资源简介 中小学教育资源及组卷应用平台第四节 事件的相互独立性、条件概率与全概率公式课标解读 考向预测1.结合有限样本空间,了解两个随机事件独立性的含义.结合古典概型,利用独立性计算概率. 2.结合古典概型,了解条件概率,能计算简单随机事件的条件概率. 3.结合古典概型,了解条件概率与独立性的关系. 4.结合古典概型,会利用乘法公式计算概率. 5.结合古典概型,会利用全概率公式计算概率. 6.了解贝叶斯公式. 预计2025年高考将会以事件独立性的判断或条件概率、全概率公式计算在小题中单独考查,或与随机变量的分布列、数字特征相结合融合在解答题中考查.【知识梳理】1.事件的相互独立性事件A与事件B相互独立 对任意的两个事件A与B,如果P(AB)=P(A)P(B)成立,则称事件A与事件B相互独立,简称为独立性质 若事件A与事件B相互独立,则A与B,A与B,A与B也都相互独立,P(B|A)=P(B),P(A|B)=P(A)2.条件概率条件概率的定义 设A,B为两个随机事件,且P(A)>0,称P(B|A)=为在事件A发生的条件下,事件B发生的条件概率,简称条件概率条件概率的性质 (1)P(Ω|A)=1; (2)如果B和C是两个互斥事件,则P(B∪C|A)=P(B|A)+P(C|A); (3)设B与B互为对立事件,则P(B|A)=1-P(B|A)3.全概率公式一般地,设A1,A2,…,An是一组两两互斥的事件,A1∪A2∪…∪An=Ω,且P(Ai)>0,i=1,2,…,n,则对任意的事件B Ω,有P(B)=P(Ai)P(B|Ai),我们称上面的公式为全概率公式.【常用结论】1.两事件互斥是指两个事件不可能同时发生,两事件相互独立是指一个事件发生与否对另一事件发生的概率没有影响,两事件相互独立不一定互斥.2.计算条件概率除了应用公式P(B|A)=外,还可以利用缩减公式法,即P(B|A)=,其中n(A)为事件A包含的样本点数,n(AB)为事件AB包含的样本点数.3.P(B|A)是在事件A发生的条件下事件B发生的概率,P(A|B)是在事件B发生的条件下事件A发生的概率.4.计算条件概率P(B|A)时,不能随便用事件B的概率P(B)代替P(AB).【诊断自测】1.概念辨析(正确的打“√”,错误的打“×”)(1)若事件A,B互斥,则P(B|A)=1.( )(2)若A,B相互独立,且P(A)=0.5,P(B)=0.4,则A,B都不发生的概率为0.3.( )(3)抛掷2枚质地均匀的硬币,“第一枚为正面向上”为事件A,“第二枚为正面向上”为事件B,则A,B相互独立.( )(4)P(A)=P(A)P(B|A)+P(A)P(B|A).( )答案 (1)× (2)√ (3)√ (4)×2.小题热身(1)一个电路上装有甲、乙两根保险丝,甲熔断的概率为0.85,乙熔断的概率为0.74,甲、乙两根保险丝熔断与否相互独立,则两根保险丝都熔断的概率为( )A.1 B.0.629C.0 D.0.74或0.85答案 B解析 由题意知甲、乙两根保险丝熔断与否相互独立,所以甲、乙两根保险丝都熔断的概率为0.85×0.74=0.629.(2)(人教B选择性必修第二册4.1.1例2改编)根据历年的气象数据,某市5月份发生中度雾霾的概率为0.25,刮四级以上大风的概率为0.4,既发生中度雾霾又刮四级以上大风的概率为0.2.则在发生中度雾霾的情况下,刮四级以上大风的概率为( )A.0.8 B.0.625C.0.5 D.0.1答案 A解析 设“发生中度雾霾”为事件A,“刮四级以上大风”为事件B,由题意知,P(A)=0.25,P(B)=0.4,P(AB)=0.2,则在发生中度雾霾的情况下,刮四级以上大风的概率为P(B|A)===0.8.(3)(2023·河南安阳二模)某班计划在下周一至周三中的某一天去参观党史博物馆,若选择周一、周二、周三的概率分别为0.3,0.4,0.3,根据天气预报,这三天下雨的概率分别为0.4,0.2,0.5,且这三天是否下雨相互独立,则他们参观党史博物馆的当天不下雨的概率为( )A.0.25 B.0.35C.0.65 D.0.75答案 C解析 他们参观党史博物馆的当天下雨的概率为0.3×0.4+0.4×0.2+0.3×0.5=0.35,所以不下雨的概率为1-0.35=0.65.(4)(多选)(人教A选择性必修第三册7.1.1练习T3改编)一个袋子中装有除颜色外完全相同的5个球,其中有3个红球,2个白球,每次从中随机摸出1个球,则下列结论中正确的是( )A.若不放回地摸球2次,则第一次摸到红球的概率为B.若不放回地摸球2次,则在第一次摸到红球的条件下第二次摸到红球的概率为C.若有放回地摸球3次,则仅有前2次摸到红球的概率为D.若有放回地摸球3次,则恰有2次摸到红球的概率为答案 BCD解析 对于A,第一次摸到红球的概率为,故A错误;对于B,不放回地摸球2次,则在第一次摸到红球的条件下第二次摸到红球的概率P==,故B正确;对于C,有放回地摸球3次,则仅有前2次摸到红球的概率为××=,故C正确;对于D,有放回地摸球3次,则恰有2次摸到红球的概率为C××=,故D正确.故选BCD.【考点探究】考点一 事件的相互独立性(多考向探究)考向1 事件独立性的判定例1 (2023·江苏常州一中期初检测)袋子里装有形状大小完全相同的4个小球,球上分别标有数字1,2,3,4,从中有放回地随机取两次,每次取1个球,A表示事件“第一次取出的球上数字是1”,B表示事件“第二次取出的球上数字是2”,C表示事件“两次取出的球上数字之和是5”,D表示事件“两次取出的球上数字之和是6”,通过计算,则可以得出( )A.B与D相互独立 B.A与D相互独立C.B与C相互独立 D.C与D相互独立答案 C解析 由题意可得P(A)=,P(B)=,有放回地随机取两次,每次取1个球,两次取出的球上数字之和是5的情况有(1,4),(4,1),(2,3),(3,2),共4种,所以P(C)==;两次取出的球上数字之和是6的情况有(2,4),(4,2),(3,3),共3种,故P(D)==.对于A,P(BD)==,P(B)P(D)=×=,则P(BD)≠P(B)P(D),故B与D不是相互独立事件,故A错误;对于B,P(AD)=0,P(A)P(D)=×=,则P(AD)≠P(A)P(D),故A与D不是相互独立事件,故B错误;对于C,P(BC)==,P(B)P(C)=×=,则P(BC)=P(B)P(C),故B与C是相互独立事件,故C正确;对于D,P(CD)=0,P(C)P(D)=×=,则P(CD)≠P(C)P(D),故C与D不是相互独立事件,故D错误.【通性通法】判断两个事件是否相互独立的方法(1)直接法:直接判断一个事件发生与否是否影响另一事件发生的概率.(2)定义法:判断P(AB)=P(A)P(B)是否成立.(3)转化法:由事件A与事件B相互独立知,A与B,A与B,A与B也相互独立.【巩固迁移】1.(2024·河北唐山模拟)已知一个古典概型的样本空间Ω和事件A,B如图所示.其中n(Ω)=12,n(A)=6,n(B)=4,n(A∪B)=8,则事件A与事件B( )A.是互斥事件,不是独立事件B.不是互斥事件,是独立事件C.既是互斥事件,也是独立事件D.既不是互斥事件,也不是独立事件答案 B解析 因为n(Ω)=12,n(A)=6,n(B)=4,n(A∪B)=8,所以n(A∩B)=2,n(A∩B)=4,n(B)=8,所以事件A与事件B不是互斥事件;P(AB)==,P(A)P(B)=×=,所以P(AB)=P(A)P(B),所以事件A与事件B是独立事件.故选B.考向2 相互独立事件的概率例2 (2023·山西太原二模)某产品需要通过两类质量检验才能出货.已知该产品第一类检验单独通过率为,第二类检验单独通过率为p(0A. B.C. D.答案 C解析 设Ai表示第i次通过第一类检验,Bi表示第i次通过第二类检验(i=1,2),由题意得P(A1B1+A1A2B1+A1B1B2+A1A2B1B2)=,即p+×p+×(1-p)p+××(1-p)p=,解得p=或p=(舍去).【通性通法】求相互独立事件同时发生的概率的方法(1)相互独立事件同时发生的概率等于它们各自发生的概率之积.(2)当正面计算较复杂或难以入手时,可从其对立事件入手计算.【巩固迁移】2.(多选)(2023·新课标Ⅱ卷)在信道内传输0,1信号,信号的传输相互独立.发送0时,收到1的概率为α(0<α<1),收到0的概率为1-α;发送1时,收到0的概率为β(0<β<1),收到1的概率为1-β.考虑两种传输方案:单次传输和三次传输.单次传输是指每个信号只发送1次,三次传输是指每个信号重复发送3次.收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码;三次传输时,收到的信号中出现次数多的即为译码(例如,若依次收到1,0,1,则译码为1)( )A.采用单次传输方案,若依次发送1,0,1,则依次收到1,0,1的概率为(1-α)(1-β)2B.采用三次传输方案,若发送1,则依次收到1,0,1的概率为β(1-β)2C.采用三次传输方案,若发送1,则译码为1的概率为β(1-β)2+(1-β)3D.当0<α<0.5时,若发送0,则采用三次传输方案译码为0的概率大于采用单次传输方案译码为0的概率答案 ABD解析 对于A,依次发送1,0,1,则依次收到1,0,1的事件是发送1收到1,发送0收到0,发送1收到1这3个事件的积事件,它们相互独立,所以所求概率为(1-β)(1-α)(1-β)=(1-α)(1-β)2,A正确;对于B,三次传输,发送1,相当于依次发送1,1,1,则依次收到1,0,1的事件是发送1收到1,发送1收到0,发送1收到1这3个事件的积事件,它们相互独立,所以所求概率为(1-β)β(1-β)=β(1-β)2,B正确;对于C,三次传输,发送1,则译码为1的事件是依次收到1,1,0、1,0,1、0,1,1和1,1,1的和事件,它们两两互斥,由选项B知,所求的概率为C(1-β)2β+(1-β)3=(1-β)2(1+2β),C错误;对于D,由C项知,三次传输,发送0,则译码为0的概率P=(1-α)2(1+2α),单次传输发送0,则译码为0的概率P′=1-α,而0<α<0.5,因此P-P′=(1-α)2(1+2α)-(1-α)=α(1-α)(1-2α)>0,即P>P′,D正确.故选ABD.考点二 条件概率例3 现有甲、乙、丙、丁4人到九嶷山、阳明山、云冰山、舜皇山4处景点旅游,每人只去一处景点,设事件A为“4人去的景点各不相同”,事件B为“只有甲去了九嶷山”,则P(A|B)=( )A. B.C. D.答案 C解析 由题意,4人去4个不同的景点,总样本点数为4×4×4×4=256,事件B包含的样本点数为1×3×3×3=27,则事件B发生的概率为P(B)=,事件A与事件B的交事件AB为“甲去了九嶷山,另外三人去了另外三个不同的景点”,事件AB包含的样本点数为1×A=6,则事件AB发生的概率为P(AB)==,即P(A|B)===.【通性通法】求条件概率的常用方法(1)定义法:P(B|A)=.(2)样本点法:P(B|A)=.(3)缩样法:去掉第一次抽到的情况,只研究剩下的情况,用古典概型求解.【巩固迁移】3.(多选)(2024·滨州模拟)为庆祝建党节,讴歌中华民族实现伟大复兴的奋斗历程,增进全体党员干部职工对党史知识的了解,某单位组织开展党史知识竞赛活动,以支部为单位参加比赛,某支部在5道党史题中(有3道选择题和2道填空题)不放回地依次随机抽取2道题作答,设事件A为“第1次抽到选择题”,事件B为“第2次抽到选择题”,则下列结论中正确的是( )A.P(A)= B.P(AB)=C.P(B|A)= D.P(B|)=答案 ABC解析 P(A)==,故A正确;P(AB)==,故B正确;P(B|A)===,故C正确;P()=1-P(A)=1-=,P(B)==,P(B|)===,故D错误.考点三 全概率公式的应用例4 某保险公司将其公司的被保险人分为三类:“谨慎的”“一般的”“冒失的”.统计资料表明,这三类人在一年内发生事故的概率依次为0.05,0.15,0.30.若该保险公司的被保险人中“谨慎的”被保险人占20%,“一般的”被保险人占50%,“冒失的”被保险人占30%,则该保险公司的一个被保险人在一年内发生事故的概率是( )A.0.155 B.0.175C.0.016 D.0.096答案 B解析 设事件B1表示“被保险人是‘谨慎的’”,事件B2表示“被保险人是‘一般的’”,事件B3表示“被保险人是‘冒失的’”,则P(B1)=20%,P(B2)=50%,P(B3)=30%.设事件A表示“被保险人在一年内发生事故”,则P(A|B1)=0.05,P(A|B2)=0.15,P(A|B3)=0.30.由全概率公式,得P(A)=P(Bi)·P(A|Bi)=20%×0.05+50%×0.15+30%×0.30=0.175.【通性通法】利用全概率公式的思路(1)按照确定的标准,将一个复合事件分解为若干个互斥事件Ai(i=1,2,…,n).(2)求P(Ai)和所求事件B在各个互斥事件Ai发生条件下的概率P(B|Ai).(3)代入全概率公式计算.【巩固迁移】4.葫芦山庄襟渤海之辽阔,仰天角之雄奇,勘葫芦之蕴涵,显人文之魅力,是渤海湾著名的人文景区,是葫芦岛市“葫芦文化与关东民俗文化”代表地和中小学综合实践教育基地.山庄中葫芦品种分为亚腰、瓢、长柄锤、长筒、异型、花皮葫芦等系列.其中亚腰葫芦具有天然迷彩花纹,果实形状不固定,观赏性强,每株亚腰葫芦可结出果实20~80颗.2024年初葫芦山庄播种用的一等亚腰葫芦种子中混有2%的二等种子,1.5%的三等种子,1%的四等种子,一、二、三、四等种子长出的葫芦秧结出50颗以上果实的概率分别为0.5,0.15,0.1,0.05,则这批种子所生长出的葫芦秧结出50颗以上果实的概率为________.答案 0.4825解析 设从这批种子中任选一颗是一、二、三、四等种子的事件分别是A1,A2,A3,A4,则Ω=A1∪A2∪A3∪A4,且A1,A2,A3,A4两两互斥,设事件B表示“从这批种子中任选一颗,所生长出的葫芦秧结出50颗以上果实”,则P(B)=P(A1)P(B|A1)+P(A2)P(B|A2)+P(A3)·P(B|A3)+P(A4)P(B|A4)=95.5%×0.5+2%×0.15+1.5%×0.1+1%×0.05=0.4825.21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台第四节 事件的相互独立性、条件概率与全概率公式课标解读 考向预测1.结合有限样本空间,了解两个随机事件独立性的含义.结合古典概型,利用独立性计算概率. 2.结合古典概型,了解条件概率,能计算简单随机事件的条件概率. 3.结合古典概型,了解条件概率与独立性的关系. 4.结合古典概型,会利用乘法公式计算概率. 5.结合古典概型,会利用全概率公式计算概率. 6.了解贝叶斯公式. 预计2025年高考将会以事件独立性的判断或条件概率、全概率公式计算在小题中单独考查,或与随机变量的分布列、数字特征相结合融合在解答题中考查.【知识梳理】1.事件的相互独立性事件A与事件B相互独立 对任意的两个事件A与B,如果P(AB)=P(A)P(B)成立,则称事件A与事件B相互独立,简称为独立性质 若事件A与事件B相互独立,则A与B,A与B,A与B也都相互独立,P(B|A)=P(B),P(A|B)=P(A)2.条件概率条件概率的定义 设A,B为两个随机事件,且P(A)>0,称P(B|A)=为在事件A发生的条件下,事件B发生的条件概率,简称条件概率条件概率的性质 (1)P(Ω|A)=1; (2)如果B和C是两个互斥事件,则P(B∪C|A)=P(B|A)+P(C|A); (3)设B与B互为对立事件,则P(B|A)=1-P(B|A)3.全概率公式一般地,设A1,A2,…,An是一组两两互斥的事件,A1∪A2∪…∪An=Ω,且P(Ai)>0,i=1,2,…,n,则对任意的事件B Ω,有P(B)=P(Ai)P(B|Ai),我们称上面的公式为全概率公式.【常用结论】1.两事件互斥是指两个事件不可能同时发生,两事件相互独立是指一个事件发生与否对另一事件发生的概率没有影响,两事件相互独立不一定互斥.2.计算条件概率除了应用公式P(B|A)=外,还可以利用缩减公式法,即P(B|A)=,其中n(A)为事件A包含的样本点数,n(AB)为事件AB包含的样本点数.3.P(B|A)是在事件A发生的条件下事件B发生的概率,P(A|B)是在事件B发生的条件下事件A发生的概率.4.计算条件概率P(B|A)时,不能随便用事件B的概率P(B)代替P(AB).【诊断自测】1.概念辨析(正确的打“√”,错误的打“×”)(1)若事件A,B互斥,则P(B|A)=1.( )(2)若A,B相互独立,且P(A)=0.5,P(B)=0.4,则A,B都不发生的概率为0.3.( )(3)抛掷2枚质地均匀的硬币,“第一枚为正面向上”为事件A,“第二枚为正面向上”为事件B,则A,B相互独立.( )(4)P(A)=P(A)P(B|A)+P(A)P(B|A).( )2.小题热身(1)一个电路上装有甲、乙两根保险丝,甲熔断的概率为0.85,乙熔断的概率为0.74,甲、乙两根保险丝熔断与否相互独立,则两根保险丝都熔断的概率为( )A.1 B.0.629C.0 D.0.74或0.85(2)(人教B选择性必修第二册4.1.1例2改编)根据历年的气象数据,某市5月份发生中度雾霾的概率为0.25,刮四级以上大风的概率为0.4,既发生中度雾霾又刮四级以上大风的概率为0.2.则在发生中度雾霾的情况下,刮四级以上大风的概率为( )A.0.8 B.0.625C.0.5 D.0.1(3)(2023·河南安阳二模)某班计划在下周一至周三中的某一天去参观党史博物馆,若选择周一、周二、周三的概率分别为0.3,0.4,0.3,根据天气预报,这三天下雨的概率分别为0.4,0.2,0.5,且这三天是否下雨相互独立,则他们参观党史博物馆的当天不下雨的概率为( )A.0.25 B.0.35C.0.65 D.0.75(4)(多选)(人教A选择性必修第三册7.1.1练习T3改编)一个袋子中装有除颜色外完全相同的5个球,其中有3个红球,2个白球,每次从中随机摸出1个球,则下列结论中正确的是( )A.若不放回地摸球2次,则第一次摸到红球的概率为B.若不放回地摸球2次,则在第一次摸到红球的条件下第二次摸到红球的概率为C.若有放回地摸球3次,则仅有前2次摸到红球的概率为D.若有放回地摸球3次,则恰有2次摸到红球的概率为【考点探究】考点一 事件的相互独立性(多考向探究)考向1 事件独立性的判定例1 (2023·江苏常州一中期初检测)袋子里装有形状大小完全相同的4个小球,球上分别标有数字1,2,3,4,从中有放回地随机取两次,每次取1个球,A表示事件“第一次取出的球上数字是1”,B表示事件“第二次取出的球上数字是2”,C表示事件“两次取出的球上数字之和是5”,D表示事件“两次取出的球上数字之和是6”,通过计算,则可以得出( )A.B与D相互独立 B.A与D相互独立C.B与C相互独立 D.C与D相互独立【通性通法】判断两个事件是否相互独立的方法(1)直接法:直接判断一个事件发生与否是否影响另一事件发生的概率.(2)定义法:判断P(AB)=P(A)P(B)是否成立.(3)转化法:由事件A与事件B相互独立知,A与B,A与B,A与B也相互独立.【巩固迁移】1.(2024·河北唐山模拟)已知一个古典概型的样本空间Ω和事件A,B如图所示.其中n(Ω)=12,n(A)=6,n(B)=4,n(A∪B)=8,则事件A与事件B( )A.是互斥事件,不是独立事件B.不是互斥事件,是独立事件C.既是互斥事件,也是独立事件D.既不是互斥事件,也不是独立事件考向2 相互独立事件的概率例2 (2023·山西太原二模)某产品需要通过两类质量检验才能出货.已知该产品第一类检验单独通过率为,第二类检验单独通过率为p(0A. B.C. D.【通性通法】求相互独立事件同时发生的概率的方法(1)相互独立事件同时发生的概率等于它们各自发生的概率之积.(2)当正面计算较复杂或难以入手时,可从其对立事件入手计算.【巩固迁移】2.(多选)(2023·新课标Ⅱ卷)在信道内传输0,1信号,信号的传输相互独立.发送0时,收到1的概率为α(0<α<1),收到0的概率为1-α;发送1时,收到0的概率为β(0<β<1),收到1的概率为1-β.考虑两种传输方案:单次传输和三次传输.单次传输是指每个信号只发送1次,三次传输是指每个信号重复发送3次.收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码;三次传输时,收到的信号中出现次数多的即为译码(例如,若依次收到1,0,1,则译码为1)( )A.采用单次传输方案,若依次发送1,0,1,则依次收到1,0,1的概率为(1-α)(1-β)2B.采用三次传输方案,若发送1,则依次收到1,0,1的概率为β(1-β)2C.采用三次传输方案,若发送1,则译码为1的概率为β(1-β)2+(1-β)3D.当0<α<0.5时,若发送0,则采用三次传输方案译码为0的概率大于采用单次传输方案译码为0的概率考点二 条件概率例3 现有甲、乙、丙、丁4人到九嶷山、阳明山、云冰山、舜皇山4处景点旅游,每人只去一处景点,设事件A为“4人去的景点各不相同”,事件B为“只有甲去了九嶷山”,则P(A|B)=( )A. B.C. D.【通性通法】求条件概率的常用方法(1)定义法:P(B|A)=.(2)样本点法:P(B|A)=.(3)缩样法:去掉第一次抽到的情况,只研究剩下的情况,用古典概型求解.【巩固迁移】3.(多选)(2024·滨州模拟)为庆祝建党节,讴歌中华民族实现伟大复兴的奋斗历程,增进全体党员干部职工对党史知识的了解,某单位组织开展党史知识竞赛活动,以支部为单位参加比赛,某支部在5道党史题中(有3道选择题和2道填空题)不放回地依次随机抽取2道题作答,设事件A为“第1次抽到选择题”,事件B为“第2次抽到选择题”,则下列结论中正确的是( )A.P(A)= B.P(AB)=C.P(B|A)= D.P(B|)=考点三 全概率公式的应用例4 某保险公司将其公司的被保险人分为三类:“谨慎的”“一般的”“冒失的”.统计资料表明,这三类人在一年内发生事故的概率依次为0.05,0.15,0.30.若该保险公司的被保险人中“谨慎的”被保险人占20%,“一般的”被保险人占50%,“冒失的”被保险人占30%,则该保险公司的一个被保险人在一年内发生事故的概率是( )A.0.155 B.0.175C.0.016 D.0.096【通性通法】利用全概率公式的思路(1)按照确定的标准,将一个复合事件分解为若干个互斥事件Ai(i=1,2,…,n).(2)求P(Ai)和所求事件B在各个互斥事件Ai发生条件下的概率P(B|Ai).(3)代入全概率公式计算.【巩固迁移】4.葫芦山庄襟渤海之辽阔,仰天角之雄奇,勘葫芦之蕴涵,显人文之魅力,是渤海湾著名的人文景区,是葫芦岛市“葫芦文化与关东民俗文化”代表地和中小学综合实践教育基地.山庄中葫芦品种分为亚腰、瓢、长柄锤、长筒、异型、花皮葫芦等系列.其中亚腰葫芦具有天然迷彩花纹,果实形状不固定,观赏性强,每株亚腰葫芦可结出果实20~80颗.2024年初葫芦山庄播种用的一等亚腰葫芦种子中混有2%的二等种子,1.5%的三等种子,1%的四等种子,一、二、三、四等种子长出的葫芦秧结出50颗以上果实的概率分别为0.5,0.15,0.1,0.05,则这批种子所生长出的葫芦秧结出50颗以上果实的概率为________.21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)21世纪教育网(www.21cnjy.com) 展开更多...... 收起↑ 资源列表 第4节 事件的相互独立性、条件概率与全概率公式(原卷版).docx 第4节 事件的相互独立性、条件概率与全概率公式(解析版).doc