资源简介 中小学教育资源及组卷应用平台第二节 用样本估计总体课标解读 考向预测1.会用统计图表对总体进行估计,会求n个数据的第p百分位数. 2.能用样本的数字特征估计总体集中趋势和总体离散程度. 用样本估计总体在高考中出题频率较高,常结合频率分布直方图、样本的数字特征出题.预计2025年高考将会以与统计图表的识读、成对数据的统计分析相综合的形式呈现.【知识梳理】1.总体百分位数的估计(1)第p百分位数的定义一般地,一组数据的第p百分位数是这样一个值,它使得这组数据中至少有p%的数据小于或等于这个值,且至少有(100-p)%的数据大于或等于这个值.(2)四分位数常用的分位数有第25百分位数,第50百分位数(即中位数),第75百分位数.这三个分位数把一组由小到大排列后的数据分成四等份,因此称为四分位数.其中第25百分位数也称为第一四分位数或下四分位数,第75百分位数也称为第三四分位数或上四分位数.2.样本的数字特征(1)众数:一组数据中出现次数最多的那个数据,叫做这组数据的众数.(2)中位数:把n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.(3)平均数:把称为a1,a2,…,an这n个数的平均数.(4)标准差与方差:设一组数据x1,x2,x3,…,xn的平均数为,则这组数据的标准差和方差分别是s=,s2=[(x1-)2+(x2-)2+…+(xn-)2].3.总体平均数、方差、标准差与样本平均数、方差、标准差名称 定义总体均值(总体平均数)、方差、标准差 一般式:如果总体中有N个个体,它们的变量值分别为Y1,Y2,…,YN,则称==Yi为总体均值,又称总体平均数,称S2= (Yi-)2为总体方差,S=为总体标准差加权式:如果总体的N个变量值中,不同的值共有k(k≤N)个,不妨记为Y1,Y2,…,Yk,其中Yi出现的频数为fi(i=1,2,…,k),则总体均值为=fiYi,总体方差为S2=fi(Yi-)2样本均值(样本平均数)、方差、标准差 如果从总体中抽取一个容量为n的样本,它们的变量值分别为y1,y2,…,yn,则称==yi为样本均值,又称样本平均数,称s2= (yi-)2为样本方差,s=为样本标准差说明:(1)在简单随机抽样中,我们常用样本平均数、方差、标准差去估计总体平均数、方差、标准差. (2)总体平均数、方差、标准差是一个确定的数,样本平均数、方差、标准差具有随机性(因为样本具有随机性). (3)一般情况下,样本量越大,估计越准确【常用结论】1.频率分布直方图与众数、中位数、平均数的关系(1)最高的小长方形底边中点的横坐标即是众数.(2)中位数左边和右边的小长方形的面积和是相等的.(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.2.平均数、方差的公式推广若数据x1,x2,…,xn的平均数为,方差为s2,那么mx1+a,mx2+a,mx3+a,…,mxn+a的平均数是m+a,方差为m2s2.【诊断自测】1.概念辨析(正确的打“√”,错误的打“×”)(1)对一组数据来说,平均数和中位数总是非常接近.( )(2)一组数据的方差越大,说明这组数据越集中.( )(3)在频率分布直方图中,最高的小长方形底边中点的横坐标是众数.( )2.小题热身(1)(人教A必修第二册习题9.2 T1改编)下列一组数据的第25百分位数是( )2.1,3.0,3.2,3.8,3.4,4.0,4.2,4.4,5.3,5.6A.3.2 B.3.0C.4.4 D.2.5(2)(多选)(人教B必修第二册习题5-1B T3改编)给出一组数据:1,3,3,5,5,5,下列说法正确的是( )A.这组数据的极差为4B.这组数据的平均数为3C.这组数据的中位数为4D.这组数据的众数为3和5(3)(人教B必修第二册练习B T4改编)某企业有3个分厂生产同一种电子产品,第一、二、三分厂的产量之比为1∶2∶1,用比例分配的分层随机抽样的方法从3个分厂生产的电子产品中共抽取100件进行使用寿命的测试,由所得的测试结果算得从第一、二、三分厂取出的产品的平均使用寿命分别为980 h,1020 h,1032 h,则抽取的100件产品的平均使用寿命为________ h.(4)已知一组数据的频率分布直方图如图,则众数是________,平均数是________.【考点探究】考点一 百分位数的计算例1 (1)(2023·江苏南通海安质量监测)“双减”政策实施后,学生的课外阅读增多.某班50名学生到图书馆借书数量统计如下:借书数量/本 5 6 7 8 9 10频数/人 5 8 13 11 9 4则这50名学生的借书数量的上四分位数是( )A.8 B.8.5C.9 D.10(2)某校为了了解高三年级学生的身体素质状况,在开学初举行了一场身体素质体能测试,以便对体能不达标的学生进行有针对性的训练,促进他们体能的提升,现从整个年级测试成绩中抽取100名学生的测试成绩,并把测试成绩分成[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]六组,绘制成频率分布直方图(如图所示).其中分数在[90,100]这一组内的纵坐标为a,则该次体能测试成绩的80%分位数约为________分.【通性通法】计算一组n个数据第p百分位数的步骤【巩固迁移】1.为了养成良好的运动习惯,某人记录了自己一周内每天的运动时长(单位:分钟),分别为53,57,45,61,79,49,x,若这组数据的第80百分位数与第60百分位数的差为3,则x=( )A.58或64 B.59或64C.58 D.592.(2024·安徽十校联考)学校组织班级知识竞赛,某班的8名学生的成绩(单位:分)分别是68,63,77,76,82,88,92,93,则这8名学生成绩的75%分位数是( )A.88分 B.89分C.90分 D.92分考点二 总体集中趋势的估计例2 (1)(2024·山东临沂模拟)10名工人某天生产同一零件,生产的件数分别是15,17,14,10,15,17,17,16,14,12.设其平均数为a,中位数为b,众数为c,则( )A.a>b>c B.c>b>aC.c>a>b D.b>c>a(2)(多选)(2023·湖北荆州中学模拟)某公司为提高职工政治素养,对全体职工进行了一次时事政治测试,随机抽取了100名职工的成绩,并将其制成如图所示的频率分布直方图,以样本估计总体,则下列结论中正确的是( )A.该公司职工的测试成绩不低于60分的人数约占总人数的80%B.该公司职工测试成绩的中位数约为70分C.该公司职工测试成绩的平均值约为68分D.该公司职工测试成绩的众数约为60分【通性通法】频率分布直方图中的数字特征(1)众数:最高矩形的底边中点的横坐标.(2)中位数:中位数左边和右边的矩形的面积和应该相等.(3)平均数:各组区间的中点值与对应频率之积的和.【巩固迁移】3.某市市民用水拟实行阶梯水价,每人月用水量中不超过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费,从该市随机调查了10000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图:(1)如果w为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w至少定为多少?(2)假设同组中的每个数据用该组区间的右端点值代替,当w=3时,估计该市居民该月的人均水费.考点三 总体离散程度的估计例3 甲、乙两名学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:甲 82 81 79 78 95 88 93 84乙 92 95 80 75 83 80 90 85(1)求两位学生预赛成绩的平均数和方差;(2)现要从中选派一人参加数学竞赛,从统计学的角度考虑,你认为选派哪位学生参加合适?请说明理由.【通性通法】标准差(方差)反映了数据的离散与集中、波动与稳定的程度.标准差(方差)越大,数据的离散程度越大;标准差(方差)越小,数据的离散程度越小.【巩固迁移】4.(2023·全国乙卷)某厂为比较甲、乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率.甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为xi,yi(i=1,2,…,10).试验结果如下:试验序号i 1 2 3 4 5 6 7 8 9 10伸缩率xi 545 533 551 522 575 544 541 568 596 548伸缩率yi 536 527 543 530 560 533 522 550 576 536记zi=xi-yi(i=1,2,…,10),z1,z2,…,z10的样本平均数为,样本方差为s2.(1)求,s2;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果≥2,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高).考点四 分层随机抽样的均值与方差例4 为调查某地区中学生每天的睡眠时间,采用样本量比例分配的分层随机抽样,现抽取初中生800人,其每天睡眠时间的均值为9小时,方差为0.5,抽取高中生1200人,其每天睡眠时间的均值为8小时,方差为1,则估计该地区中学生每天睡眠时间的方差为________.【通性通法】在分层随机抽样中,如果第一层的样本量为m,平均值为,方差为s;第二层的样本量为n,平均值为,方差为s,则样本的平均值为=,样本的方差为s2={m[s+(-)2]+n[s+(-)2]}.特别地,在比例分配的分层随机抽样中,我们可以直接用样本平均数估计总体平均数,用样本方差s2估计总体方差S2.【巩固迁移】5.(2023·安徽宣城模拟)某学校有男生400人,女生600人,为调查该校全体学生每天运动时间的情况,按照男女比例通过分层随机抽样的方法取到一个样本,样本中男生每天运动时间的平均值为80分钟,方差为10,女生每天运动时间的平均值为60分钟,方差为20.结合数据,估计该校全体学生每天运动时间的方差为( )A.15 B.16C.96 D.1126.为了了解全区科级干部“党风廉政知识”的学习情况,采用比例分配的分层随机抽样方法,从全区320名正科级干部和1280名副科级干部中抽取40名科级干部预测全区科级干部“党风廉政知识”的学习情况.现将这40名科级干部分为正科级干部组和副科级干部组,利用同一份试卷分别进行测试.经过测试后,两组各自将测试成绩统计分析如下表:分组 人数 平均成绩正科级干部组 a 80副科级干部组 b 70则40名科级干部测试成绩的平均分=________.21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台第二节 用样本估计总体课标解读 考向预测1.会用统计图表对总体进行估计,会求n个数据的第p百分位数. 2.能用样本的数字特征估计总体集中趋势和总体离散程度. 用样本估计总体在高考中出题频率较高,常结合频率分布直方图、样本的数字特征出题.预计2025年高考将会以与统计图表的识读、成对数据的统计分析相综合的形式呈现.【知识梳理】1.总体百分位数的估计(1)第p百分位数的定义一般地,一组数据的第p百分位数是这样一个值,它使得这组数据中至少有p%的数据小于或等于这个值,且至少有(100-p)%的数据大于或等于这个值.(2)四分位数常用的分位数有第25百分位数,第50百分位数(即中位数),第75百分位数.这三个分位数把一组由小到大排列后的数据分成四等份,因此称为四分位数.其中第25百分位数也称为第一四分位数或下四分位数,第75百分位数也称为第三四分位数或上四分位数.2.样本的数字特征(1)众数:一组数据中出现次数最多的那个数据,叫做这组数据的众数.(2)中位数:把n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.(3)平均数:把称为a1,a2,…,an这n个数的平均数.(4)标准差与方差:设一组数据x1,x2,x3,…,xn的平均数为,则这组数据的标准差和方差分别是s=,s2=[(x1-)2+(x2-)2+…+(xn-)2].3.总体平均数、方差、标准差与样本平均数、方差、标准差名称 定义总体均值(总体平均数)、方差、标准差 一般式:如果总体中有N个个体,它们的变量值分别为Y1,Y2,…,YN,则称==Yi为总体均值,又称总体平均数,称S2= (Yi-)2为总体方差,S=为总体标准差加权式:如果总体的N个变量值中,不同的值共有k(k≤N)个,不妨记为Y1,Y2,…,Yk,其中Yi出现的频数为fi(i=1,2,…,k),则总体均值为=fiYi,总体方差为S2=fi(Yi-)2样本均值(样本平均数)、方差、标准差 如果从总体中抽取一个容量为n的样本,它们的变量值分别为y1,y2,…,yn,则称==yi为样本均值,又称样本平均数,称s2= (yi-)2为样本方差,s=为样本标准差说明:(1)在简单随机抽样中,我们常用样本平均数、方差、标准差去估计总体平均数、方差、标准差. (2)总体平均数、方差、标准差是一个确定的数,样本平均数、方差、标准差具有随机性(因为样本具有随机性). (3)一般情况下,样本量越大,估计越准确【常用结论】1.频率分布直方图与众数、中位数、平均数的关系(1)最高的小长方形底边中点的横坐标即是众数.(2)中位数左边和右边的小长方形的面积和是相等的.(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.2.平均数、方差的公式推广若数据x1,x2,…,xn的平均数为,方差为s2,那么mx1+a,mx2+a,mx3+a,…,mxn+a的平均数是m+a,方差为m2s2.【诊断自测】1.概念辨析(正确的打“√”,错误的打“×”)(1)对一组数据来说,平均数和中位数总是非常接近.( )(2)一组数据的方差越大,说明这组数据越集中.( )(3)在频率分布直方图中,最高的小长方形底边中点的横坐标是众数.( )答案 (1)× (2)× (3)√2.小题热身(1)(人教A必修第二册习题9.2 T1改编)下列一组数据的第25百分位数是( )2.1,3.0,3.2,3.8,3.4,4.0,4.2,4.4,5.3,5.6A.3.2 B.3.0C.4.4 D.2.5答案 A解析 把该组数据按照由小到大的顺序排列,可得2.1,3.0,3.2,3.4,3.8,4.0,4.2,4.4,5.3,5.6,由i=10×25%=2.5,不是整数,得第3个数据3.2是第25百分位数.(2)(多选)(人教B必修第二册习题5-1B T3改编)给出一组数据:1,3,3,5,5,5,下列说法正确的是( )A.这组数据的极差为4B.这组数据的平均数为3C.这组数据的中位数为4D.这组数据的众数为3和5答案 AC解析 这组数据的极差为5-1=4,A正确;这组数据的平均数为=,B错误;这组数据的中位数为=4,C正确;这组数据的众数为5,D错误.(3)(人教B必修第二册练习B T4改编)某企业有3个分厂生产同一种电子产品,第一、二、三分厂的产量之比为1∶2∶1,用比例分配的分层随机抽样的方法从3个分厂生产的电子产品中共抽取100件进行使用寿命的测试,由所得的测试结果算得从第一、二、三分厂取出的产品的平均使用寿命分别为980 h,1020 h,1032 h,则抽取的100件产品的平均使用寿命为________ h.答案 1013解析 由比例分配的分层随机抽样的知识可知,从第一、二、三分厂抽取的电子产品件数分别为25,50,25,则抽取的100件产品的平均使用寿命为×(980×25+1020×50+1032×25)=1013(h).(4)已知一组数据的频率分布直方图如图,则众数是________,平均数是________.答案 65 67解析 因为最高小长方形底边中点的横坐标为65,所以众数为65;平均数=(55×0.030+65×0.040+75×0.015+85×0.010+95×0.005)×10=67.【考点探究】考点一 百分位数的计算例1 (1)(2023·江苏南通海安质量监测)“双减”政策实施后,学生的课外阅读增多.某班50名学生到图书馆借书数量统计如下:借书数量/本 5 6 7 8 9 10频数/人 5 8 13 11 9 4则这50名学生的借书数量的上四分位数是( )A.8 B.8.5C.9 D.10答案 C解析 由50×75%=37.5,故第75百分位数为借书数量从小到大排序后的第38个,又5+8+13+11=37<38<5+8+13+11+9=46,故上四分位数(第75百分位数)是9.(2)某校为了了解高三年级学生的身体素质状况,在开学初举行了一场身体素质体能测试,以便对体能不达标的学生进行有针对性的训练,促进他们体能的提升,现从整个年级测试成绩中抽取100名学生的测试成绩,并把测试成绩分成[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]六组,绘制成频率分布直方图(如图所示).其中分数在[90,100]这一组内的纵坐标为a,则该次体能测试成绩的80%分位数约为________分.答案 92解析 由频率分布直方图知,10×(0.002+0.004+0.014+0.020+a+0.035)=1,得a=0.025.因为0.02+0.04+0.14+0.20+0.35=0.75,所以该次体能测试成绩的80%分位数落在[90,100]内,设其为x,则由(x-90)×0.025=0.05,解得x=92.【通性通法】计算一组n个数据第p百分位数的步骤【巩固迁移】1.为了养成良好的运动习惯,某人记录了自己一周内每天的运动时长(单位:分钟),分别为53,57,45,61,79,49,x,若这组数据的第80百分位数与第60百分位数的差为3,则x=( )A.58或64 B.59或64C.58 D.59答案 A解析 将已知的6个数从小到大排序为45,49,53,57,61,79.若x≤57,则这组数据的第80百分位数与第60百分位数分别为61和57,它们的差为4,不符合条件;若x≥79,则这组数据的第80百分位数与第60百分位数分别为79和61,它们的差为18,不符合条件;若572.(2024·安徽十校联考)学校组织班级知识竞赛,某班的8名学生的成绩(单位:分)分别是68,63,77,76,82,88,92,93,则这8名学生成绩的75%分位数是( )A.88分 B.89分C.90分 D.92分答案 C解析 8名学生的成绩从小到大排列为63,68,76,77,82,88,92,93,因为8×75%=6,所以75%分位数为第6个数和第7个数的平均数,即×(88+92)=90(分).考点二 总体集中趋势的估计例2 (1)(2024·山东临沂模拟)10名工人某天生产同一零件,生产的件数分别是15,17,14,10,15,17,17,16,14,12.设其平均数为a,中位数为b,众数为c,则( )A.a>b>c B.c>b>aC.c>a>b D.b>c>a答案 B解析 将生产的件数由小到大排列为10,12,14,14,15,15,16,17,17,17,a=×(15+17+14+10+15+17+17+16+14+12)=14.7,b=15,c=17.因此c>b>a.故选B.(2)(多选)(2023·湖北荆州中学模拟)某公司为提高职工政治素养,对全体职工进行了一次时事政治测试,随机抽取了100名职工的成绩,并将其制成如图所示的频率分布直方图,以样本估计总体,则下列结论中正确的是( )A.该公司职工的测试成绩不低于60分的人数约占总人数的80%B.该公司职工测试成绩的中位数约为70分C.该公司职工测试成绩的平均值约为68分D.该公司职工测试成绩的众数约为60分答案 BC解析 对于A,该公司职工的测试成绩不低于60分的频率为(0.02+0.015)×20=0.70,∴该公司职工的测试成绩不低于60分的人数约占总人数的70%,故A错误;对于B,测试成绩在[20,60)的频率为(0.005+0.01)×20=0.3,测试成绩在[60,80)的频率为0.02×20=0.4,∴该公司职工测试成绩的中位数约为60+×20=70分,故B正确;对于C,该公司职工测试成绩的平均值约为=30×0.005×20+50×0.01×20+70×0.02×20+90×0.015×20=68分,故C正确;对于D,该公司职工测试成绩的众数约为=70分,故D错误.故选BC.【通性通法】频率分布直方图中的数字特征(1)众数:最高矩形的底边中点的横坐标.(2)中位数:中位数左边和右边的矩形的面积和应该相等.(3)平均数:各组区间的中点值与对应频率之积的和.【巩固迁移】3.某市市民用水拟实行阶梯水价,每人月用水量中不超过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费,从该市随机调查了10000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图:(1)如果w为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w至少定为多少?(2)假设同组中的每个数据用该组区间的右端点值代替,当w=3时,估计该市居民该月的人均水费.解 (1)如题图所示,用水量在[0.5,2)的频率为(0.2+0.3+0.4)×0.5=0.45,用水量在[0.5,3)的频率为(0.2+0.3+0.4+0.5+0.3)×0.5=0.85.∴用水量小于等于2立方米的频率为0.45,用水量小于等于3立方米的频率为0.85,又w为整数,∴为使80%以上的居民在该月的用水价格为4元/立方米,w至少定为3.(2)当w=3时,该市居民该月的人均水费估计为(0.1×1+0.15×1.5+0.2×2+0.25×2.5+0.15×3)×4+0.15×3×4+[0.05×(3.5-3)+0.05×(4-3)+0.05×(4.5-3)]×10=10.5(元).即当w=3时,该市居民该月的人均水费估计为10.5元.考点三 总体离散程度的估计例3 甲、乙两名学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:甲 82 81 79 78 95 88 93 84乙 92 95 80 75 83 80 90 85(1)求两位学生预赛成绩的平均数和方差;(2)现要从中选派一人参加数学竞赛,从统计学的角度考虑,你认为选派哪位学生参加合适?请说明理由.解 (1)甲=×(82+81+79+78+95+88+93+84)=85,乙=×(92+95+80+75+83+80+90+85)=85,s=×[(82-85)2+(81-85)2+(79-85)2+(78-85)2+(95-85)2+(88-85)2+(93-85)2+(84-85)2]=35.5,s=×[(92-85)2+(95-85)2+(80-85)2+(75-85)2+(83-85)2+(80-85)2+(90-85)2+(85-85)2]=41.(2)由(1)知甲=乙,s甲的成绩较稳定,所以派甲参赛比较合适.【通性通法】标准差(方差)反映了数据的离散与集中、波动与稳定的程度.标准差(方差)越大,数据的离散程度越大;标准差(方差)越小,数据的离散程度越小.【巩固迁移】4.(2023·全国乙卷)某厂为比较甲、乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率.甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为xi,yi(i=1,2,…,10).试验结果如下:试验序号i 1 2 3 4 5 6 7 8 9 10伸缩率xi 545 533 551 522 575 544 541 568 596 548伸缩率yi 536 527 543 530 560 533 522 550 576 536记zi=xi-yi(i=1,2,…,10),z1,z2,…,z10的样本平均数为,样本方差为s2.(1)求,s2;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果≥2,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高).解 (1)=×(545+533+551+522+575+544+541+568+596+548)=552.3,=×(536+527+543+530+560+533+522+550+576+536)=541.3,=-=552.3-541.3=11,zi=xi-yi的值分别为9,6,8,-8,15,11,19,18,20,12,故s2=×[(9-11)2+(6-11)2+(8-11)2+(-8-11)2+(15-11)2+(11-11)2+(19-11)2+(18-11)2+(20-11)2+(12-11)2]=61.(2)由(1)知,=11,2=2=,故有≥2,所以认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.考点四 分层随机抽样的均值与方差例4 为调查某地区中学生每天的睡眠时间,采用样本量比例分配的分层随机抽样,现抽取初中生800人,其每天睡眠时间的均值为9小时,方差为0.5,抽取高中生1200人,其每天睡眠时间的均值为8小时,方差为1,则估计该地区中学生每天睡眠时间的方差为________.答案 1.04解析 该地区中学生每天睡眠时间的平均数为×9+×8=8.4(小时),该地区中学生每天睡眠时间的方差为×[0.5+(9-8.4)2]+×[1+(8-8.4)2]=1.04.【通性通法】在分层随机抽样中,如果第一层的样本量为m,平均值为,方差为s;第二层的样本量为n,平均值为,方差为s,则样本的平均值为=,样本的方差为s2={m[s+(-)2]+n[s+(-)2]}.特别地,在比例分配的分层随机抽样中,我们可以直接用样本平均数估计总体平均数,用样本方差s2估计总体方差S2.【巩固迁移】5.(2023·安徽宣城模拟)某学校有男生400人,女生600人,为调查该校全体学生每天运动时间的情况,按照男女比例通过分层随机抽样的方法取到一个样本,样本中男生每天运动时间的平均值为80分钟,方差为10,女生每天运动时间的平均值为60分钟,方差为20.结合数据,估计该校全体学生每天运动时间的方差为( )A.15 B.16C.96 D.112答案 D解析 由题意,用比例分配的分层随机抽样的方式抽取样本,且该样本中男、女生的比为=,不妨设抽取的男、女生人数分别为2n,3n,那么样本的总数为5n.则所有样本的平均值为×(80×2n+60×3n)=68,方差为×[10+(80-68)2]+×[20+(60-68)2]=112.故选D.6.为了了解全区科级干部“党风廉政知识”的学习情况,采用比例分配的分层随机抽样方法,从全区320名正科级干部和1280名副科级干部中抽取40名科级干部预测全区科级干部“党风廉政知识”的学习情况.现将这40名科级干部分为正科级干部组和副科级干部组,利用同一份试卷分别进行测试.经过测试后,两组各自将测试成绩统计分析如下表:分组 人数 平均成绩正科级干部组 a 80副科级干部组 b 70则40名科级干部测试成绩的平均分=________.答案 72解析 样本量与总体中的个体数的比为=,则抽取的正科级干部人数a=320×=8,副科级干部人数b=1280×=32.所以这40名科级干部测试成绩的平均分==72.21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)21世纪教育网(www.21cnjy.com) 展开更多...... 收起↑ 资源列表 第2节 用样本估计总体(原卷版).docx 第2节 用样本估计总体(解析版).doc