福建省福州市鼓楼区福州第三中学2024-2025学年高三上学期第三次质量检测(11月期中)数学试题(PDF版,含解析)

资源下载
  1. 二一教育资源

福建省福州市鼓楼区福州第三中学2024-2025学年高三上学期第三次质量检测(11月期中)数学试题(PDF版,含解析)

资源简介

福州三中 2024-2025学年第一学期高三第三次质量检测
数 学 试 卷
命题人:高三数学集备组
审卷人:高三数学集备组
注意事项:
1.答题前,考生务必将自己的班级、准考证号、姓名填写在答题卡上.
2.第Ⅰ卷每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净
后,再选涂其他答案标号.第Ⅱ卷必须用 0.5 毫米黑色签字笔书写作答.若在试题卷上作答,答案无
效.
第Ⅰ卷
一、单选题:本大题共 8 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.
2
1.已知集合M = x x 3x 4 0 ,N = x Z 2 x 0 ,则M N = ( )
A.{3,4} B.{0,1} C.{ 1,0,1} D.{2,3,4}
2.已知向量 a = (0,1),b = (x, 2),若b / /(b + 4a),则 x = ( )
A. 1 B.0 C.1 D.2
3.已知a = 30.1,b = 0.13 ,c = log3 0.1,则( )
A. a b c B.a c b C.b a c D.c b a
4.蒙古包是蒙古族牧民居住的一种房子,建造和搬迁都很方便,适于牧业生产和游牧生活,蒙古包
古代称作穹庐 毡包或毡帐.已知蒙古包的造型可近似的看作一个圆柱和圆锥的组合体,已知圆锥
的高为 2 米,圆柱的高为 3 米,底面圆的面积为 64π平方米,则该蒙古包(含底面)的表面积为
( )
A. (80+16 17 )π平方米 B. (80+18 17 )π平方米
C. (112+16 17 )π平方米 D. (112+18 17 )π平方米
5.已知抛物线C:x2 4y的焦点为 F ,准线为 l,点 P在C上,过点 P作准线 l的垂线,垂足为 A,

若 FPA ,则 PF =( )
3
A. 2 B. 2 2 C.2 3 D. 4
π 1 π
6.已知 sin + sin = ,则 sin 2 + = ( )
3 3 6
7 7 8 8
A. B. C. D.
9 9 9 9
试卷第 1 页 ,共 4 页
{#{QQABTYwQogCIAAAAAQgCQQ0gCEIQkhEAAYgOwFAEoAABSRFABAA=}#}
7.若函数 f (x) = 2sin xcos x+ 2 3 cos2 x 3 ( 0)在 0, 上恰有两个零点,则实数 的取值范
围为( )
5 4 5 4 3 11 4 11
A. , B. , C. , D. ,
6 3 6 3 4 6 3 6
8.已知不等式 xa+1 ex +a ln x 0 (a 0 )对任意的实数 x 1都成立,则实数a的最小值为( )
e 1
A. e2 B. e C. D.
2 e
二、多选题:本大题共 3 小题,每小题 6 分,在每小题给出的四个选项中,有多项是符合题目要求的,全
部选对得 6分,部分选对得部分分,有选错得 0 分.
9.已知等差数列 an 的前n项和为 Sn,且公差d 0,2a15 +a18 = 24 . 则以下结论正确的是
( )
4
A.a16 =8 B.若 S8 = S9 ,则 d =
3
C.若 d = 2 ,则 Sn的最大值为 S21 D.若a15,a16 ,a18 成等比数列,则 d = 4
10.设 z1 , z2 , z3为复数, z1 0.下列命题中正确的是( )
A.若 z1z2 = z1z3 ,则 z2 = z3 B.若 | z2 |=| z3 |,则 z2 = z3
C.若 z = z ,则 | z z |=| z 22 3 1 2 1z3 | D.若 z z =| z z = z1 2 1 | ,则 1 2
11.已知函数 f ( x)及其导函数 f (x)的定义域均为R ,记 g (x) = f (x),且 f (x) f ( x) = 2x,
g ( x)+ g (2 x) = 0,则( )
f x
A. g (0)
( )
=1 B. y = 的图象关于点 (0,1)对称
x
n n n2
C. f (x)+ f (2 x) = 0 D. g (k ) = (n N*)
k=1 2
第Ⅱ卷
三、 填空题:本题共 3 小题,每小题 5分,共 15 分,把答案填在答题卡相应横线上.
5
2
12. 2 x + 的展开式中 x
7 的系数为_________________.(用数字作答)
x
13.已知两定点 A( 1,0)和B (1,0),动点 P ( x, y )在直线 l : y = x+3上移动,椭圆C以 A,B为焦点且
经过点 P,则椭圆C的离心率的最大值为_________________.
14.在三棱锥中P ABC,AB = BC = 2 2 ,且 AB ⊥ BC.记直线 PA,PC与平面 ABC所成角分
别为 , ,已知 = 2 = 60 ,当三棱锥P ABC的体积最小时,则三棱锥P ABC外接球的
表面积为_________________.
试卷第 2 页 ,共 4 页
{#{QQABTYwQogCIAAAAAQgCQQ0gCEIQkhEAAYgOwFAEoAABSRFABAA=}#}
四、解答题:本题共 5小题,共 77分,解答应写出文字说明、证明过程或演算步骤.
15.(本小题满分 13 分)
已知 ABC的内角 A,B,C的对边分别为 a,b,c, 3sin 2A+cos2A= 2,b = 2a.
(1)求 B;
(2)若 B为锐角, AC边上的高为 2 + 6 ,求 ABC的周长.
16.(本小题满分 15 分)
*
已知数列 an 满足a1 = 2,且 a1a2a3 an = n+1(n N ).
(1)求数列 an 的通项公式;
na
(2)设b = n ,且数列{bn}n 的前 n项和为 Sn,若 Sn + 3恒成立,求实数 的取值范围.
2n n +1
17.(本小题满分 15 分)
已知四棱柱 ABCD A1B1C1D1 如图所示,底面 ABCD为平行四边形,其中点 A1在平面 ABCD内
的投影为点D,且 AB = AA1 = 2AD, ABC =120

(1)求证:平面 A1BD⊥平面 ADD1A1;
5
(2)已知点 E在线段C ABE BCC B1D上(不含端点位置),且平面 1 与平面 1 1夹角的余弦值为 ,
5
DE
求 的值.
EC1
试卷第 3 页 ,共 4 页
{#{QQABTYwQogCIAAAAAQgCQQ0gCEIQkhEAAYgOwFAEoAABSRFABAA=}#}
18.(本小题满分 17 分)
平面内有一点 F2 (1,0)和直线 l : x = 2,动点 P ( x, y )满足: P到点F2的距离与 P到直线 l的距离的
2
比值是 .点 P的运动轨迹是曲线 E,曲线 E上有 A, B,C,D四个动点.
2
(1)求曲线 E的方程;
(2)若 A在 x轴上方, 2F2A+ F2B = 0,求直线 AB的斜率;
(3)若C,D都在 x轴上方, F1 ( 1,0),直线CF2 //DF1,求四边形CF2F1D的面积的最大值.
19.(本小题满分 17 分)
已知函数 f (x) = sinx + ln (1+ x) ax, a R.
(1)讨论函数 g (x) = f (x) sin x的单调性;
(2)若 f ( x) 0 恒成立,求a的值;
2n
1 2n 1
(3)求证: sin 2ln ln2,n 2,n N .
i=n+1 i 1 n 1
试卷第 4 页 ,共 4 页
{#{QQABTYwQogCIAAAAAQgCQQ0gCEIQkhEAAYgOwFAEoAABSRFABAA=}#}福州三中 2024-2025学年第一学期高三第三次质量检测
数 学 答 案
题号 1 2 3 4 5 6 7 8
答案 C B A C D A A B
题号 9 10 11 12 13 14
5
答案 AD AC ABD 10 16
5
1.【详解】由题意可得M = x 1 x 4 ,N = x Z | x 2 ,则M N ={ 1,0,1}.故选 C.
2.【详解】因为b / /(b + 4a),所以6x 2x = 0,解得 x = 0.故选 B.
3.【详解】易知30.1 30 =1,0 0.13 1, log3 0.1 log31= 0,所以 a b c.故选 A.
4.【详解】由题意知圆锥的高为 2 米,圆柱的高为 3 米,底面圆的面积为 64π平方米,
设底面圆的半径为 r,则 64π = πr2 , r =8,则圆锥的母线长为 22 +82 = 2 17 (米),
故该蒙古包(含底面)的表面积为 π 8 2 17 +2π 8 3+ π 82 =112π+16 17π(平方米),故选 C.

5.【详解】因为 PF PA ,所以 PAF PFA ,设准线 l与 x轴交于点Q,因为PA / /QF ,
3

所以 AFQ PAF .因为 QF p 2 ,所以 AF 4,所以在正 PAF 中,PF 4 ,故选 D.
3
π 1
3 1 16.【详解】由 sin + sin = ,可得 cos sin + sin = ,
3 3 2 2 3
1 3 1 π 1
即 sin + cos = ,可得 sin + = ,
2 2 3 3 3
π π π π π 7
所以 sin 2 + = sin 2 + = cos2 + = 2sin
2
+ 1= .故选 A.
6 3 2 3 3 9
2
7.【详解】 f (x) = 2sin xcos x+ 2 3 cos x 3 ( 0),

f (x) = sin 2 x + 3 cos 2 x + 3 3 = 2sin 2 x + ,
3

x 0, , 2 x + , 2 + ,
3 3 3


5 4
f (x)在 0, 上恰有两个零点,故 2 2 + 3 , .故选 A.
3 6 3
8.【详解】由题意,不等式变形为 xex x a x
a
( a ln x) ,即 xe ln x a eln x ,
设 f ( x) = xex (x 1) ,则不等式 xa+1 ex +a ln x 0对任意的实数 x 1恒成立,
等价于 f ( x) f (ln x a ) 对任意 x 1恒成立,
又由 f (x) = (x +1)ex 0 ,则 f (x)在 (1,+ )上单调递增,所以 x ln x a,
x x
即 x a ln x对任意 x 1恒成立,所以 a ( )恒成立,即 a ( )min ,
ln x ln x
x ln x 1
令 g ( x) = ,则 g (x) = , (x 1),
ln x (ln x)
2
答案第 1 页,共 7 页
{#{QQABTYwQogCIAAAAAQgCQQ0gCEIQkhEAAYgOwFAEoAABSRFABAA=}#}
当1 x e 时,g (x) 0, g (x)在 (1,e)上单调递减;当 x e时,g (x) 0, g (x)在 (1,e)上单调递增,
所以当 x = e时,g ( x )取得最小值 g (e) = e,所以 a e,即 a e,所以a的最小值是 e.故选 B.
9.【详解】由2a +a = 24得 2(a1 +14d )+ a1 +17d = 2415 18 ,故a1 +15d =8,所以a16 =8,故 A 正确,
8
由 S8 = S9 可得a9 = 0 = a16 7d ,故 d = ,故 B 错误,
7
若 d = 2 ,则 a20 = a16 +4d = 0,且{ }单调递减,故 Sn的最大值为 S20或 S19 ,故 C 错误,
若a a a = a a 64 = 8 d 8+ 2d15,a16 ,a18 成等比数列,则 16 16 15 18 ,即 ( )( ),解得d = 4或d = 0 (舍去),
故 D 正确.故选:AD.
10.【详解】当 z1z2 = z1z3 时,有 z1z2 z1z3 = z1(z2 z3) = 0,又 z1 0 ,所以 z2 = z3 ,故 A 正确;
由复数的形式可知,故 B 错误;
当 z2 = z 时,则 z = z ,所以3 2 3 | z1z2 |
2 | z 21z3 | = (z1z2)(z1z2) (z1z3)(z1z3) = z1z2 z1z2 z1z3 z1z = 0,故 C 正确; 3
当 z1z
2
2 =| z1 | 时,则 z z =| z |
2= z z ,可得 z z z z = z ,所以 ,故 D 错误. 1 2 1 1 1 1 2 1 1 1(z2 z1) = 0 z1 = z2
故选 AC.
11.【详解】因为 f (x) f ( x) = 2x,所以 f (x)+ f ( x) = 2,即 g(x)+ g( x) = 2,
令 x = 0,得 g(0) =1,故 A 正确;
f (x) f ( x)
因为 f (x) f ( x) = 2x,当 x 0时, + = 2,
x x
f (x)
所以 y = 的图象关于点(0,1)对称,故 B 正确;
x
对于 C,假设 f (x)+ f (2 x) = 0成立,求导得 f (x) f (2 x) = 0,即 g(x) g(2 x) = 0,
又 g(x)+ g(2 x) = 0,所以 g(x) = 0 ,所以 g(0) = 0与 g(0) =1矛盾,故 C 错误;
对于 D,因为 g(x)+ g( x) = 2, g(x)+ g(2 x) = 0,
所以 g(2 x) g( x) = 2, g(0) =1, g (1) = 0, g (2) = 1,所以有 g(n + 2) g(n) = 2 ,
所以数列 g(n) 的奇数项是以0 为首项, 2为公差的等差数列,
数列 g(n) 的偶数项是以 1为首项, 2为公差的等差数列,
又 g (2) g (1) = 1,n N*,所以数列 g(n) 是以0 为首项, 1为公差的等差数列,
n n n2
所以 g(n) =1 n,所以 g(k) = ,故 D 正确.故选:ABD.
k=1 2
r
5 r
r 2 212.【详解】由题意可得Tr+1 =C5 (

x ) =Cr5 2r x10 3r,
x
r r 1 1
令10 3r = 7 ,则 r =1,所以C5 2 =C5 2 =10 .
13.【详解】 A( 1,0)关于直线 l : y = x+3的对称点为 A ( 3,2),连接 A B交直线 l于点 P,则椭圆
c 1 5
C的长轴长的最小值为 A B = 2 5 ,所以椭圆C的离心率的最大值为 = = .
a 5 5
答案第 2 页,共 7 页
{#{QQABTYwQogCIAAAAAQgCQQ0gCEIQkhEAAYgOwFAEoAABSRFABAA=}#}
14.【详解】设点 P在平面 ABC内的投影为 P ,因为直线 PA,PC与平面
ABC所成角分别为 , ,且 = 2 = 60 ,则 = 30 ,根据线面夹角关
3
系可知 P P = 3 P C , P P = P A ,所以3 P C = P A ,由阿波罗尼
3
斯圆可知,投影 P 在圆上运动,以 AC为 x轴,过 AC的中点O作垂线,建
立如图所示直角坐标系.令 P ( x, y ),由题可知 A( 2,0),B (0,2),C (2,0).
2
2 2 2 2 5 9则3 (x 2) + y = (x+ 2) + y ,化简得 x + y
2 = ,
2 4
5 3
可知 P 在以 , 0 为圆心,半径为 的圆上,
2 2
当 P C 最小时, P P 最小,即三棱锥 P ABC的体积最小,
3 5
此时 P (1,0), P C = 2 =1, min 2 2
∴ P点在底面 ABC上的射影 P 在 AC上,且 APC = 90 ,又 ABC = 90 ,
1
∴三棱锥 P ABC的外接球的球心为 AC的中点,外接球的半径 R = AC = 2,
2
S 2∴ 球表面积 = 4πR = 4π 2
2 =16π.

15.解:(1)由 3 sin 2A+ cos 2A = 2sin 2A+ = 2,得 sin 2A+ =1, ·············· 1 分
6 6

因为 A (0, ),所以 A = , ·············································································· 3 分
6
2
因为b = 2a,所以 sin B = 2 sin A = , ···························································· 4 分
2
3
因为B (0, ),所以 B = 或B = ; ································································· 7 分
4 4
7
(2)由(1)知 A = ,B = ,则C = = ,
6 4 6 4 12
7 3 2 1 2 6 + 2
且 sinC = sin = sin( + ) = + = , ·································· 8 分
12 3 4 2 2 2 2 4
过点 B作BD⊥ AC于点D,则BD = 2 + 6,
BD
所以 sin A = , AB = 2 2 +2 6 , ···································································· 10 分
AB
AC BC 2 2 2 6
AC BC AB
在 ABC中,由正弦定理 ,得 7 ,
sin ABC sin BAC sin ACB sin sin sin
4 6 12
所以 AC = 4 2 ,BC = 4, ·················································································· 12 分
故 ABC的周长为C ABC = AB + BC + AC = 2 2 + 2 6 + 4+ 4 2 = 6 2 + 2 6 + 4. ······· 13 分
答案第 3 页,共 7 页
{#{QQABTYwQogCIAAAAAQgCQQ0gCEIQkhEAAYgOwFAEoAABSRFABAA=}#}
*
16.解:(1)因为 a1a2a3 an = n+1(n N ),当 n 2时,a1a2a3 an 1 = n, ··············· 1 分
n +1
两式相除得: an = ( n 2 ), ··········································································· 2 分
n
n +1
又a1 = 2符合上式,故 an = ; ········································································· 3 分
n
na
(2)b = n
n+1
n = , ······················································································· 4 分
2n 2n
2 3 4 n+1 1 2 3 n n+1
Sn = + + + + , Sn = + + + + , ································· 5 分
2 22 23 2n 2 22 23 2n 2n+1
1 1

1 1 1 1 n +1 n+1 n +1 3 n +3
两式相减得: Sn =1+ + + + =1+
4 2 =
2 3 n n+1 , ·········· 7 分 2 2 2 2 2 1 2n+1 2 2n+1
1
2
n+3
即 Sn = 3 , ······························································································· 8 分
2n
(n+1)(n+3)
由 Sn + 3,得 , ·································································· 9 分
n +1 2n
(n+1)(n+3) (n+ 2)(n+ 4)
设 f (n) = ,则 f (n+1) = ,
2n 2n+1
(n+ 2)(n+ 4) (n+1)(n+3) n2 2n+ 2
所以 f (n+1) f (n) = = , ····························· 11 分
2n+1 2n 2n+1
由n N* 可知, n2 2n+2随n的增大而减小,所以 n2 2n+2 1 2+2 = 1 0,
所以 f (n+1) f (n) 0恒成立,所以{ f (n)}单调递减, ············································· 13 分
所以 f (n) 的最大值为 f (1) = 4, ············································································ 14 分
所以 4. ······································································································ 15 分
17.解:(1)不妨设 AD =1,
在 ADB中, AB = 2,AD =1, DAB = 60 ,
由余弦定理,BD2 = AB2 + AD2 2AB AD cos DAB = 22 +12 2 2 1 cos60 = 3, ·· 1 分
得BD = 3 ,故 AD2 + BD2 = AB2,则 AD ⊥ DB, ·················································· 2 分
因为 A1D⊥平面 ABCD,AD 平面 ABCD,故 A1D ⊥ AD, ······································· 3 分
因为 A1D DB =D,A1D,DB 平面 A1BD,所以 AD ⊥平面 A1BD, ···························· 4 分
而 AD 平面 ADD1A1,所以平面 A1BD⊥平面 ADD1A1; ············································ 5 分
(2)由(1)知,DA,DB,DA1 两两垂直,
如图所示,以D为坐标原点,建立的空间直角坐标系D xyz, ···································· 6 分
答案第 4 页,共 7 页
{#{QQABTYwQogCIAAAAAQgCQQ0gCEIQkhEAAYgOwFAEoAABSRFABAA=}#}
则D (0,0,0) , A(1,0,0) ,B (0, 3,0) , A1 (0,0, 3) ,C ( 1, 3,0),
所以 A1B = (0, 3, 3), A1D = (0,0, 3), ·························································· 7 分
设DE = DC1 (0 1),则DE = DC1 = ( 2 , 3 , 3 ),
所以 A1E = A1D +DE = ( 2 , 3 , 3 3), ························································ 9 分

n A1B = 3y1 3z1 = 0
设 n = (x1, y1, z1 )为平面 A1EB的一个法向量,则 ,
n A1E = 2 x1 + 3 y1 ( 3 3 ) z1 = 0
令 z = 2 ,则 y = 2 , x = 2 3 3 ,所以 n = (2 3 3,2 , 2 1 1 1 ), ························ 11 分
因为 y轴⊥平面BCC m = 0,1,01B1,则可取 ( )为平面BCC1B1的一个法向量, ·················· 12 分
n m 2 5
设平面 A1EB与平面BCC B cos = = =1 1的夹角为 ,则 , ····· 13 分
n m 20 2 12 +3 5
1
解得 = , ······································································································ 14 分
4
DE 1
故 = . ····································································································· 15 分
EC1 3
18.解:(1)依题意 (x 1)2
2
+ y2 = x 2 , ····················································· 1 分
2
x2 4x + 4 x2
两边平方得 x2 2x +1+ y2 = ,化简得 + y2 =1,
2 2
x2
所以曲线 E的方程为 + y2 =1; ·········································································· 3 分
2
(2)设 lAB : x =my+1, A(x1, y1),B(x2, y2),
x = my +1
2 2 2m 1
联立 x2 ,得 (m + 2) y + 2my 1= 0,所以 y1 + y2 = , y1y2 = , ···· 5 分
+ y
2 =1 m
2 + 2 m2 + 2
2
由 2F2A+ F2B = 0,得 2(x 1, y ) + (x 1, y ) = 0,所以 y2 = 2y1, ···························· 6 1 1 2 2 分
2m 1 2
代入 y1 + y
2 2
2, y1y2 ,消 y2 ,可得 y1 = , 2y y1 = ,消 1 ,解得m = , ········· 8 分
m2 + 2 m2 + 2 7
2m 2
因为 A在 x轴上方,所以 y1 = 0,所以m 0,所以m = , ························· 9 分
m2 + 2 7
1 14
所以直线 AB的斜率是 = ; ········································································· 10 分
m 2
(3)延长CF2,交椭圆于点G,CF2 //DF1,由对称性可知GF2 =DF1,
△F S = S1GF2和 CDF1等底等高, FGF CDF , ························································· 11 分 1 2 1
答案第 5 页,共 7 页
{#{QQABTYwQogCIAAAAAQgCQQ0gCEIQkhEAAYgOwFAEoAABSRFABAA=}#}
1
四边形CF2F1D的面积 S = S GCF = F1F2 ( yC yG ) = yC yG, ································ 12 分 1 2
2n 1
设 lCD : x = ny+1,由(2)同理可知 yC + yG = , y y = , ·························· 13 分
n2
C G
+ 2 n2 + 2
2 2 8n
2 +8
所以 S = y y = ( y y ) = ( y + y , ···························· 14 分 C G C G C G ) 4yC yG =
n2 + 2
8n2 +8 2 2t 2 2
令 n2
= = 2
+1 = t, t 1,所以 n2 + 2 t2 +1 1 , ·········································· 15 分
t +
t
等号成立,当且仅当 t =1即 n = 0, ········································································ 16 分
所以S 的最大值为 2 ,此时C D分别在F2 F1正上方. ·············································· 17 分
19.解:(1)函数 g (x) = ln (1+ x) ax的定义域为 ( 1, ),
1
g '(x) = a, ····························································································· 1 分
1+ x
①当 a 0时, g '( x) 0, g ( x)在 ( 1, )上单调递增; ········································· 2 分
1 1
②当 a 0时,由 g '( x) 0得, x 1,由 g '( x) 0得, x 1,
a a
1 1
所以 g ( x)在 1, 1 上单调递增,在 1,+ 上单调递减,
a a
综上所述,①当 a 0时, g ( x)在 ( 1, )上单调递增;
1 1
②当 a 0时, g ( x)在 1, 1 上单调递增,在 1,+ 上单调递减; ··················· 4 分
a a
(2)因为 f (0) = 0, f (x) 0 ,
1
所以 x = 0是 f ( x)的极大值点,因为 f (x) = cos x + a,
x +1
所以 f (0) = 2 a = 0 a = 2,
只需证,当 a = 2时, f (x) = sinx + ln (1+ x) 2x 0恒成立即可, ······························· 6 分
1
因为 f (x) = cos x + 2,
x +1
1 1
令 (x) = f (x) = cos x + 2,则 (x) = sin x 2 ,
x +1 (x+1)
1
①当 x ( 1,0)时, 12 , (x) 0,则 ( x)在 ( 1,0)单调递减,
(x+1)
所以 f (x) f (0) = 0, f ( x)在 ( 1,0)单调递增, f (x) f (0) = 0 ,
②当 x (0,+ )时, f ( x) 0,则 f ( x)在 (0,+ )单调递减,所以 f (x) f (0) = 0,
综上所述, a = 2符合题意; ················································································· 10 分
(3)由(2)可知, sin x 2x ln (x +1),当且仅当 x = 0时取等号,
2n 1 2n 1 2n 1
所以 sin 2 ln 1+ , ····················································· 11 分
i=n+1 i 1 i=n+1 i 1 i=n+1 i 1
答案第 6 页,共 7 页
{#{QQABTYwQogCIAAAAAQgCQQ0gCEIQkhEAAYgOwFAEoAABSRFABAA=}#}
2n 2n
1 i n +1 n + 2 2n
ln 1+ = ln = ln + ln + + ln = ln 2, ······················ 12 分
i=n+1 i 1 i=n+1 i 1 n n +1 2n 1
2n 1 2n 1 2n 2 n 2n 1 2n 2 n
2n
n 1
因为 ln = ln = ln + ln + + ln = ln ,
n 1 2n 2 2n 3 n 1 2n 2 2n 3 n 1 i=n+1 n 2
······················································································································· 13 分
1 i 1
所以即证 ln , ·················································································· 14 分
i 1 i 2
i 1 1 1 1
令 x = =1+ (1,+ ),则 =1 ,
i 2 i 2 i 1 x
1
所以即证:1 ln x, x (1,+ ),
x
1 1 1 1 x
令m(x) =1 ln x,则m (x) = = ,
x x2 x x2
所以 x (1,+ )时,m ( x) 0 ,m ( x)单调递减,
1
所以m (x) m (1) = 0,即1 ln x, x (1,+ ),
x
2n
1 2n 1
综上所述, sin 2ln ln2,n 2,n N . ····································· 17 分
i=n+1 i 1 n 1
答案第 7 页,共 7 页
{#{QQABTYwQogCIAAAAAQgCQQ0gCEIQkhEAAYgOwFAEoAABSRFABAA=}#}

展开更多......

收起↑

资源列表