,是所列方程的解.答:B型机器每天处理60吨垃圾.27.(2024·山东威海·中考真题)某公司为节能环保,安装了一批型节能灯,一年用电千瓦·时.后购进一批相同数量的型节能灯,一年用电千瓦·时.一盏型节能灯每年的用电量比一盏型节能灯每年用电量的倍少千瓦·时.求一盏型节能灯每年的用电量.【答案】千瓦·时【分析】本题考查分式方程的应用,根据题意列方程是关键,并注意检验.根据两种节能灯数量相等列式分式方程求解即可.【详解】解:设一盏型节能灯每年的用电量为千瓦·时,则一盏型节能灯每年的用电量为千瓦·时整理得解得经检验:是原分式方程的解.答:一盏型节能灯每年的用电量为千瓦·时.28.(2024·陕西·中考真题)解方程:.【答案】【分析】本题主要考查了解分式方程,先去分母变分式方程为整式方程,然后再解整式方程,最后对方程的解进行检验即可.【详解】解:,去分母得:,去括号得:,移项,合并同类项得:,检验:把代入得:,∴是原方程的解.29.(2024·广西·中考真题)综合与实践在综合与实践课上,数学兴趣小组通过洗一套夏季校服,探索清洗衣物的节约用水策略.【洗衣过程】步骤一:将校服放进清水中,加入洗衣液,充分浸泡揉搓后拧干;步骤二:将拧干后的校服放进清水中,充分漂洗后拧干.重复操作步骤二,直至校服上残留洗衣液浓度达到洗衣目标.假设第一次漂洗前校服上残留洗衣液浓度为,每次拧干后校服上都残留水.浓度关系式:.其中、分别为单次漂洗前、后校服上残留洗衣液浓度;w为单次漂洗所加清水量(单位:)【洗衣目标】经过漂洗使校服上残留洗衣液浓度不高于【动手操作】请按要求完成下列任务:(1)如果只经过一次漂洗,使校服上残留洗衣液浓度降为,需要多少清水?(2)如果把清水均分,进行两次漂洗,是否能达到洗衣目标?(3)比较(1)和(2)的漂洗结果,从洗衣用水策略方面,说说你的想法.【答案】(1)只经过一次漂洗,使校服上残留洗衣液浓度降为,需要清水.(2)进行两次漂洗,能达到洗衣目标;(3)两次漂洗的方法值得推广学习【分析】本题考查的是分式方程的实际应用,求解代数式的值,理解题意是关键;(1)把,代入, 再解方程即可;(2)分别计算两次漂洗后的残留洗衣液浓度,即可得到答案;(3)根据(1)(2)的结果得出结论即可.【详解】(1)解:把,代入得,解得.经检验符合题意;∴只经过一次漂洗,使校服上残留洗衣液浓度降为,需要清水.(2)解:第一次漂洗:把,代入,∴,第二次漂洗:把,代入,∴,而,∴进行两次漂洗,能达到洗衣目标;(3)解:由(1)(2)的计算结果发现:经过两次漂洗既能达到洗衣目标,还能大幅度节约用水,∴从洗衣用水策略方面来讲,采用两次漂洗的方法值得推广学习.30.(2024·重庆·中考真题)某工程队承接了老旧小区改造工程中1000平方米的外墙粉刷任务,选派甲、乙两人分别用、两种外墙漆各完成总粉刷任务的一半.据测算需要、两种外墙漆各300千克,购买外墙漆总费用为15000元,已知种外墙漆每千克的价格比种外墙漆每千克的价格多2元.(1)求、两种外墙漆每千克的价格各是多少元?(2)已知乙每小时粉刷外墙面积是甲每小时粉刷外墙面积的,乙完成粉刷任务所需时间比甲完成粉刷任务所需时间多5小时.问甲每小时粉刷外墙的面积是多少平方米?【答案】(1)种外墙漆每千克的价格为元,则种外墙漆每千克的价格为元.(2)甲每小时粉刷外墙的面积是平方米.【分析】本题考查的是分式方程的应用,一元一次方程的应用,理解题意建立方程是解本题的关键;(1)设种外墙漆每千克的价格为元,则种外墙漆每千克的价格为元,再根据总费用为15000元列方程求解即可;(2)设甲每小时粉刷外墙面积为平方米,则乙每小时粉刷外墙面积是平方米;利用乙完成粉刷任务所需时间比甲完成粉刷任务所需时间多5小时.从而建立分式方程求解即可.【详解】(1)解:设种外墙漆每千克的价格为元,则种外墙漆每千克的价格为元,∴,解得:,∴,答:种外墙漆每千克的价格为元,种外墙漆每千克的价格为元.(2)设甲每小时粉刷外墙面积为平方米,则乙每小时粉刷外墙面积是平方米;∴,解得:,经检验:是原方程的根且符合题意,答:甲每小时粉刷外墙的面积是平方米.31.(2024·云南·中考真题)某旅行社组织游客从地到地的航天科技馆参观,已知地到地的路程为300千米,乘坐型车比乘坐型车少用2小时,型车的平均速度是型车的平均速度的3倍,求型车的平均速度.【答案】型车的平均速度为【分析】本题考查分式方程的应用,设型车的平均速度为,则型车的平均速度是,根据“乘坐型车比乘坐型车少用2小时,”建立方程求解,并检验,即可解题.【详解】解:设型车的平均速度为,则型车的平均速度是,根据题意可得,,整理得,,解得,经检验是该方程的解,答:型车的平均速度为.32.(2024·福建·中考真题)解方程:.【答案】.【分析】本题考查解分式方程,掌握解分式方程的步骤和方法,将分式方程化为整式方程求解,即可解题.【详解】解:,方程两边都乘,得.去括号得:,解得.经检验,是原方程的根.21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台专题08 分式方程及其应用(32题)一、单选题1.(2024·四川德阳·中考真题)分式方程的解是( )A.3 B.2 C. D.2.(2024·甘肃临夏·中考真题)端午节期间,某商家推出“优惠酬宾”活动,决定每袋粽子降价2元销售.细心的小夏发现,降价后用240元可以比降价前多购买10袋,求:每袋粽子的原价是多少元?设每袋粽子的原价是元,所得方程正确的是( )A. B.C. D.3.(2024·四川广元·中考真题)我市把提升城市园林绿化水平作为推进城市更新行动的有效抓手,从2023年开始通过拆违建绿、见缝插绿等方式在全域打造多个小而美的“口袋公园”.现需要购买A、B两种绿植,已知A种绿植单价是B种绿植单价的3倍,用6750元购买的A种绿植比用3000元购买的B种绿植少50株.设B种绿植单价是x元,则可列方程是( )A. B.C. D.4.(2024·黑龙江绥化·中考真题)一艘货轮在静水中的航速为,它以该航速沿江顺流航行所用时间,与以该航速沿江逆流航行所用时间相等,则江水的流速为( )A. B. C. D.5.(2024·广东省·中考真题)方程的解为( )A. B. C. D.6.(2024·四川达州·中考真题)甲乙两人各自加工120个零件,甲由于个人原因没有和乙同时进行,乙先加工30分钟后,甲开始加工.甲为了追赶上乙的进度,加工的速度是乙的倍,最后两人同时完成.求乙每小时加工零件多少个?设乙每小时加工个零件.可列方程为( )A. B.C. D.7.(2024·四川泸州·中考真题)分式方程的解是( )A. B. C. D.8.(2024·山东·中考真题)为提高生产效率,某工厂将生产线进行升级改造,改造后比改造前每天多生产100件,改造后生产600件的时间与改造前生产400件的时间相同,则改造后每天生产的产品件数为( )A.200 B.300 C.400 D.5009.(2024·黑龙江大兴安岭地·中考真题)已知关于x的分式方程无解,则k的值为( )A.或 B. C.或 D.10.(2024·黑龙江齐齐哈尔·中考真题)如果关于的分式方程的解是负数,那么实数的取值范围是( )A.且 B. C. D.且11.(2024·四川遂宁·中考真题)分式方程的解为正数,则的取值范围( )A. B.且C. D.且二、填空题12.(2024·四川宜宾·中考真题)分式方程的解为 .13.(2024·四川广元·中考真题)若点满足,则称点Q为“美好点”,写出一个“美好点”的坐标 .14.(2024·湖南省·中考真题)分式方程=1的解是 .15.(2024·湖北武汉·中考真题)分式方程的解是 .16.(2024·四川达州·中考真题)若关于的方程无解,则的值为 .17.(2024·北京·中考真题)方程的解为 .18.(2024·浙江·中考真题)若,则19.(2024·四川凉山·中考真题)方程的解是20.(2024·四川成都·中考真题)分式方程的解是 .21.(2024·重庆·中考真题)若关于的一元一次不等式组的解集为,且关于的分式方程的解均为负整数,则所有满足条件的整数的值之和是 .22.(2024·黑龙江牡丹江·中考真题)若分式方程的解为正整数,则整数m的值为 .三、解答题23.(2024·内蒙古包头·中考真题)(1)先化简,再求值:,其中.(2)解方程:.24.(2024·四川自贡·中考真题)为传承我国传统节日文化,端午节前夕,某校组织了包粽子活动.已知七(3)班甲组同学平均每小时比乙组多包20个粽子,甲组包150个粽子所用的时间与乙组包120个粽子所用的时间相同.求甲,乙两组同学平均每小时各包多少个粽子.25.(2024·广东广州·中考真题)解方程:.26.(2024·江苏扬州·中考真题)为了提高垃圾处理效率,某垃圾处理厂购进A、B两种机器,A型机器比B型机器每天多处理40吨垃圾,A型机器处理500吨垃圾所用天数与B型机器处理300吨垃圾所用天数相等.B型机器每天处理多少吨垃圾?27.(2024·山东威海·中考真题)某公司为节能环保,安装了一批型节能灯,一年用电千瓦·时.后购进一批相同数量的型节能灯,一年用电千瓦·时.一盏型节能灯每年的用电量比一盏型节能灯每年用电量的倍少千瓦·时.求一盏型节能灯每年的用电量.28.(2024·陕西·中考真题)解方程:.29.(2024·广西·中考真题)综合与实践在综合与实践课上,数学兴趣小组通过洗一套夏季校服,探索清洗衣物的节约用水策略.【洗衣过程】步骤一:将校服放进清水中,加入洗衣液,充分浸泡揉搓后拧干;步骤二:将拧干后的校服放进清水中,充分漂洗后拧干.重复操作步骤二,直至校服上残留洗衣液浓度达到洗衣目标.假设第一次漂洗前校服上残留洗衣液浓度为,每次拧干后校服上都残留水.浓度关系式:.其中、分别为单次漂洗前、后校服上残留洗衣液浓度;w为单次漂洗所加清水量(单位:)【洗衣目标】经过漂洗使校服上残留洗衣液浓度不高于【动手操作】请按要求完成下列任务:(1)如果只经过一次漂洗,使校服上残留洗衣液浓度降为,需要多少清水?(2)如果把清水均分,进行两次漂洗,是否能达到洗衣目标?(3)比较(1)和(2)的漂洗结果,从洗衣用水策略方面,说说你的想法.30.(2024·重庆·中考真题)某工程队承接了老旧小区改造工程中1000平方米的外墙粉刷任务,选派甲、乙两人分别用、两种外墙漆各完成总粉刷任务的一半.据测算需要、两种外墙漆各300千克,购买外墙漆总费用为15000元,已知种外墙漆每千克的价格比种外墙漆每千克的价格多2元.(1)求、两种外墙漆每千克的价格各是多少元?(2)已知乙每小时粉刷外墙面积是甲每小时粉刷外墙面积的,乙完成粉刷任务所需时间比甲完成粉刷任务所需时间多5小时.问甲每小时粉刷外墙的面积是多少平方米?31.(2024·云南·中考真题)某旅行社组织游客从地到地的航天科技馆参观,已知地到地的路程为300千米,乘坐型车比乘坐型车少用2小时,型车的平均速度是型车的平均速度的3倍,求型车的平均速度.32.(2024·福建·中考真题)解方程:.21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)21世纪教育网(www.21cnjy.com) 展开更多...... 收起↑ 资源列表 2024年中考数学真题分类卷--专题08 分式方程及其应用(原卷版).docx 2024年中考数学真题分类卷--专题08 分式方程及其应用(解析版).docx