资源简介 罗湖区中考备考“百师助学”课程之《将军饮马与最值问题》答案详解模型一:两定一动例题:在平面直角坐标系中,已知一次函数y1=k1x+b与坐标轴分别交于A(5,0),B(0,)两点,且与反比例函数的图象在第一象限内交于P,K两点,连接OP,△OAP的面积为.(1)求一次函数与反比例函数的解析式;(2)若C为线段OA上的一个动点,当PC+KC最小时,求△PKC的面积.【解答】解:(1)∵一次函数y1=k1x+b与坐标轴分别交于A(5,0),B(0,)两点,∴,解得.∴一次函数的解析式为:y1=﹣x+,∵△OAP的面积为.∴ OA yP=,∴yP=,∵点P在一次函数图象上,∴令﹣x+=,解得x=4,∴P(4,).∵点P在反比例函数的图象上,∴k2=4×=2.∴反比例函数的解析式为:y2=;(2)令﹣x+=,解得x=1或x=4,∴K(1,2),作点P关于x轴的对称点P′,连接KP′,线段KP′与x轴的交点即为点C,∵P(4,).∴P′(4,﹣).∴PP′=1,∴直线KP′的解析式为:y=﹣x+.令y=0,解得x=.∴C(,0).∴S△PKC= (xC﹣xK) PP′=×(﹣1)×1=.∴当PC+KC最小时,△PKC的面积为.跟踪练习:1.(2008年深圳中考第14题)要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短?小聪根据实际情况,以街道旁为x轴,建立了如图所示的平面直角坐标系,测得A点的坐标为(0,3),B点的坐标为(6,5),则从A、B两点到奶站距离之和的最小值是 10 .【解答】解:点A关于x轴的对称点A1的坐标是(0,﹣3),过点B向x轴作垂线与过A1和x轴平行的直线交于C,则A1C=6,BC=8,∴A1B==10∴从A、B两点到奶站距离之和的最小值是10.故填10.2.((2010年深圳中考第22题))如图所示,抛物线y=ax2+c(a>0)经过梯形ABCD的四个顶点,梯形的底AD在x轴上,其中A(﹣2,0),B(﹣1,﹣3).(1)求抛物线的解析式;(2)点M为y轴上任意一点,当点M到A,B两点的距离之和为最小时,求此时点M的坐标;【解答】解:(1)由题意可得:,解得;∴抛物线的解析式为:y=x2﹣4;(2)由于A、D关于抛物线的对称轴(即y轴)对称,连接BD.则BD与y轴的交点即为M点;设直线BD的解析式为:y=kx+b(k≠0),则有:,解得;∴直线BD的解析式为y=x﹣2,点M(0,﹣2);3.(2012年深圳中考第22题)如图,已知△ABC的三个顶点坐标分别为A(﹣4,0)、B(1,0)、C(﹣2,6).(1)求经过A、B、C三点的抛物线解析式;(2)设直线BC交y轴于点E,连接AE,求证:AE=CE;(3)设抛物线与y轴交于点D,连接AD交BC于点F,试问以A、B、F为顶点的三角形与△ABC相似吗?(4)若点P为直线AE上一动点,当CP+DP取最小值时,求P点的坐标.【解答】方法一:解:(1)设函数解析式为:y=ax2+bx+c,由函数经过点A(﹣4,0)、B(1,0)、C(﹣2,6),可得,解得:,故经过A、B、C三点的抛物线解析式为:y=﹣x2﹣3x+4;(2)设直线BC的函数解析式为y=kx+b,由题意得:,解得:,即直线BC的解析式为y=﹣2x+2.故可得点E的坐标为(0,2),从而可得:AE==2,CE==2,故可得出AE=CE;(3)相似.理由如下:设直线AD的解析式为y=kx+b,则,解得:,即直线AD的解析式为y=x+4.联立直线AD与直线BC的函数解析式可得:,解得:,即点F的坐标为(﹣,),则BF==,又∵AB=5,BC==3,∴=,=,∴=,又∵∠ABF=∠CBA,∴△ABF∽△CBA.故以A、B、F为顶点的三角形与△ABC相似.方法二:(1)略.(2)略.(3)若△ABF∽△ABC,则,即AB2=BF×BC,∵A(﹣4,0),D(0,4),∴lAD:y=x+4,lBC:y=﹣2x+2,∴lAD与lBC的交点F(﹣,),∴AB=5,BF=,BC=3,∴AB2=25,BF×BC=×3=25,∴AB2=BF×BC,又∵∠ABC=∠ABC,∴△ABF∽△ABC.(4)由(3)知:KAE=,KCE=﹣2,∴KAE×KCE=﹣1,∴AE⊥CE,过C点作直线AE的对称点C,点E为CC′的中点,∴,,∵C(﹣2,6),E(0,2),∴C′X=2,C′Y=﹣2,∵D(0,4),∴lC′D:y=﹣3x+4,∵lAE:y=x+2,∴lC′D与lAE的交点P(,).4.(2014年深圳中考第22题)如图,在平面直角坐标系中,⊙M过原点O,与x轴交于A(4,0),与y轴交于B(0,3),点C为劣弧AO的中点,连接AC并延长到D,使DC=4CA,连接BD.(1)求⊙M的半径;(2)证明:BD为⊙M的切线;(3)在直线MC上找一点P,使|DP﹣AP|最大.【解答】(1)解:∵M过原点O,与x轴交于A(4,0),与y轴交于B(0,3),∴AB是⊙M的直径,由题意可得出:OA2+OB2=AB2,AO=4,BO=3,∴AB=5,∴圆的半径为;(2)证明:由题意可得出:M(2,)又∵C为劣弧AO的中点,由垂径定理且 MC=,故 C(2,﹣1)过 D 作 DH⊥x 轴于 H,设 MC 与 x 轴交于 K,则△ACK∽△ADH,又∵DC=4AC,故 DH=5KC=5,HA=5KA=10,∴D(﹣6,﹣5)设直线AB表达式为:y=kx+b,,解得:故直线AB表达式为:y=﹣x+3,同理可得:根据B,D两点求出BD的表达式为y=x+3,∵kAB×kBD=﹣1,∴BD⊥AB,BD为⊙M的切线;(3)解:取点A关于直线MC的对称点O,连接DO并延长交直线MC于P,此P点为所求,且线段DO的长为|DP﹣AP|的最大值;设直线DO表达式为 y=kx,∴﹣5=﹣6k,解得:k=,∴直线DO表达式为 y=x又∵在直线DO上的点P的横坐标为2,y=,∴P(2,),此时|DP﹣AP|=DO==.模型二:两定一动例题:如图,在平行四边形中,对角线相交于点O,点E、F分别是边上的点,连接,若,,,则周长的最小值是 . 【解答】解:作点O关于的对称点M,点O关于的对称点N,连接,由作图得:,,∴的周长,∴当四点共线时,即此时的周长最小,最小值为的长,∵,∴,∴是等边三角形,∴;过D作交直线于P,∵四边形是平行四边形,∴,,在中,,∴,∴,,∴,∴点P与点B重合,∴,∴∴的周长最小值为, 跟踪练习:1.如图,∠AOB=30°,点P是∠AOB内任意一点,点M和点N分别是射线OA和射线OB上的动点,且OP=6,则△PMN周长的最小值是 6 .【解答】解:如图分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点N、M,连接OP、OC、OD、PN、PM,∵点P关于OA的对称点为C,关于OB的对称点为D,∴PN=CN,OP=OC,∠COA=∠POA,∵点P关于OB的对称点为D,∴PM=DM,OP=OD,∠DOB=∠POB,∴OC=OD=OP=5cm,∴∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,∴△COD是等边三角形,∴CD=OC=OD=6cm,∴△PNM的周长的最小值为PN+MN+PM=CN+MN+DMF≥CD=6,故答案为6.2.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AB=10,AD平分∠CAB交BC于D点,E,F分别是AD,AC上的动点,则CE+EF的最小值为 .【解答】解:如图所示:在AB上取点F′,使AF′=AF,过点C作CH⊥AB,垂足为H.∵AD平分∠CAB,∴根据对称知,EF=EF′,∵,∴,∵EF+CE=EF′+EC,∴当C、E、F′共线,且点F′与H重合时,FE+EC的值最小,最小值为,故答案为.3.如图,抛物线y=ax2﹣5ax+c与坐标轴分别交于点A,C,E三点,其中A(﹣3,0),C(0,4),点B在x轴上,AC=BC,过点B作BD⊥x轴交抛物线于点D,点M,N分别是线段CO,BC上的动点,且CM=BN,连接MN,AM,AN.(1)求抛物线的解析式及点D的坐标;(2)当△CMN是直角三角形时,求点M的坐标;(3)试求出AM+AN的最小值.【解答】解:(1)把A(﹣3,0),C(0,4)代入y=ax2﹣5ax+c得,解得,∴抛物线解析式为y=﹣x2+x+4;∵AC=BC,CO⊥AB,∴OB=OA=3,∴B(3,0),∵BD⊥x轴交抛物线于点D,∴D点的横坐标为3,当x=3时,y=﹣×9+×3+4=5,∴D点坐标为(3,5);(2)在Rt△OBC中,BC===5,设M(0,m),则CM=BN=4﹣m,CN=5﹣(4﹣m)=m+1,∵∠MCN=∠OCB,∴当=时,△CMN∽△COB,则∠CMN=∠COB=90°,即=,解得m=,此时M点坐标为(0,);当=时,△CMN∽△CBO,则∠CNM=∠COB=90°,即=,解得m=,此时M点坐标为(0,);综上所述,M点的坐标为(0,)或(0,);(3)连接DN,AD,如图,∵AC=BC,CO⊥AB,∴OC平分∠ACB,∴∠ACO=∠BCO,∵BD∥OC,∴∠BCO=∠DBC,∵DB=BC=AC=5,CM=BN,∴△ACM≌△DBN,∴AM=DN,∴AM+AN=DN+AN,而DN+AN≥AD(当且仅当点A、N、D共线时取等号),∴DN+AN的最小值==,∴AM+AN的最小值为.4.如图,在四边形ABCD中,∠B=∠D=90°,∠BAD=120°,AB=2,AD=4,P、Q分别是边BC、CD上的动点,连接AP,AQ,PQ,则△APQ周长的最小值为 .【解答】解:延长AB到E,使BE=AB,连接PE,延长AD到F,使DF=AD,连接FQ,EF,过点E作EH⊥AD交DA的延长线于点H,∵∠B=∠D=90°,∴CB垂直平分AE,CD垂直平分BF,∴PE=PA,QF=QA,∴△APQ周长=AP+PQ+QA=EP+PQ+QF≥EF,∴△APQ周长的最小值为EF的长,∵∠BAD=120°,AB=2,∴∠EAH=60°,AE=4,在Rt△AEH中,AH=AE cos60°=4×=2,EH=AE sin60°=4×=,在Rt△EFH中,HF=AH+AF=2+8=10,EF=,故答案为:.模型三:两定两动例题1:如图所示,E为边长是2的正方形ABCD的中点,M为BC上一点,N为CD上一点,连EM、MN、NA,则四边形AEMN周长的最小值为 。【解答】解:延长AD至A′,使AD=DA′,延长AB至E′,使BE=BE′,连接A′E′,交BC于M,交DC于N,此时AN=A′N,EM=E′M,四边形AEMN周长=AN+MN+ME+AE=A′E′+AE,根据两点之间线段最短,A′E′+AE就是四边形AEMN周长的最小值;∵AD=2,AE=BE=1,∴A′D=AD=2,BE=BE′=1,∴AE′=3,AA′=4,∴A′E′==5,∴四边形AEMN周长的最小值为5+1=6.例题2:如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,顶点A,C分别在x轴,y轴上,B,D两点坐标分别为B(﹣4,6),D(0,4),线段EF在边OA上移动,保持EF=3,当四边形BDEF的周长最小时,点E的坐标为 (﹣,0) .【解答】解:在BC上截取BH=3,作点D关于x轴的对称点D',连接D'H交AO于点E,∴BH=EF=3,BC∥AO,∴四边形BHEF是平行四边形,∴BF=EH,∵点D与点D'关于x轴对称,∴DE=D'E,点D'坐标为(0,﹣4),∵四边形BDEF的周长=EF+BF+BD+DE,∴四边形BDEF的周长=EH+ED'+BD+EF,∵EF和BD是定值,∴当EH+D'E有最小值时,四边形BDEF的周长有最小值,∴当点E,点H,点D'共线时,EH+D'E有最小值,∵点B(﹣4,6),∴点H(﹣1,6),设直线D'H的解析式为y=kx+b,则,解得:,∴直线D'H的解析式为y=﹣10x﹣4,∴当y=0时,x=﹣,∴点E(﹣,0),故答案为:(﹣,0).跟踪练习:如图,在平面直角坐标系中,已知,在x轴上取两点C,D(点C在点D左侧),且始终保持,线段在x轴上平移,当的值最小时,点C的坐标为 .【解答】解:如图,作点B关于x轴的对称点B′,将B′向右平移1个单位得到B″,连接AB″,与x轴交于点D,过点B′作AB″的平行线,与x轴交于点C,可知四边形B′B″DC为平行四边形,则B′C=B″D,由对称性质可得:BC=B′C,∴AD+BC=AD+B′C=AD+B″D=AB″,则此时AB″最小,即AD+BC最小,∵A(3,6),B(-2,2),∴B′(-2,-2),∴B″(-1,-2),设直线AB″的表达式为:y=kx+b,则,解得:,∴直线AB″的表达式为:y=2x,令y=0,解得:x=0,即点D坐标为(0,0),∴点C坐标为(-1,0),故答案为:(-1,0).2.(2011年深圳中考第23题)如图1,抛物线y=ax2+bx+c(a≠0)的顶点为C(1,4),交x轴于A、B两点,交y轴于点D,其中点B的坐标为(3,0).(1)求抛物线的解析式;(2)如图2,过点A的直线与抛物线交于点E,交y轴于点F,其中点E的横坐标为2,若直线PQ为抛物线的对称轴,点G为直线PQ上的一动点,则x轴上是否存在一点H,使D、G,H、F四点所围成的四边形周长最小?若存在,求出这个最小值及点G、H的坐标;若不存在,请说明理由;(3)如图3,在抛物线上是否存在一点T,过点T作x轴的垂线,垂足为点M,过点M作MN∥BD,交线段AD于点N,连接MD,使△DNM∽△BMD?若存在,求出点T的坐标;若不存在,请说明理由.【解答】解:(1)设抛物线的解析式为:y=a(x﹣1)2+4,∵点B的坐标为(3,0).∴4a+4=0,∴a=﹣1,∴此抛物线的解析式为:y=﹣(x﹣1)2+4=﹣x2+2x+3;(2)存在.抛物线的对称轴方程为:x=1,∵点E的横坐标为2,∴y=﹣4+4+3=3,∴点E(2,3),∴设直线AE的解析式为:y=kx+b,∴,∴,∴直线AE的解析式为:y=x+1,∴点F(0,1),∵D(0,3),∴D与E关于x=1对称,作F关于x轴的对称点F′(0,﹣1),连接EF′交x轴于H,交对称轴x=1于G,四边形DFHG的周长即为最小,设直线EF′的解析式为:y=mx+n,∴,解得:,∴直线EF′的解析式为:y=2x﹣1,∴当y=0时,2x﹣1=0,得x=,即H(,0),当x=1时,y=1,∴G(1,1);∴DF=2,FH=F′H==,DG==,∴使D、G,H、F四点所围成的四边形周长最小值为:DF+FH+GH+DG=2+++=2+2;(3)存在.∵BD==3,设M(c,0),∵MN∥BD,∴,即=,∴MN=(1+c),DM=,要使△DNM∽△BMD,需,即DM2=BD MN,可得:9+c2=3×(1+c),解得:c=或c=3(舍去).当x=时,y=﹣(﹣1)2+4=.∴存在,点T的坐标为(,).3.((2019年深圳中考第22题))如图抛物线y=ax2+bx+c经过点A(﹣1,0),点C(0,3),且OB=OC.(1)求抛物线的解析式及其对称轴;(2)点D、E是直线x=1上的两个动点,且DE=1,点D在点E的上方,求四边形ACDE的周长的最小值.【解答】解:(1)∵OB=OC,∴点B(3,0),则抛物线的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3)=ax2﹣2ax﹣3a,故﹣3a=3,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x+3…①,函数的对称轴为:x=1;(2)四边形ACDE的周长=AC+DE+CD+AE,其中AC=、DE=1是常数,故CD+AE最小时,周长最小,取点C关于直线x=1对称点C′(2,3),则CD=C′D,取点A′(﹣1,1),则A′D=AE,故:CD+AE=A′D+DC′,则当A′、D、C′三点共线时,CD+AE=A′D+DC′最小,周长也最小,四边形ACDE的周长的最小值=AC+DE+CD+AE=+A′D+DC′=+A′C′=+;2《将军饮马与最值问题》自主学习单红桂中学 陈伟钊最值问题在现实生活中经常遇到,初中阶段主要以“两点之间,线段最短”以及“连接直线外一点与直线上各点的所有线段中,垂线段最短”、三角形三边关系为基础知识,有时还要借助轴对称、平移、构造平行四边形等变换进行研究.本专题以“将军饮马模型”为载体开展对最值问题的研究,让学生经历将实际问题抽象为数学的线段和最小问题,再利用轴对称将线段和最小问题转化为“两点之间,线段最短”以及“连接直线外一点与直线上各点的所有线段中,垂线段最短”、三角形三边关系问题.学习过程:模型一:两定一动【问题1】在直线l上求一点P,使PA+PB最小原理:【问题2】在直线l上求一点P,使PA+PB最小原理:【问题3】在直线l上求一点P,使|PA-PB|最大原理:【问题4】在直线l上求一点P,使|PA-PB|最大原理:例题:在平面直角坐标系中,已知一次函数与坐标轴分别交于,两点,且与反比例函数的图象在第一象限内交于P,K两点,连接,的面积为.(1)求一次函数与反比例函数的解析式;(2)若C为线段上的一个动点,当最小时,求的面积.跟进练习:1、(2008年深圳中考第14题)要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短?小聪根据实际情况,以街道旁为x轴,建立了如图所示的平面直角坐标系,测得A点的坐标为(0,3),B点的坐标为(6,5),则从A、B两点到奶站距离之和的最小值是 .2、(2010年深圳中考第22题)如图所示,抛物线y=ax2+c(a>0)经过梯形ABCD的四个顶点,梯形的底AD在x轴上,其中A(﹣2,0),B(﹣1,﹣3).(1)求抛物线的解析式;(2)点M为y轴上任意一点,当点M到A,B两点的距离之和为最小时,求此时点M的坐标;3、(2012年深圳中考第22题)如图,已知△ABC的三个顶点坐标分别为A(﹣4,0)、B(1,0)、C(﹣2,6).(1)求经过A、B、C三点的抛物线解析式;(2)设直线BC交y轴于点E,连接AE,求证:AE=CE;(3)设抛物线与y轴交于点D,连接AD交BC于点F,试问以A、B、F为顶点的三角形与△ABC相似吗?(4)若点P为直线AE上一动点,当CP+DP取最小值时,求P点的坐标.4、(2014年深圳中考第22题)如图,在平面直角坐标系中,⊙M过原点O,与x轴交于A(4,0),与y轴交于B(0,3),点C为劣弧AO的中点,连接AC并延长到D,使DC=4CA,连接BD.(1)求⊙M的半径;(2)证明:BD为⊙M的切线;(3)在直线MC上找一点P,使|DP﹣AP|最大.模型二:一定两动【问题1】在直线,上分别求点M,N,使△PMN周长最小【问题2】在直线,上分别求点A,B,使PB+AB最小【问题3】在直线l上求两点M,N(M在左)且MN=a,求AM+AN的最小值例题:如图,在平行四边形中,对角线相交于点O,点E、F分别是边上的点,连接,若,,,则周长的最小值是 .跟踪练习:1、如图,点P是∠AOB内任意一点,∠AOB=30°,OP=6,点M和点N分别是射线OA和射线OB上的动点,则△PMN周长的最小值为___________.第1题 第2题2、(2023下·湛江·二模)如图,在中,,,,,平分交于点,点、分别是、边上的动点,则的最小值为 .3、如图,抛物线y=ax2﹣5ax+c与坐标轴分别交于点A,C,E三点,其中A(﹣3,0),C(0,4),点B在x轴上,AC=BC,过点B作BD⊥x轴交抛物线于点D,点M,N分别是线段CO,BC上的动点,且CM=BN,连接MN,AM,AN.(1)求抛物线的解析式及点D的坐标;(2)当△CMN是直角三角形时,求点M的坐标;(3)试求出AM+AN的最小值.4、(2023·西安·二模)如图,在四边形中,,,,,、分别是边、上的动点,连接,,,则周长的最小值为 .模型三:两定两动【问题1】P,Q为定点,在直线,上分别求点M,N,使四边形PQMN周长最小【问题2】A,B分别为,上的定点,M,N分别为,上的动点,求最小值【问题3】在直线l上求两点M,N(M在左)且MN=a,求四边形ABNM周长的最小值例题1:如图所示,E为边长是2的正方形ABCD的中点,M为BC上一点,N为CD上一点,连EM、MN、NA,则四边形AEMN周长的最小值为 。例题2:如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,顶点A,C分别在x轴,y轴上,B,D两点坐标分别为B(﹣4,6),D(0,4),线段EF在边OA上移动,保持EF=3,当四边形BDEF的周长最小时,点E的坐标为 .跟踪练习:1、(2011年深圳中考第23题)如图1,抛物线y=ax2+bx+c(a≠0)的顶点为C(1,4),交x轴于A、B两点,交y轴于点D,其中点B的坐标为(3,0).(1)求抛物线的解析式;(2)如图2,过点A的直线与抛物线交于点E,交y轴于点F,其中点E的横坐标为2,若直线PQ为抛物线的对称轴,点G为直线PQ上的一动点,则x轴上是否存在一点H,使D、G,H、F四点所围成的四边形周长最小?若存在,求出这个最小值及点G、H的坐标;若不存在,请说明理由;2、(2019年深圳中考第22题)如图抛物线y=ax2+bx+c经过点A(﹣1,0),点C(0,3),且OB=OC.(1)求抛物线的解析式及其对称轴;(2)点D、E是直线x=1上的两个动点,且DE=1,点D在点E的上方,求四边形ACDE的周长的最小值.2 展开更多...... 收起↑ 资源列表 罗湖区中考备考百师助学培优课程之《将军饮马与最值问题》答案详解.docx 罗湖区中考备考百师助学培优课程之《将军饮马与最值问题》自主学习清单.docx