广东省惠州市2024-2025学年高三第二次调研考试数学试题(图片版,含答案)

资源下载
  1. 二一教育资源

广东省惠州市2024-2025学年高三第二次调研考试数学试题(图片版,含答案)

资源简介

惠州市 2025 届高三第二次调研考试试题
高三数学参考答案与评分细则
一、单项选择题:本题共 8小题,每小题满分 5分,共 40分.
题号 1 2 3 4 5 6 7 8
答案 B D C B A A D C
1.【解析】因为 B x 0 x 4 , 所以 A B x 2 x 4 . 故选:B.
2
2.【解析】因为 z 2 1 0 ,即 z 2 1,所以 z i ,所以 z 1 1 i 12 1 2 .
故选:D.
9a 36d 27
3.【解析】设等差数列 a 1n 的公差为 d ,由已知得: ,解得 a1 1,d 1,
a1 9d 8
所以 a100 a1 99d 1 99 98.故选:C.
4.【解析】连接 FB,在正方体 ABCD A1B1C1D1 中, BC 平面 ABB1A1,棱 BC的中点为 E,
则 BE 平面 ABB1A1,而 BF 平面 ABB1A1,故 BE BF ,
则 EFB即为直线 EF 与平面 ABB1A1所成角,
设正方体棱长为 2,则 BE 1,BF B F 2 21 B1B 1 4 5 ,
2 2 sin EFB BE 1 6则 EF BF BE 6 ,故 .故选:B.EF 6 6
2 5
5.【解析】由 b 2 , (2a b) b 3,得 2a b b 2a b 2 3 ,即 a b ,
2
5
a 2 a b a a b 5 3 5由已知得 ,所以向量b在向量 a上的投影向量为 2 a
2 ( 3,1) ( ,).
a a a 4 8 8
故选:A.
a 1
6.【解析】若函数 f (x) 在 (1,

) 1上单调递增,则 ,解得 a ,
1 2a 0 2
所以“ a 0 ”是“函数 f (x) 在 (1, )上单调递增”的充分不必要条件.故选:A.
高三数学答案 第 1页,共 11页
{#{QQABLQAAogAgAgAAAQgCQQkwCgCQkhCCAQgOwFAIIAIAyBFABAA=}#}
7.【解析】设优弧 BC所在圆的圆心为O ,半径为 ,连接OA,OB,OC .易知“水滴”的“竖直高度”
OA R 2R OA R 4 5为 ,“水平宽度”为 , 由题意知 ,解得OA R . 因为 AB与圆弧相切于点 B ,
2R 3 3
所以OB AB .在 Rt ABO中, sin BAO OB R 3 5 ,又 BAO (0, ) ,OA R 5 2
3
2 4
所以 cos BAO 1 sin BAO ,由对称性知, BAO CAO ,则 BAC 2 BAO ,
5
所以 sin BAC 2sin BAO cos BAO 2 3 4 24 .故选:D.
5 5 25
8.【解析】根据已知条件设理科女生有 x1人,理科男生有 x2人;文科女生有 y1 人,文科男生有 y2 人;
根据题意可知: x1 x2 y1 y2 , x1 y1 x2 y2 ,
根据同向不等式可加的性质有: x1 x2 x1 y1 y1 y2 x2 y2 ,即 x1 y2 ,所以理科女生多于文
科男生,C 正确.
其他选项没有足够证据论证.
故选:C.
二、多项选择题:本题共 3小题,每小题满分 6分,共 18分。在每小题给出的四个选项中,有多项符合
题目要求。全部选对得 6分,部分选对得部分分,有选错的得 0分。
题号 9 10 11
全部正确选项 AD ABD ACD
9.【解析】数据从小到大排列为:1,1,2,3,3,3,3,4,5,5.
对于 A,该组数据的极差为5 1 4,故 A正确;
1 2 2 3 4 4 5 2
对于 B,众数为 3,平均数为 3,两者相等,故 B 错误;
10
1 2 2 2
对于 C,方差为 (1 3) 2 (2 3) 1 (3 3) 4 (4 3)
2 1 (5 3)2 2 1.8,故 C错误;10
对于 D,10 80% 8 ,这组数据的第 80 百分位数为第 8 个数和第 9个数的平均数 4.5,故 D 正确.
故选:AD.
10.【解析】由图像可知: f x max 2 , A 2 ;
高三数学答案 第 2页,共 11页
{#{QQABLQAAogAgAgAAAQgCQQkwCgCQkhCCAQgOwFAIIAIAyBFABAA=}#}
又 f 0 2sin 1 1 ,故 sin ,又 ,所以 ,所以 A 项正确;
2 2 6
7 7 7
已知 f 2sin 0,由五点作图法可知: ,解得: 2,所以 B项正确;
12 12 6 12 6
f x 2sin 故 2x ;则 xf (x ) 2x sin 2x ,设 h(x) xf (x

) 2x sin 2x,
6 12 12
则 h( x) 2( x) sin( 2x) 2x sin 2x h(x) y xf (x ,所以函数 ) 是偶函数,故 C 项错误;
12
g(x) f (x ) 2sin 2(x

) 2sin(2x

) 2cos (2x )

6 6 6 6 2 6
2cos( 2x) 2cos(2x ) ,所以 D项正确;
3 3
故选:ABD.
2 2 2
11.【解析】A选项,经验算,点 ( ,0)和 ( 1,1)的坐标满足曲线 L的方程: x (y x ) 1,所以点
2
( 2 ,0)和 ( 1,1)均在 L上,故 A 项正确;
2
B 选项,OP x2 y2 2 2,因为曲线 L:x (y x ) 1关于 y轴对称,当 x 0 时,x2 (y x)2 1,
x cos , y x sin , 设 , ,
2 2
2 2
所以 OP x y2 cos2 (cos sin )2 1 cos 2 1 sin 2
2
3 1
sin 2 1 cos 2 3 5 sin(2 ) ,其中 tan ,
2 2 2 2 2
OP 3 5 5 1 3 5 5 1所以 , OP ,所以 OP 的最大值和最小值之和
min 2 2 2 max 2 2 2
为 5 ,故 B 项错误;
2 2
C 选项,因为曲线 L: x (y x ) 1关于 y轴对称,当 x 0 时, x2 (y x)2 1,
则 (y x)2 1 x2 ,所以 y x 1 x2 ,因求点 P的纵坐标的最大值,故取 y x 1 x2 ,
又 y2 (x 1 x2
1
)2 1 2x 1 x2 1 2 x2 (1 x2 ) 1 x2 (1 x2 ) 2 2(当且仅当 x 时
2
等号成立),所以 y 2 ,故 C 项正确;
高三数学答案 第 3页,共 11页
{#{QQABLQAAogAgAgAAAQgCQQkwCgCQkhCCAQgOwFAIIAIAyBFABAA=}#}
2 2
D 选项, PA PB 2 3 y x等价于点 P在椭圆 1内(包含椭圆),由 B项可知,即满足:
3 2
3(1 cos 2 )
2(cos sin )2 3cos2 6,即 2(1 sin 2 ) 6,整理得:
2
3
4sin 2 3cos 2 5,即5sin(2 ) 5,其中其中 tan ,即 sin(2 ) 1恒成立,则故
4
D 项正确.
故选:ABD.
三、填空题:本题共 3小题,每小题 5分,共 15分.
12. 32 513. 14. e2
5
12.【解析】当 x 1时,二项式展开式各项的系数和为 25 32.故答案为:32.
2
13.【解析】由题意知 AF1 a c, F1F2 2c, F1B c a,且三者成等比数列,则 F1F2 AF1 F1B
4c2 (c a)(c a) c2 a2 e2 1 e 5 5即 ,所以 ,所以 . 故答案为: .
5 5 5
b 1 b 1
14.【解析】设方程 ln(ax ) x2 的实根为 x0 ,则 ln(ax ) x20 0 ,2 4 2 4
b x2 1 10 b x20
所以 ax0 e 4 ,即 ax0 e 4 0 .2 2
y x2 10
设点 P(a,b) ,则点 P在直线 x0x e 4 0上.2
x2 10 4
y x2 1 e0
设点O(0,0)到直线 x 4 的距离为 ,则 d ,0x e 0 d2 x2 10 4
t
t x2 1 f (t) e (t 1
t
设 0 , ) ,则 f ' (t)
e (t 1)

4 t 2 t 2
1
求得 f (t)在 ,1 上单调递减,在 1, 上单调递增,所以 f (t)min f (1) e, 2
则 d f (t) e,又 a2 b2 OP 2 2,由几何意义可知 OP d,所以 a2 b2 OP e2 .
高三数学答案 第 4页,共 11页
{#{QQABLQAAogAgAgAAAQgCQQkwCgCQkhCCAQgOwFAIIAIAyBFABAA=}#}
3 b a 3 a e 0 e3
检验:当 t 1时, x0 ,由 2 2
2
,解得 ;
2 a2 b2 e2
e
b 2
3 b 3
a e 0 a e
由 2 2 2,解得 ,所以则 a2 b2 可以取到最小值 e2 .
e
a
2 b2 e2

b
2
故答案为: e2 .
四、解答题:本题共 5小题,共 77分.解答应写出文字说明、证明过程或演算步骤.
15.(本小题满分 13 分,其中第一小问 6 分,第二小问 7 分。)
1 1 1
【解析】(1)因为: f 1 1 0 ,所以切点坐标为: 1, ,··························· 1 分2 2 2
f x x 2又 1 , ····························································································· 2 分
x
所以 f 1 2, ································································································ 3 分
即所求切线的斜率为 2 .
1
所以切线方程为: y 2 x 1 , ······································································· 5 分
2
化简得: 4x 2y 3 0,
所以曲线 y f x 在点 (1,f 1 )处的切线方程为 4x 2y 3 0.
·························································································································· 6 分
3
【注】切线方程写成 y 2x 不扣分
2
2
x 2f x x 1 2 x x 2 x 1 (2) ,( x 0) ········································8 分
x x x
由 f ' (x) 0 得 x 2;由 f ' (x) 0 得0 x 2. ············································ 10 分
所以 f x 在 1,2 上单调递减,在 2,e 上单调递增. ················································· 11 分
所以函数 f x 在区间 1,e 上的极小值为 f 2 2ln 2,也是最小值.
所以函数 f x 在区间 1,e 上的最小值为 2ln 2 .
························································································································ 13 分
高三数学答案 第 5页,共 11页
{#{QQABLQAAogAgAgAAAQgCQQkwCgCQkhCCAQgOwFAIIAIAyBFABAA=}#}
16.(本小题满分 15 分,其中第一小问 5 分,第二小问 10 分。)
【解析】(1)证明:已知 PA 底面 ABCD,且 BC 底面 ABCD,
所以 PA BC . ··································································································· 2 分
由 ACB 90 , 可得 BC AC .············································································ 3 分
又 PA AC A,PA, AC 平面 PAC , ································································· 4 分
所以 BC 平面 PAC . ······················································································ 5 分
(2)取CD的中点 E.由 AB∥ CD , BAD 120 ,可得 ADC 60 ,
又因为 AD CD 1,所以三角形 ADC是正三角形,················································· 6 分
故 AE CD , AE AB . ··················································································7 分
在Rt ACB中, BAC 60 , AC 1,所以 AB 2 . ·············································8 分
可建立如图所示的空间直角坐标系,
A 0,0,0 ,P 0,0, 3 ,C 3 , 1 ,0 ,D 3 1 求得 2 2 , ,0 ,B 0,2,0 ,························ 9 分 2 2
3
由(1)可知, BC ( , 3 ,0) 是平面 PAC的一个法向量,·····································10 分
2 2
DC n 0
设平面 PDC的一个法向量为 n (a,b,c),则 ,
PC n 0
b 0

即 3 1 , ··················································································11 分
a b 3c 0 2 2
3
令 a 3,得 n ( 3,0, ), ···········································································12 分
2
设平面 PCD与平面 PCA的夹角为 ,
3
BC n
cos cos BC,n 2 5所以 .
BC n 3 15
5

2
5
所以平面 PCD与平面 PCA夹角的余弦值为 .
5
························································································································ 15 分
高三数学答案 第 6页,共 11页
{#{QQABLQAAogAgAgAAAQgCQQkwCgCQkhCCAQgOwFAIIAIAyBFABAA=}#}
BC n
【注】写出公式 cos cos BC,n 给一分,代入数据给一分,结果计算正确给一分
BC n
17.(本小题满分 15 分,其中第一小问 7 分,第二小问 8 分。)
x2 y2 1
【解析】(1)直线 l与双曲线C有两个不同的交点,则方程组 有两组不同的实数根,
y kx 1
整理得 (1 k 2 )x 2kx 2 0 . ··············································································· 2 分
1 k 2 0
,··············································································2 2 4 分
4k 4(1 k ) ( 2) 0
解得 2 k 2 且 k 1, ·········································································· 6 分
双曲线C与直线 l有两个不同的交点时, k的取值范围是 ( 2, 1) ( 1,1) (1, 2) .
·························································································································· 7 分
(2)解法一:设交点 A(x1, y1),B(x2 , y2 ) ,
由(1)知双曲线C与直线 l联立的方程为 (1 k 2 )x 2kx 2 0 .
2k 2
由韦达定理得: x1 x2 2 , x1x2 2 ,···················································· 8 分1 k 1 k
则 AB 1 k 2 x x 1 k 22 1 (x2 x )
2
1 4x1x2 ··············································9 分
2
1 k 2 ( 2k 2 )
2 4( 2 ) 1 8 4k 2 k
2
2 ········································ 10 分1 k 1 k 1 k
d 1又O到直线 l的距离 , ········································································11 分
1 k 2
1 2 k 2
所以 OAB的面积 S OAB AB d 22 ,············································· 12 分2 1 k
k 0 k 6解得 或 , ·················································································· 14 分
2
6
又因为 2 k 2 且 k 1,所以 k 0 或 k .
2
6
所以当 k 0或 k 时, OAB的面积为 2 . ··················································15 分
2
高三数学答案 第 7页,共 11页
{#{QQABLQAAogAgAgAAAQgCQQkwCgCQkhCCAQgOwFAIIAIAyBFABAA=}#}
【注】漏掉 k 0扣一分
解法二:设交点 A(x1, y y1),B(x2 , y2 ) ,直线 l与 轴交于点D(0, 1) ,
由(1)知双曲线C与直线 l联立的方程为 (1 k 2 )x 2kx 2 0 .
2k 2
由韦达定理得: x1 x2 2 , x1x2 2 ,···················································· 8 分1 k 1 k
1 1
当 A,B在双曲线的一支上且 x1 x2 时, S OAB S OAD S OBD ( x1 x2 ) x1 x ;2 2 2
当 A,B在双曲线的两支上且 x1 x2 时, S OAB S
1
OAD S OBD ( x
1
1 x2 ) x2 2 1
x2
1
综上, S OAB x1 x2 . ················································································ 10 分2
【注】未讨论两种情况、直接写对面积公式的扣一分
1 2
由已知得 S OAB x1 x2 2 ,故 (x1 x2 ) 8 ,即 (x1 x
2
2 2
) 4x1x2 8
( 2k )2 2所以 2 4( 2 ) 8 ,········································································· 12 分1 k 1 k
解得 k 0或 k 6 ,·······················································································14 分
2
6
又因为 2 k 2 且 k 1,所以 k 0 或 k .
2
所以当 k 0或 k 6 时, OAB的面积为 2 .··················································· 15 分
2
18.(本小题满分 17 分,其中第一小问 10 分,第二小问 7 分。)
【解析】(1)由 a b c,则 A B C . ······························································· 1 分

由 A B C ,则 A B C 3A,故0 A , ··············································2 分
3
所以0 tan A 3 , ·························································································· 3 分
因为 tan A为整数,所以 tan A 1, ········································································4 分
解法一:由 tan A 1,可得 A

, B C 3 . 因为 A B C,所以 B为锐角,
4 4

则 B ,所以 C ,············································································ 6 分
4 2 4 2
所以角 A,B,C均为锐角,所以 tan A,tan B,tanC均为正整数,
又 tan A 1,所以 tanC tan B 2 ,
高三数学答案 第 8页,共 11页
{#{QQABLQAAogAgAgAAAQgCQQkwCgCQkhCCAQgOwFAIIAIAyBFABAA=}#}
tan B tan(3 C) 1 tanC由 2,································································ 8 分
4 1 tanC
解得 tanC 3,所以 tan B 2, tanC 3 .
综上, tan A 1,tan B 2,tanC 3 .
经检验,当 tan A 1,tan B 2 时,因为 tan(A B)
tan A tan B 1 2
3 tanC
1 tan A tan B 1 1 2
所以 A B C ,符合题意. ··············································································10 分
【注】未检验扣一分
3
解法二:由 tan A 1,可得 A , B C .
4 4
3 B C 2B 3 因为 A B C ,所以 ,则 B ,
4 4 8
所以1 tan B tan 3 . ···················································································6 分
8
2 tan 3
tan 3 8 1 tan2 3 3 由 3 ,则 2 tan 1 0 ,4 1 tan 2 8 8
8
解得 tan 3 1 2 tan 3 或 1 2 (舍去),
8 8
故1 tan B 1 2 , ························································································8 分
又 2 1 2 3, tan B为正整数,所以 tan B 2 ,··················································9 分
tan A tan B 1 2
所以 tanC tan(A B) 3,
1 tan A tan B 1 1 2
综上, tan A 1,tan B 2,tanC 3 . ···································································· 10 分
(2)由(1)可知, tan B 2, tanC 3 2 5 10 3 10,则 sin B , cosC , sinC ,
5 10 10
························································································································ 12 分
a b c

在 ABC中,由正弦定理 sin sin B sinC ,
4
b a sin B 2 10a c a sinC 3 5a
可得 5 , 5 ,····················································14 分sin sin
4 4
1 10a
又 AC的中点为D,所以CD b ,
2 5
高三数学答案 第 9页,共 11页
{#{QQABLQAAogAgAgAAAQgCQQkwCgCQkhCCAQgOwFAIIAIAyBFABAA=}#}
在 ABC中,由余弦定理得: BD2 CD2 CB2 2CD CB cosC
( 10 a)2 a2 2 10 a a 10 ······································································ 15 分
5 5 10
a2
所以 BD a,···································································································· 16 分
所以 cos CDB cosC 10 .
10
························································································································ 17 分
19.(本小题满分 17 分,其中第一小问 4 分,第二小问 7 分,第三小问 6 分。)
【解析】(1)因为 an 是12项0 1数列,当且仅当n 3p( p N , p 4) 时, an 0 ,
所以当 n 3p 2 和 n 3p 1( p N , p 4) 时, an 1. ··········································1 分
设数列 ( 1)nan 的所有项的和为 S,
S ( 1)a ( 1)2a ( 1)4a ( 1)5a ( 1)7a ( 1)8则 1 2 4 5 7 a8 ( 1)
10a 1110 ( 1) a11 ······ 2 分
( 1) ( 1)2 ( 1)4 ( 1)5 ( 1)7 ( 1)8 ( 1)10 ( 1)11
( 1) 1 1 ( 1) ( 1) 1 1 ( 1)
0
所以数列 ( 1)nan 的所有项的和为0 . ·····································································4 分
(2)①证明:因为数列 an , bn 是从集合M k 中任意取出的两个数列,
所以数列 an , bn 为 k项0 1数列,
所以 X 的可能取值为:1,2,3, ,k . ········································································ 5 分
M C0 C1 C2 Ck 2k因为集合 k 中元素的个数共有 k k k k 个,····································6 分
当 X m(m 1,2, ,k)时,则数列 an , bn 中有m项取值不同,有 k m项取值相同,
高三数学答案 第 10页,共 11页
{#{QQABLQAAogAgAgAAAQgCQQkwCgCQkhCCAQgOwFAIIAIAyBFABAA=}#}
Cm 2kk
A2 Cm所以 P(X m) 2 k (m 1,2, ,k) , ···················································· 2
7 分
C2k 2
k 1
所以随机变量 X 的分布列为:
X 1 2 3 …… k
P C
1
k C
2 3 k
k Ck C…… k
2k 1 2k 1 2k 1 2k 1
·························································································································· 8 分
m m k! (k 1)! m 1
因为mCk k kCk 1 (m N
,1 m k) ,
m!(k m)! (m 1)! (k 1) (m 1) !
·························································································································· 9 分
E(X ) 1 C
1 2
k 2 Ck k C
k 1
所以 k (1C1 2C 2 3C 3 kC k )
2k 1 2k 1 2k 1 2k 1 k k k k
k k 1 k 1
(C 0 C1 C 2 C k 1 k 2 k 2 k
2k 1 k 1 k 1 k 1 k 1
) ,
2k 1 2k 2
E(X ) k即 . ·································································································· 11 分
2
②解:由条件 P B A P B A P(AB) P(AB) P(B) P(AB)得: ,·················· 12 分P(A) P(A) 1 P(A)
所以 P(AB) 1 P(A) P(A) P(B) P(AB) ,
化简得: P(AB) P(A)P(B),············································································· 14 分
所以 P(AB) P(B)P(AB) P(A)P(B) P(B)P(AB) ,
则 P(AB) 1 P(B) P(B) P(A) P(AB)
即 P AB P B P B P AB ,········································································· 16 分
P AB P AB
所以 ,即 P A | B P A | B .
P B P B
························································································································ 17 分
高三数学答案 第 11页,共 11页
{#{QQABLQAAogAgAgAAAQgCQQkwCgCQkhCCAQgOwFAIIAIAyBFABAA=}#}惠州市2025届高三第二次调研考试试题
数学
全卷满分150分,时间120分钟,
2024.10
注意事项:
1.答题前,考生务必将自己的姓名、准考证号、座位号、学校、班级等考生信息填
写在答题卡上。
2.作答单项及多项选择题时,选出每个小题答案后,用2B铅笔把答题卡上对应题目
的答案信息点涂黑。如需改动,用橡皮擦干净后,再选涂其它答案,写在本试卷上无效。
3,非选择题必须用黑色字迹签字笔作答,答案必须写在答题卡各题指定的位置上,
写在本试卷上无效。
一、单项选择题:本题共8小题,每小题满分5分,共40分.在每小题给出的四个选项中,
只有一项符合题目要求,选对得5分,选错得0分,
1.已知集合A={2≤x<5},集合B={x2-4x<0,则AnB=C
A.(05)
B.[2,4)
C.(45)
D.(-0,0)U[2,+o0)
2.已知复数z满足z2+1=0,则z+1=()
A.3
B.2
C.1
D.√2
3.已知等差数列{am}前9项的和为27,ao=8,.则a10=(
)
A.100
B.99
C.98
D.97
4.在正方体ABCD-ABCD中,棱BC,AB,的中点分别为E,F,则直线EF与平面
ABB,4所成角的正弦值为(
A.⑤
B.6
c.2w5
D.30
6
5
6
5.已知向量a,b满足:a=(5,1),16=V2,(2a-b)b=3,则向量6在向量a上
的投影向量为()
B.
C.
数学试题
第1页,共5页
6.已知函数f(x)=log2(x2-2ax),a∈R,则“a≤0”是“函数f(x)在(1,+oo)上单
调递增”的(〉
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
7.已知“水滴”的表面是一个由圆锥的侧面和部分球面(常称为“球冠”)所围成的几何
体.如图所示,将“水滴”的轴截面看成由线段AB,AC和优弧BC所围成的平面图形,
其中点B,C所在直线与水平面平行,AB和AC与圆弧相切.已知“水滴”的“竖直
高度”与“水平宽度”(“水平宽度”指的是平行于水平面的直线截轴截面所得线段的
长度的最大值)的比位为写,则sin∠BAC=(
)
3-5
A.
B.5
4
c.
25
D.24
25
8.在统计某学校所有选择理科和文科的学生数据中,发现理科生多于文科生,女生多于
男生,则关于本次学生样本的数据中,结论一定成立的是()
A.理科男生多于文科女生
B.文科女生多于文科男生
C.理科女生多于文科男生
D.理科女生多于理科男生
二、选择题:本题共3小题,每小题6分,共18分在每小题给出的四个选项中,有多项
符合题目要求全部选对的得6分,部分选对的得部分分,有选错的得0分,
9.某公司为保证产品生产质量,连续10天监测某种新产品生产线的次品件数,得到关
于每天出现的次品的件数的一组样本数据:3,4,3,1,5,3,2,5,1,3.则关于
这组数据的结论正确的是
A.极差是4
B.众数小于平均数
C.方差是2
D.数据的第80百分位数为4.5
10.函数f()=Asi血(@x+p>0,@>0,<写)的部分图象如图所示,现将(y)的图
象向左平移个单位长度,得到函数g()的图象,则下列结论正确的是(
数学试题
第2页,共5页

展开更多......

收起↑

资源列表