资源简介 2024-2025学年高一年级第一学期中考试数学试卷考试时长:120分钟 卷面总分:150分本试卷分为第I卷(选择题)和第Ⅱ卷(非选择题)两部分,第I卷为1-11题,共58分,第Ⅱ卷为12-19题,共92分.全卷共计100分.考试时间为120分钟.一 单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则( )A. B. C. D.2.命题“”的否定是( )A. B.C. D.3.已知幂函数图象过点,则等于( )A.12 B.19 C.24 D.364.已知函数在区间上是增函数,在区间上是减函数,则等于( )A. B.1 C.17 D.255.已知命题“,使”是假命题,则实数的取值范围为( )A. B.C. D.6.若是偶函数且在上单调递增,又,则不等式的解集为( )A. B.或C.或 D.或7.若函数的定义域为,则函数的定义域为( )A. B. C. D.8.若,且,则的最小值为( )A. B. C. D.二 多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法正确的是( )A.命题“,都有”的否定是“,使得”B.当时,的最小值为C.若不等式的解集为,则D.“”是“”的充分不必要条件10.下列说法正确的是( )A.与表示同一个函数B.命题,则C.已知函数在上是增函数,则实数的取值范围是D.函数的值域为11.已知函数,则下列判断中正确的有( )A.存在,函数有4个根B.存在常数,使为奇函数C.若在区间上最大值为,则的取值范围为或D.存在常数,使在上单调递减三 填空题:本题共3小题,每小题5分,共15分.12.已知集合,集合,若,则__________.13.已知函数在上单调递减,则实数的取值范围是__________.14.若函数在区间上有最大值,则实数的取值范围是__________.四 解答题:本大题共5小题,共77分.解答应写出文字说明 证明过程或演算步骤.15.(13分)已知:关于的不等式的解集为:不等式的解集为.(1)若,求;(2)若是的必要不充分条件,求的取值范围.16.(15分)某开发商计划2024年在泉州开发新的游玩项目,全年需投入固定成本300万元,若该项目在2024年有万人游客,则需另投入成本万元,且该游玩项目的每张门票售价为60元.(1)求2024年该项目的利润(万元)关于人数(万人)的函数关系式(利润=销售额-成本);(2)当2024年的游客为多少时,该项目所获利润最大?最大利润是多少.17.(15分)已知满足.(1)求的最小值;(2)若恒成立,求的取值范围.18.(17分)已知函数是定义在上的奇函数,且.(1)求函数的解析式;(2)判断函数在(上的单调性,并用定义证明;(3)解不等式.19.(17分)设定义在上的函数满足:①对,都有;②当时,;③不存在,使得.(1)求证:为奇函数;(2)求证:在上单调递增;2024-2025学年第一学期期中考试高一年级数学试卷答案一 选择题(共小题)题号 1 2 3 4 5 6 7 8 9 10 11选项 B C D D C B D D BCD AD BC三 填空题(共3小题)12. 13. 14.四 解答题(共5小题)15.解:(1):关于的不等式的解集为:不等式的解集为.当时,,解得,所以,又,所以,解得,所以,所以;(2)若是的必要不充分条件,则是的真子集,由(1)知时,集合,所以,则,又时,,符合是的真子集,时,,符合是的真子集,所以,综上,实数的取值范围为.16.解:(1)某开发商计划2024年全年投入固定成本300万元,若该项目在2024年有万人游客,则需另投入成本万元,且,该游玩项目的每张门票售价为60元,则,又,所以,即W;(2)当时,单调递增,且当时,所以,当时,,则在上单调递增,所以,当时,,当且仅当即时等号成立,故,,综上,游客为30万人时利润最大,最大为205万.17.解:(1),当且仅当,即时取等号,即取得最小值.(2)由,得,即,不等式恒成立,即恒成立,,当且仅当,即时取等号,因此当时,取得最小值,则,所以的取值范围.18.解:(1)函数是定义在上的奇函数,则,即,因为,解得,则,经检验,是奇函数.(2)在(上为增函数,证明如下:设,则,由于,则,即,又,则有,则在上是增函数.(3)由题意可得,在上为单调递增的奇函数,由可得,所以,解得,,故的范围为.19.解:(1)证明:的定义域为,关于原点对称,令,得,解得或,又不存在,使得,故,令,得,故,即,因此为奇函数;(2)证明:时,,则,当且仅当,等号成立,又不存在,使得,则,于是时,,又为奇函数,则时,,于是对,任取,则,而,又,则,于是,故,因此在上单调递增; 展开更多...... 收起↑ 资源预览