资源简介 惠州市 2025 届高三第二次调研考试试题高三数学参考答案与评分细则一、单项选择题:本题共 8小题,每小题满分 5分,共 40分.题号 1 2 3 4 5 6 7 8答案 B D C B A A D C1.【解析】因为 B x 0 x 4 , 所以 A B x 2 x 4 . 故选:B.22.【解析】因为 z 2 1 0 ,即 z 2 1,所以 z i ,所以 z 1 1 i 12 1 2 .故选:D. 9a 36d 273.【解析】设等差数列 a 1n 的公差为 d ,由已知得: ,解得 a1 1,d 1, a1 9d 8所以 a100 a1 99d 1 99 98.故选:C.4.【解析】连接 FB,在正方体 ABCD A1B1C1D1 中, BC 平面 ABB1A1,棱 BC的中点为 E,则 BE 平面 ABB1A1,而 BF 平面 ABB1A1,故 BE BF ,则 EFB即为直线 EF 与平面 ABB1A1所成角,设正方体棱长为 2,则 BE 1,BF B F 2 21 B1B 1 4 5 ,2 2 sin EFB BE 1 6则 EF BF BE 6 ,故 .故选:B.EF 6 6 2 55.【解析】由 b 2 , (2a b) b 3,得 2a b b 2a b 2 3 ,即 a b ,25a 2 a b a a b 5 3 5由已知得 ,所以向量b在向量 a上的投影向量为 2 a 2 ( 3,1) ( ,).a a a 4 8 8故选:A.a 16.【解析】若函数 f (x) 在 (1, ) 1上单调递增,则 ,解得 a , 1 2a 0 2所以“ a 0 ”是“函数 f (x) 在 (1, )上单调递增”的充分不必要条件.故选:A.高三数学答案 第 1页,共 11页{#{QQABLQAAogAgAgAAAQgCQQkwCgCQkhCCAQgOwFAIIAIAyBFABAA=}#}7.【解析】设优弧 BC所在圆的圆心为O ,半径为 ,连接OA,OB,OC .易知“水滴”的“竖直高度”OA R 2R OA R 4 5为 ,“水平宽度”为 , 由题意知 ,解得OA R . 因为 AB与圆弧相切于点 B ,2R 3 3所以OB AB .在 Rt ABO中, sin BAO OB R 3 5 ,又 BAO (0, ) ,OA R 5 232 4所以 cos BAO 1 sin BAO ,由对称性知, BAO CAO ,则 BAC 2 BAO ,5所以 sin BAC 2sin BAO cos BAO 2 3 4 24 .故选:D.5 5 258.【解析】根据已知条件设理科女生有 x1人,理科男生有 x2人;文科女生有 y1 人,文科男生有 y2 人;根据题意可知: x1 x2 y1 y2 , x1 y1 x2 y2 ,根据同向不等式可加的性质有: x1 x2 x1 y1 y1 y2 x2 y2 ,即 x1 y2 ,所以理科女生多于文科男生,C 正确.其他选项没有足够证据论证.故选:C.二、多项选择题:本题共 3小题,每小题满分 6分,共 18分。在每小题给出的四个选项中,有多项符合题目要求。全部选对得 6分,部分选对得部分分,有选错的得 0分。题号 9 10 11全部正确选项 AD ABD ACD9.【解析】数据从小到大排列为:1,1,2,3,3,3,3,4,5,5.对于 A,该组数据的极差为5 1 4,故 A正确;1 2 2 3 4 4 5 2对于 B,众数为 3,平均数为 3,两者相等,故 B 错误;101 2 2 2对于 C,方差为 (1 3) 2 (2 3) 1 (3 3) 4 (4 3)2 1 (5 3)2 2 1.8,故 C错误;10对于 D,10 80% 8 ,这组数据的第 80 百分位数为第 8 个数和第 9个数的平均数 4.5,故 D 正确.故选:AD.10.【解析】由图像可知: f x max 2 , A 2 ;高三数学答案 第 2页,共 11页{#{QQABLQAAogAgAgAAAQgCQQkwCgCQkhCCAQgOwFAIIAIAyBFABAA=}#}又 f 0 2sin 1 1 ,故 sin ,又 ,所以 ,所以 A 项正确;2 2 6 7 7 7 已知 f 2sin 0,由五点作图法可知: ,解得: 2,所以 B项正确; 12 12 6 12 6f x 2sin 故 2x ;则 xf (x ) 2x sin 2x ,设 h(x) xf (x ) 2x sin 2x, 6 12 12则 h( x) 2( x) sin( 2x) 2x sin 2x h(x) y xf (x ,所以函数 ) 是偶函数,故 C 项错误;12g(x) f (x ) 2sin 2(x ) 2sin(2x ) 2cos (2x ) 6 6 6 6 2 6 2cos( 2x) 2cos(2x ) ,所以 D项正确;3 3故选:ABD.2 2 211.【解析】A选项,经验算,点 ( ,0)和 ( 1,1)的坐标满足曲线 L的方程: x (y x ) 1,所以点2( 2 ,0)和 ( 1,1)均在 L上,故 A 项正确;2B 选项,OP x2 y2 2 2,因为曲线 L:x (y x ) 1关于 y轴对称,当 x 0 时,x2 (y x)2 1,x cos , y x sin , 设 , , 2 2 2 2所以 OP x y2 cos2 (cos sin )2 1 cos 2 1 sin 2 23 1 sin 2 1 cos 2 3 5 sin(2 ) ,其中 tan ,2 2 2 2 2OP 3 5 5 1 3 5 5 1所以 , OP ,所以 OP 的最大值和最小值之和min 2 2 2 max 2 2 2为 5 ,故 B 项错误;2 2C 选项,因为曲线 L: x (y x ) 1关于 y轴对称,当 x 0 时, x2 (y x)2 1,则 (y x)2 1 x2 ,所以 y x 1 x2 ,因求点 P的纵坐标的最大值,故取 y x 1 x2 ,又 y2 (x 1 x21)2 1 2x 1 x2 1 2 x2 (1 x2 ) 1 x2 (1 x2 ) 2 2(当且仅当 x 时2等号成立),所以 y 2 ,故 C 项正确;高三数学答案 第 3页,共 11页{#{QQABLQAAogAgAgAAAQgCQQkwCgCQkhCCAQgOwFAIIAIAyBFABAA=}#}2 2D 选项, PA PB 2 3 y x等价于点 P在椭圆 1内(包含椭圆),由 B项可知,即满足:3 23(1 cos 2 )2(cos sin )2 3cos2 6,即 2(1 sin 2 ) 6,整理得:234sin 2 3cos 2 5,即5sin(2 ) 5,其中其中 tan ,即 sin(2 ) 1恒成立,则故4D 项正确.故选:ABD.三、填空题:本题共 3小题,每小题 5分,共 15分.12. 32 513. 14. e2512.【解析】当 x 1时,二项式展开式各项的系数和为 25 32.故答案为:32.213.【解析】由题意知 AF1 a c, F1F2 2c, F1B c a,且三者成等比数列,则 F1F2 AF1 F1B4c2 (c a)(c a) c2 a2 e2 1 e 5 5即 ,所以 ,所以 . 故答案为: .5 5 5b 1 b 114.【解析】设方程 ln(ax ) x2 的实根为 x0 ,则 ln(ax ) x20 0 ,2 4 2 4b x2 1 10 b x20 所以 ax0 e 4 ,即 ax0 e 4 0 .2 2y x2 10 设点 P(a,b) ,则点 P在直线 x0x e 4 0上.2x2 10 4y x2 1 e0 设点O(0,0)到直线 x 4 的距离为 ,则 d ,0x e 0 d2 x2 10 4tt x2 1 f (t) e (t 1t设 0 , ) ,则 f ' (t)e (t 1) ,4 t 2 t 2 1 求得 f (t)在 ,1 上单调递减,在 1, 上单调递增,所以 f (t)min f (1) e, 2 则 d f (t) e,又 a2 b2 OP 2 2,由几何意义可知 OP d,所以 a2 b2 OP e2 .高三数学答案 第 4页,共 11页{#{QQABLQAAogAgAgAAAQgCQQkwCgCQkhCCAQgOwFAIIAIAyBFABAA=}#} 3 b a 3 a e 0 e3检验:当 t 1时, x0 ,由 2 22,解得 ;2 a2 b2 e2 e b 2 3 b 3 a e 0 a e由 2 2 2,解得 ,所以则 a2 b2 可以取到最小值 e2 . e a2 b2 e2 b 2故答案为: e2 .四、解答题:本题共 5小题,共 77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分 13 分,其中第一小问 6 分,第二小问 7 分。)1 1 1 【解析】(1)因为: f 1 1 0 ,所以切点坐标为: 1, ,··························· 1 分2 2 2 f x x 2又 1 , ····························································································· 2 分x所以 f 1 2, ································································································ 3 分即所求切线的斜率为 2 .1所以切线方程为: y 2 x 1 , ······································································· 5 分2化简得: 4x 2y 3 0,所以曲线 y f x 在点 (1,f 1 )处的切线方程为 4x 2y 3 0.·························································································································· 6 分3【注】切线方程写成 y 2x 不扣分22 x 2f x x 1 2 x x 2 x 1 (2) ,( x 0) ········································8 分x x x由 f ' (x) 0 得 x 2;由 f ' (x) 0 得0 x 2. ············································ 10 分所以 f x 在 1,2 上单调递减,在 2,e 上单调递增. ················································· 11 分所以函数 f x 在区间 1,e 上的极小值为 f 2 2ln 2,也是最小值.所以函数 f x 在区间 1,e 上的最小值为 2ln 2 .························································································································ 13 分高三数学答案 第 5页,共 11页{#{QQABLQAAogAgAgAAAQgCQQkwCgCQkhCCAQgOwFAIIAIAyBFABAA=}#}16.(本小题满分 15 分,其中第一小问 5 分,第二小问 10 分。)【解析】(1)证明:已知 PA 底面 ABCD,且 BC 底面 ABCD,所以 PA BC . ··································································································· 2 分由 ACB 90 , 可得 BC AC .············································································ 3 分又 PA AC A,PA, AC 平面 PAC , ································································· 4 分所以 BC 平面 PAC . ······················································································ 5 分(2)取CD的中点 E.由 AB∥ CD , BAD 120 ,可得 ADC 60 ,又因为 AD CD 1,所以三角形 ADC是正三角形,················································· 6 分故 AE CD , AE AB . ··················································································7 分在Rt ACB中, BAC 60 , AC 1,所以 AB 2 . ·············································8 分可建立如图所示的空间直角坐标系, A 0,0,0 ,P 0,0, 3 ,C 3 , 1 ,0 ,D 3 1 求得 2 2 , ,0 ,B 0,2,0 ,························ 9 分 2 2 3由(1)可知, BC ( , 3 ,0) 是平面 PAC的一个法向量,·····································10 分2 2 DC n 0设平面 PDC的一个法向量为 n (a,b,c),则 , PC n 0 b 0 即 3 1 , ··················································································11 分 a b 3c 0 2 23令 a 3,得 n ( 3,0, ), ···········································································12 分2设平面 PCD与平面 PCA的夹角为 ,3BC ncos cos BC,n 2 5所以 .BC n 3 155 25所以平面 PCD与平面 PCA夹角的余弦值为 .5························································································································ 15 分高三数学答案 第 6页,共 11页{#{QQABLQAAogAgAgAAAQgCQQkwCgCQkhCCAQgOwFAIIAIAyBFABAA=}#}BC n【注】写出公式 cos cos BC,n 给一分,代入数据给一分,结果计算正确给一分BC n17.(本小题满分 15 分,其中第一小问 7 分,第二小问 8 分。) x2 y2 1【解析】(1)直线 l与双曲线C有两个不同的交点,则方程组 有两组不同的实数根, y kx 1整理得 (1 k 2 )x 2kx 2 0 . ··············································································· 2 分 1 k 2 0 ,··············································································2 2 4 分 4k 4(1 k ) ( 2) 0解得 2 k 2 且 k 1, ·········································································· 6 分双曲线C与直线 l有两个不同的交点时, k的取值范围是 ( 2, 1) ( 1,1) (1, 2) .·························································································································· 7 分(2)解法一:设交点 A(x1, y1),B(x2 , y2 ) ,由(1)知双曲线C与直线 l联立的方程为 (1 k 2 )x 2kx 2 0 .2k 2由韦达定理得: x1 x2 2 , x1x2 2 ,···················································· 8 分1 k 1 k则 AB 1 k 2 x x 1 k 22 1 (x2 x )21 4x1x2 ··············································9 分2 1 k 2 ( 2k 2 )2 4( 2 ) 1 8 4k 2 k2 2 ········································ 10 分1 k 1 k 1 kd 1又O到直线 l的距离 , ········································································11 分1 k 21 2 k 2所以 OAB的面积 S OAB AB d 22 ,············································· 12 分2 1 kk 0 k 6解得 或 , ·················································································· 14 分26又因为 2 k 2 且 k 1,所以 k 0 或 k .26所以当 k 0或 k 时, OAB的面积为 2 . ··················································15 分2高三数学答案 第 7页,共 11页{#{QQABLQAAogAgAgAAAQgCQQkwCgCQkhCCAQgOwFAIIAIAyBFABAA=}#}【注】漏掉 k 0扣一分解法二:设交点 A(x1, y y1),B(x2 , y2 ) ,直线 l与 轴交于点D(0, 1) ,由(1)知双曲线C与直线 l联立的方程为 (1 k 2 )x 2kx 2 0 .2k 2由韦达定理得: x1 x2 2 , x1x2 2 ,···················································· 8 分1 k 1 k1 1当 A,B在双曲线的一支上且 x1 x2 时, S OAB S OAD S OBD ( x1 x2 ) x1 x ;2 2 2当 A,B在双曲线的两支上且 x1 x2 时, S OAB S1 OAD S OBD ( x11 x2 ) x2 2 1 x21综上, S OAB x1 x2 . ················································································ 10 分2【注】未讨论两种情况、直接写对面积公式的扣一分1 2由已知得 S OAB x1 x2 2 ,故 (x1 x2 ) 8 ,即 (x1 x22 2) 4x1x2 8( 2k )2 2所以 2 4( 2 ) 8 ,········································································· 12 分1 k 1 k解得 k 0或 k 6 ,·······················································································14 分26又因为 2 k 2 且 k 1,所以 k 0 或 k .2所以当 k 0或 k 6 时, OAB的面积为 2 .··················································· 15 分218.(本小题满分 17 分,其中第一小问 10 分,第二小问 7 分。)【解析】(1)由 a b c,则 A B C . ······························································· 1 分 由 A B C ,则 A B C 3A,故0 A , ··············································2 分3所以0 tan A 3 , ·························································································· 3 分因为 tan A为整数,所以 tan A 1, ········································································4 分解法一:由 tan A 1,可得 A , B C 3 . 因为 A B C,所以 B为锐角,4 4 则 B ,所以 C ,············································································ 6 分4 2 4 2所以角 A,B,C均为锐角,所以 tan A,tan B,tanC均为正整数,又 tan A 1,所以 tanC tan B 2 ,高三数学答案 第 8页,共 11页{#{QQABLQAAogAgAgAAAQgCQQkwCgCQkhCCAQgOwFAIIAIAyBFABAA=}#}tan B tan(3 C) 1 tanC由 2,································································ 8 分4 1 tanC解得 tanC 3,所以 tan B 2, tanC 3 .综上, tan A 1,tan B 2,tanC 3 .经检验,当 tan A 1,tan B 2 时,因为 tan(A B)tan A tan B 1 2 3 tanC1 tan A tan B 1 1 2所以 A B C ,符合题意. ··············································································10 分【注】未检验扣一分 3 解法二:由 tan A 1,可得 A , B C .4 43 B C 2B 3 因为 A B C ,所以 ,则 B ,4 4 8所以1 tan B tan 3 . ···················································································6 分82 tan 3 tan 3 8 1 tan2 3 3 由 3 ,则 2 tan 1 0 ,4 1 tan 2 8 88解得 tan 3 1 2 tan 3 或 1 2 (舍去),8 8故1 tan B 1 2 , ························································································8 分又 2 1 2 3, tan B为正整数,所以 tan B 2 ,··················································9 分tan A tan B 1 2所以 tanC tan(A B) 3,1 tan A tan B 1 1 2综上, tan A 1,tan B 2,tanC 3 . ···································································· 10 分(2)由(1)可知, tan B 2, tanC 3 2 5 10 3 10,则 sin B , cosC , sinC ,5 10 10························································································································ 12 分a b c 在 ABC中,由正弦定理 sin sin B sinC ,4b a sin B 2 10a c a sinC 3 5a 可得 5 , 5 ,····················································14 分sin sin4 41 10a又 AC的中点为D,所以CD b ,2 5高三数学答案 第 9页,共 11页{#{QQABLQAAogAgAgAAAQgCQQkwCgCQkhCCAQgOwFAIIAIAyBFABAA=}#}在 ABC中,由余弦定理得: BD2 CD2 CB2 2CD CB cosC( 10 a)2 a2 2 10 a a 10 ······································································ 15 分5 5 10 a2所以 BD a,···································································································· 16 分所以 cos CDB cosC 10 .10························································································································ 17 分19.(本小题满分 17 分,其中第一小问 4 分,第二小问 7 分,第三小问 6 分。)【解析】(1)因为 an 是12项0 1数列,当且仅当n 3p( p N , p 4) 时, an 0 ,所以当 n 3p 2 和 n 3p 1( p N , p 4) 时, an 1. ··········································1 分设数列 ( 1)nan 的所有项的和为 S,S ( 1)a ( 1)2a ( 1)4a ( 1)5a ( 1)7a ( 1)8则 1 2 4 5 7 a8 ( 1)10a 1110 ( 1) a11 ······ 2 分 ( 1) ( 1)2 ( 1)4 ( 1)5 ( 1)7 ( 1)8 ( 1)10 ( 1)11 ( 1) 1 1 ( 1) ( 1) 1 1 ( 1) 0所以数列 ( 1)nan 的所有项的和为0 . ·····································································4 分(2)①证明:因为数列 an , bn 是从集合M k 中任意取出的两个数列,所以数列 an , bn 为 k项0 1数列,所以 X 的可能取值为:1,2,3, ,k . ········································································ 5 分M C0 C1 C2 Ck 2k因为集合 k 中元素的个数共有 k k k k 个,····································6 分当 X m(m 1,2, ,k)时,则数列 an , bn 中有m项取值不同,有 k m项取值相同,高三数学答案 第 10页,共 11页{#{QQABLQAAogAgAgAAAQgCQQkwCgCQkhCCAQgOwFAIIAIAyBFABAA=}#}Cm 2kkA2 Cm所以 P(X m) 2 k (m 1,2, ,k) , ···················································· 2 7 分C2k 2k 1所以随机变量 X 的分布列为:X 1 2 3 …… kP C1k C2 3 kk Ck C…… k2k 1 2k 1 2k 1 2k 1·························································································································· 8 分m m k! (k 1)! m 1因为mCk k kCk 1 (m N ,1 m k) ,m!(k m)! (m 1)! (k 1) (m 1) !·························································································································· 9 分E(X ) 1 C1 2k 2 Ck k Ck 1所以 k (1C1 2C 2 3C 3 kC k )2k 1 2k 1 2k 1 2k 1 k k k kk k 1 k 1 (C 0 C1 C 2 C k 1 k 2 k 2 k2k 1 k 1 k 1 k 1 k 1) ,2k 1 2k 2E(X ) k即 . ·································································································· 11 分2②解:由条件 P B A P B A P(AB) P(AB) P(B) P(AB)得: ,·················· 12 分P(A) P(A) 1 P(A)所以 P(AB) 1 P(A) P(A) P(B) P(AB) ,化简得: P(AB) P(A)P(B),············································································· 14 分所以 P(AB) P(B)P(AB) P(A)P(B) P(B)P(AB) ,则 P(AB) 1 P(B) P(B) P(A) P(AB) 即 P AB P B P B P AB ,········································································· 16 分P AB P AB 所以 ,即 P A | B P A | B .P B P B ························································································································ 17 分高三数学答案 第 11页,共 11页{#{QQABLQAAogAgAgAAAQgCQQkwCgCQkhCCAQgOwFAIIAIAyBFABAA=}#}惠州市2025届高三第二次调研考试试题数学全卷满分150分,时间120分钟,2024.10注意事项:1.答题前,考生务必将自己的姓名、准考证号、座位号、学校、班级等考生信息填写在答题卡上。2.作答单项及多项选择题时,选出每个小题答案后,用2B铅笔把答题卡上对应题目的答案信息点涂黑。如需改动,用橡皮擦干净后,再选涂其它答案,写在本试卷上无效。3,非选择题必须用黑色字迹签字笔作答,答案必须写在答题卡各题指定的位置上,写在本试卷上无效。一、单项选择题:本题共8小题,每小题满分5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求,选对得5分,选错得0分,1.已知集合A={2≤x<5},集合B={x2-4x<0,则AnB=CA.(05)B.[2,4)C.(45)D.(-0,0)U[2,+o0)2.已知复数z满足z2+1=0,则z+1=()A.3B.2C.1D.√23.已知等差数列{am}前9项的和为27,ao=8,.则a10=()A.100B.99C.98D.974.在正方体ABCD-ABCD中,棱BC,AB,的中点分别为E,F,则直线EF与平面ABB,4所成角的正弦值为(A.⑤B.6c.2w5D.306565.已知向量a,b满足:a=(5,1),16=V2,(2a-b)b=3,则向量6在向量a上的投影向量为()B.C.数学试题第1页,共5页6.已知函数f(x)=log2(x2-2ax),a∈R,则“a≤0”是“函数f(x)在(1,+oo)上单调递增”的(〉A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.已知“水滴”的表面是一个由圆锥的侧面和部分球面(常称为“球冠”)所围成的几何体.如图所示,将“水滴”的轴截面看成由线段AB,AC和优弧BC所围成的平面图形,其中点B,C所在直线与水平面平行,AB和AC与圆弧相切.已知“水滴”的“竖直高度”与“水平宽度”(“水平宽度”指的是平行于水平面的直线截轴截面所得线段的长度的最大值)的比位为写,则sin∠BAC=()3-5A.B.54c.25D.24258.在统计某学校所有选择理科和文科的学生数据中,发现理科生多于文科生,女生多于男生,则关于本次学生样本的数据中,结论一定成立的是()A.理科男生多于文科女生B.文科女生多于文科男生C.理科女生多于文科男生D.理科女生多于理科男生二、选择题:本题共3小题,每小题6分,共18分在每小题给出的四个选项中,有多项符合题目要求全部选对的得6分,部分选对的得部分分,有选错的得0分,9.某公司为保证产品生产质量,连续10天监测某种新产品生产线的次品件数,得到关于每天出现的次品的件数的一组样本数据:3,4,3,1,5,3,2,5,1,3.则关于这组数据的结论正确的是A.极差是4B.众数小于平均数C.方差是2D.数据的第80百分位数为4.510.函数f()=Asi血(@x+p>0,@>0,<写)的部分图象如图所示,现将(y)的图象向左平移个单位长度,得到函数g()的图象,则下列结论正确的是(数学试题第2页,共5页 展开更多...... 收起↑ 资源列表 惠州市2025届高三第二次调研考试试题(数学).pdf (数学答案)惠州市2025届高三第二次调研考试数学参考答案.pdf