资源简介 2024-2025 学年上学期初四数学期中练习题答案(考试时间 120 分钟,满分 150 分)本试题分 I、II 卷,第 I 卷为选择题,48 分;第 II 卷为非选择题,102 分。全卷满分 150 分。第 I 卷(选择题)一、选择题(本大题共 12 小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得 4 分,错选、不选或选出的答案超过一个,均记零分)题1 2 3 4 5 6 7 8 9 10号答D B C A C D C A B D案第 II 卷(非选择题,102 分)二、填空题(本大题共 6小题,满分 24 分。只要求填写最后结果,每小题填对得 4分)11. k<2. 12 2 13. 13. y (x 1)2 3 14.1315. ②③⑤ 16.﹣1<x1<3三、解答题(共 7 小题,满分 78 分.解答应写出必要的文字说明、证明过程或推演步骤)17.(满分 8 分)每题 4 分(1)解:原式=2× + + ×1= + +=1+ .{#{QQABTYIAggiIABIAAAgCUQEiCACQkgEACSgOgFAAoAABiQNABAA=}#}(2)解:原式=2× ﹣1+4×= ﹣1+2=3 ﹣118.(满分 10 分)解:(1)当 0≤x<5时,为一次函数,设一次函数表达式为 y=kx+b,由于一次函数图象过点(0,15),(5,60),所以 ,解得: ,所以 y=9x+15,······································································3当 x≥5时,为反比例函数,设函数关系式为:y= ,由于图象过点(5,60),所以 m=300.则 y= ;··········································································3(2)当 0≤x<5时,y=9x+15=30,得 x= ,因为 y随 x的增大而增大,所以 x> ,当 x≥5时,y= =30,得 x=10,因为 y随 x的增大而减小,所以 x<10,10﹣ = ,答:可加工 min.······························································ 1019.(满分 10 分)解:在 Rt△ACD中∵cos∠CAD= = = ,∠CAD为锐角.{#{QQABTYIAggiIABIAAAgCUQEiCACQkgEACSgOgFAAoAABiQNABAA=}#}∴∠CAD=30°,∠BAD=∠CAD=30°,即∠CAB=60°.··········4∴∠B=90°﹣∠CAB=30°.∵sinB= ,∴AB= = =16.················································7又∵cosB= ,∴BC=AB cosB=16 =8 .··········································· 1020(满分 10 分)解:延长 BA,交 PQ的延长线于 C,则∠ACQ=90°,由题意得,BC=156m,PQ=200m,在 Rt△BCQ中,∠BQC=45°,所以 CQ=BC=156m,·····························································4所以 PC=PQ+CQ=356m,·······················································6在 Rt△PCA中, ,所以 AC=96.12m,··································································8所以 AB=BC﹣AC=156﹣96.12=59.88≈60(m),答:舍利塔 AB的高度约为 60m.············································· 1021(满分 10 分)解:(1)根据题意得:y=500﹣5× =﹣10x+1000,W=(x﹣30)y=(x﹣30)(﹣10x+1000)=﹣10x2+1300x﹣30000=﹣10(x﹣65){#{QQABTYIAggiIABIAAAgCUQEiCACQkgEACSgOgFAAoAABiQNABAA=}#}2+12250,·············································································· 3∵﹣10<0,∴当 x<65时,W随 x的增大而增大,当 x>65时,W随 x的增大而减小,由题意 ,解得 50≤x≤100,∴当 x=65时,W取最大值,最大值为 12250,···························· 5答:当每件售价定为 65元时,日销售利润 W(元)最大,最大利润是 12250元;(2)当 W=6000元时,﹣10x2+1300x﹣30000=6000,解得 x1=40,x2=90,∵a=﹣10<0,∴开口向下,∴当 40≤x≤90时,W≥6000,又∵50≤x≤100,∴50≤x≤90,······································································ 10答:当日销售利润不低于 6000元时,每件玩具售价 x的取值范围为 50≤x≤90.22.(满分 12 分)解:(1)设 y=at2+bt+c,将(0,0),(1,27),(2,48)代入,得 ,解得 ,∴y关于 t的函数解析式为:y=﹣3t2+30t,·································· 4(2)当 t=4时,y=﹣3×42+30×4=72,···································7答:汽车刹车 4s后,行驶了 72m;{#{QQABTYIAggiIABIAAAgCUQEiCACQkgEACSgOgFAAoAABiQNABAA=}#}(3)不会.···········································································8理由如下:∵y=﹣3t2+30t=﹣3(t﹣5)2+75,∴当 t=5时,汽车停下,行驶了 75m,∵75<80,∴该车在不变道的情况下不会撞到抛锚的车.····························· 1223(满分 12 分 )解:(1)∵一次函数 y1=﹣x+5的图象与反比例函数 y2= (k≠0,x>0)的图象交于 A(1,a),B两点,∴a=﹣1+5=4,∴A(1,4),∴k=1×4=4,∴反比例函数的表达式为 y2= (x>0),··································3解 得 或 ,∴B(4,1);······································································· 5(2)观察图象得,﹣x+5﹣ <0时 x的取值范围为 0<x<1或 x>4;··························································································· 8(3)设 P(a,﹣a+5),∵PM⊥x轴,∴M(a,0),Q(a, ),∵ ,∴ = ,{#{QQABTYIAggiIABIAAAgCUQEiCACQkgEACSgOgFAAoAABiQNABAA=}#}解得,a= ,∴P( , ),∴S△PMO= OM PM= × = .···································· 1224(满分 14 分 )解:(1)由题意,∵二次函数为 y=x2+bx+c,∴抛物线的对称轴为直线 x=﹣ =﹣ .∴b=1.∴抛物线为 y=x2+x+c.又图象经过点 A(﹣2,5),∴4﹣2+c=5.∴c=3.∴抛物线为 y=x2+x+3.··························································· 4(2)由题意,∵点 B(1,7)向上平移 2个单位长度,向左平移 m个单位长度(m>0),∴平移后的点为(1﹣m,9).又(1﹣m,9)在 y=x2+x+3,∴9=(1﹣m)2+(1﹣m)+3.∴m=4或 m=﹣1(舍去).∴m=4.···············································································8(3)由题意,当 时,∴最大值与最小值的差为 .∴ ,不符合题意,舍去.当﹣ ≤n≤1 时,{#{QQABTYIAggiIABIAAAgCUQEiCACQkgEACSgOgFAAoAABiQNABAA=}#}∴最大值与最小值的差为 ,符合题意.当 n>1时,最大值与最小值的差为 ,解得 n1=1 或 n2=﹣2,不符合题意.综上所述,n的取值范围为﹣ ≤n≤1.····································14{#{QQABTYIAggiIABIAAAgCUQEiCACQkgEACSgOgFAAoAABiQNABAA=}#}2024一2025学年上学期初四数学练习题(考试时间120分钟,满分150分)本试题分1、1卷,第1卷为选择题,40分;第1川卷为非选择题,110分。全卷满分150分。第I卷(选释题)一、选择题(本大题共0小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得4分,错选、不选或选出的答案超过一个,均记零分)1.下列各点中,在反比例函数y8图象上的是(”)A.(-2,4)B.(8,-1).C.(1,7)D.(-18)2.正比例函数y=女的图象经过点(3,2),则它与x轴所夹锐角的正弦值是().:告B.2W13c.V13D.3y1313133.如图,点A为∠c边上的任意一点,作AC⊥BC于点C,CD⊥AB于点D,则sia等于()AACBDD.CDBCABC知ACAB4.如图,过原点的一条直线与反比例函数y上(k≠0)的图象分别交于A、,B两点,若:A点的坐标为(3,.-5),则B点的坐标为:(:)4(3,-5)A.(-3,5)B.(-5,3)C.(5,-3)D.(3,.-5)5.如图,一座公路桥离地面高度AC为6米,引桥AB的水平宽度BC为24米,为降低初四数学练习题共8页第1页坡度,现决定将引桥坡面改为AD,使其坡度为1:6,则BD.的长是().6A.36米B.24米C.12米D.6米6.在同一平面直角坐标系中,一次函数y=mx~n的图象和二次函数y=mx2+x的图象可能是(房7.二次函数y=ax+bx+c的部分对应值如下表所示:-3-2340y-122则当y<0时,x的取值范围为()A.-1B.-2C.x<1或x>3D,x<-2或x>48.如图,要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高.高度为3m,水柱落地处离池中心3m,水管的长为(·)·:m(13)2193945A.9.B.c.86D.16初四数学练习题共8页·第2页9、如图,己知反比例函数y=上(k<0)的图象经过Rt△OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(-4,2),则△AOC的面积为()A.4B.3C.2.5D.210.已知抛物线y=a:(x-h) -3(a;h是常数)与y轴的交点为A,.点A与点B关于抛物线的对称轴对称,抛物线y=a(x~h)2-3中的自变量x与函数值y的部分对应值如表:-1.0134y=a.(x-h)2-36-2-2下列结论正确的是(.A.抛物线的对称轴是直线x=1B,当x<2时,y随x的增大而增大C.,将抛物线向上平移1个单位后经过原点D.点A的坐标是(0,1),点B的坐标是(4,1)初四数学练习题共8页·第3页 展开更多...... 收起↑ 资源列表 2024-2025年山东省泰安市高新区初四上学期期中数学考试试卷.pdf 初四数学答案.pdf