资源简介 福州三中 2024-2025学年第一学期高三第三次质量检测数 学 试 卷命题人:高三数学集备组审卷人:高三数学集备组注意事项:1.答题前,考生务必将自己的班级、准考证号、姓名填写在答题卡上.2.第Ⅰ卷每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.第Ⅱ卷必须用 0.5 毫米黑色签字笔书写作答.若在试题卷上作答,答案无效.第Ⅰ卷一、单选题:本大题共 8 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.21.已知集合M = x x 3x 4 0 ,N = x Z 2 x 0 ,则M N = ( )A.{3,4} B.{0,1} C.{ 1,0,1} D.{2,3,4}2.已知向量 a = (0,1),b = (x, 2),若b / /(b + 4a),则 x = ( )A. 1 B.0 C.1 D.23.已知a = 30.1,b = 0.13 ,c = log3 0.1,则( )A. a b c B.a c b C.b a c D.c b a4.蒙古包是蒙古族牧民居住的一种房子,建造和搬迁都很方便,适于牧业生产和游牧生活,蒙古包古代称作穹庐 毡包或毡帐.已知蒙古包的造型可近似的看作一个圆柱和圆锥的组合体,已知圆锥的高为 2 米,圆柱的高为 3 米,底面圆的面积为 64π平方米,则该蒙古包(含底面)的表面积为( )A. (80+16 17 )π平方米 B. (80+18 17 )π平方米C. (112+16 17 )π平方米 D. (112+18 17 )π平方米5.已知抛物线C:x2 4y的焦点为 F ,准线为 l,点 P在C上,过点 P作准线 l的垂线,垂足为 A, 若 FPA ,则 PF =( )3A. 2 B. 2 2 C.2 3 D. 4 π 1 π 6.已知 sin + sin = ,则 sin 2 + = ( ) 3 3 6 7 7 8 8A. B. C. D.9 9 9 9试卷第 1 页 ,共 4 页{#{QQABTYwQogCIAAAAAQgCQQ0gCEIQkhEAAYgOwFAEoAABSRFABAA=}#}7.若函数 f (x) = 2sin xcos x+ 2 3 cos2 x 3 ( 0)在 0, 上恰有两个零点,则实数 的取值范围为( ) 5 4 5 4 3 11 4 11 A. , B. , C. , D. , 6 3 6 3 4 6 3 6 8.已知不等式 xa+1 ex +a ln x 0 (a 0 )对任意的实数 x 1都成立,则实数a的最小值为( )e 1A. e2 B. e C. D. 2 e二、多选题:本大题共 3 小题,每小题 6 分,在每小题给出的四个选项中,有多项是符合题目要求的,全部选对得 6分,部分选对得部分分,有选错得 0 分.9.已知等差数列 an 的前n项和为 Sn,且公差d 0,2a15 +a18 = 24 . 则以下结论正确的是( )4A.a16 =8 B.若 S8 = S9 ,则 d =3C.若 d = 2 ,则 Sn的最大值为 S21 D.若a15,a16 ,a18 成等比数列,则 d = 410.设 z1 , z2 , z3为复数, z1 0.下列命题中正确的是( )A.若 z1z2 = z1z3 ,则 z2 = z3 B.若 | z2 |=| z3 |,则 z2 = z3C.若 z = z ,则 | z z |=| z 22 3 1 2 1z3 | D.若 z z =| z z = z1 2 1 | ,则 1 211.已知函数 f ( x)及其导函数 f (x)的定义域均为R ,记 g (x) = f (x),且 f (x) f ( x) = 2x,g ( x)+ g (2 x) = 0,则( )f xA. g (0)( )=1 B. y = 的图象关于点 (0,1)对称xn n n2C. f (x)+ f (2 x) = 0 D. g (k ) = (n N*)k=1 2第Ⅱ卷三、 填空题:本题共 3 小题,每小题 5分,共 15 分,把答案填在答题卡相应横线上.5 2 12. 2 x + 的展开式中 x7 的系数为_________________.(用数字作答) x 13.已知两定点 A( 1,0)和B (1,0),动点 P ( x, y )在直线 l : y = x+3上移动,椭圆C以 A,B为焦点且经过点 P,则椭圆C的离心率的最大值为_________________.14.在三棱锥中P ABC,AB = BC = 2 2 ,且 AB ⊥ BC.记直线 PA,PC与平面 ABC所成角分别为 , ,已知 = 2 = 60 ,当三棱锥P ABC的体积最小时,则三棱锥P ABC外接球的表面积为_________________.试卷第 2 页 ,共 4 页{#{QQABTYwQogCIAAAAAQgCQQ0gCEIQkhEAAYgOwFAEoAABSRFABAA=}#}四、解答题:本题共 5小题,共 77分,解答应写出文字说明、证明过程或演算步骤.15.(本小题满分 13 分)已知 ABC的内角 A,B,C的对边分别为 a,b,c, 3sin 2A+cos2A= 2,b = 2a.(1)求 B;(2)若 B为锐角, AC边上的高为 2 + 6 ,求 ABC的周长.16.(本小题满分 15 分)*已知数列 an 满足a1 = 2,且 a1a2a3 an = n+1(n N ).(1)求数列 an 的通项公式;na (2)设b = n ,且数列{bn}n 的前 n项和为 Sn,若 Sn + 3恒成立,求实数 的取值范围.2n n +117.(本小题满分 15 分)已知四棱柱 ABCD A1B1C1D1 如图所示,底面 ABCD为平行四边形,其中点 A1在平面 ABCD内的投影为点D,且 AB = AA1 = 2AD, ABC =120 .(1)求证:平面 A1BD⊥平面 ADD1A1;5(2)已知点 E在线段C ABE BCC B1D上(不含端点位置),且平面 1 与平面 1 1夹角的余弦值为 ,5DE求 的值.EC1试卷第 3 页 ,共 4 页{#{QQABTYwQogCIAAAAAQgCQQ0gCEIQkhEAAYgOwFAEoAABSRFABAA=}#}18.(本小题满分 17 分)平面内有一点 F2 (1,0)和直线 l : x = 2,动点 P ( x, y )满足: P到点F2的距离与 P到直线 l的距离的2比值是 .点 P的运动轨迹是曲线 E,曲线 E上有 A, B,C,D四个动点.2(1)求曲线 E的方程;(2)若 A在 x轴上方, 2F2A+ F2B = 0,求直线 AB的斜率;(3)若C,D都在 x轴上方, F1 ( 1,0),直线CF2 //DF1,求四边形CF2F1D的面积的最大值.19.(本小题满分 17 分)已知函数 f (x) = sinx + ln (1+ x) ax, a R.(1)讨论函数 g (x) = f (x) sin x的单调性;(2)若 f ( x) 0 恒成立,求a的值;2n 1 2n 1(3)求证: sin 2ln ln2,n 2,n N .i=n+1 i 1 n 1试卷第 4 页 ,共 4 页{#{QQABTYwQogCIAAAAAQgCQQ0gCEIQkhEAAYgOwFAEoAABSRFABAA=}#}福州三中 2024-2025学年第一学期高三第三次质量检测数 学 答 案题号 1 2 3 4 5 6 7 8答案 C B A C D A A B题号 9 10 11 12 13 145答案 AD AC ABD 10 16 51.【详解】由题意可得M = x 1 x 4 ,N = x Z | x 2 ,则M N ={ 1,0,1}.故选 C.2.【详解】因为b / /(b + 4a),所以6x 2x = 0,解得 x = 0.故选 B.3.【详解】易知30.1 30 =1,0 0.13 1, log3 0.1 log31= 0,所以 a b c.故选 A.4.【详解】由题意知圆锥的高为 2 米,圆柱的高为 3 米,底面圆的面积为 64π平方米,设底面圆的半径为 r,则 64π = πr2 , r =8,则圆锥的母线长为 22 +82 = 2 17 (米),故该蒙古包(含底面)的表面积为 π 8 2 17 +2π 8 3+ π 82 =112π+16 17π(平方米),故选 C. 5.【详解】因为 PF PA ,所以 PAF PFA ,设准线 l与 x轴交于点Q,因为PA / /QF ,3 所以 AFQ PAF .因为 QF p 2 ,所以 AF 4,所以在正 PAF 中,PF 4 ,故选 D.3 π 1 3 1 16.【详解】由 sin + sin = ,可得 cos sin + sin = , 3 3 2 2 31 3 1 π 1即 sin + cos = ,可得 sin + = ,2 2 3 3 3 π π π π π 7所以 sin 2 + = sin 2 + = cos2 + = 2sin2 + 1= .故选 A. 6 3 2 3 3 927.【详解】 f (x) = 2sin xcos x+ 2 3 cos x 3 ( 0), f (x) = sin 2 x + 3 cos 2 x + 3 3 = 2sin 2 x + , 3 x 0, , 2 x + , 2 + ,3 3 3 5 4f (x)在 0, 上恰有两个零点,故 2 2 + 3 , .故选 A.3 6 38.【详解】由题意,不等式变形为 xex x a x a( a ln x) ,即 xe ln x a eln x ,设 f ( x) = xex (x 1) ,则不等式 xa+1 ex +a ln x 0对任意的实数 x 1恒成立,等价于 f ( x) f (ln x a ) 对任意 x 1恒成立,又由 f (x) = (x +1)ex 0 ,则 f (x)在 (1,+ )上单调递增,所以 x ln x a,x x即 x a ln x对任意 x 1恒成立,所以 a ( )恒成立,即 a ( )min ,ln x ln xx ln x 1令 g ( x) = ,则 g (x) = , (x 1),ln x (ln x)2答案第 1 页,共 7 页{#{QQABTYwQogCIAAAAAQgCQQ0gCEIQkhEAAYgOwFAEoAABSRFABAA=}#}当1 x e 时,g (x) 0, g (x)在 (1,e)上单调递减;当 x e时,g (x) 0, g (x)在 (1,e)上单调递增,所以当 x = e时,g ( x )取得最小值 g (e) = e,所以 a e,即 a e,所以a的最小值是 e.故选 B.9.【详解】由2a +a = 24得 2(a1 +14d )+ a1 +17d = 2415 18 ,故a1 +15d =8,所以a16 =8,故 A 正确,8由 S8 = S9 可得a9 = 0 = a16 7d ,故 d = ,故 B 错误,7若 d = 2 ,则 a20 = a16 +4d = 0,且{ }单调递减,故 Sn的最大值为 S20或 S19 ,故 C 错误,若a a a = a a 64 = 8 d 8+ 2d15,a16 ,a18 成等比数列,则 16 16 15 18 ,即 ( )( ),解得d = 4或d = 0 (舍去),故 D 正确.故选:AD.10.【详解】当 z1z2 = z1z3 时,有 z1z2 z1z3 = z1(z2 z3) = 0,又 z1 0 ,所以 z2 = z3 ,故 A 正确;由复数的形式可知,故 B 错误;当 z2 = z 时,则 z = z ,所以3 2 3 | z1z2 |2 | z 21z3 | = (z1z2)(z1z2) (z1z3)(z1z3) = z1z2 z1z2 z1z3 z1z = 0,故 C 正确; 3当 z1z22 =| z1 | 时,则 z z =| z |2= z z ,可得 z z z z = z ,所以 ,故 D 错误. 1 2 1 1 1 1 2 1 1 1(z2 z1) = 0 z1 = z2故选 AC.11.【详解】因为 f (x) f ( x) = 2x,所以 f (x)+ f ( x) = 2,即 g(x)+ g( x) = 2,令 x = 0,得 g(0) =1,故 A 正确;f (x) f ( x)因为 f (x) f ( x) = 2x,当 x 0时, + = 2,x xf (x)所以 y = 的图象关于点(0,1)对称,故 B 正确;x对于 C,假设 f (x)+ f (2 x) = 0成立,求导得 f (x) f (2 x) = 0,即 g(x) g(2 x) = 0,又 g(x)+ g(2 x) = 0,所以 g(x) = 0 ,所以 g(0) = 0与 g(0) =1矛盾,故 C 错误;对于 D,因为 g(x)+ g( x) = 2, g(x)+ g(2 x) = 0,所以 g(2 x) g( x) = 2, g(0) =1, g (1) = 0, g (2) = 1,所以有 g(n + 2) g(n) = 2 ,所以数列 g(n) 的奇数项是以0 为首项, 2为公差的等差数列,数列 g(n) 的偶数项是以 1为首项, 2为公差的等差数列,又 g (2) g (1) = 1,n N*,所以数列 g(n) 是以0 为首项, 1为公差的等差数列,n n n2所以 g(n) =1 n,所以 g(k) = ,故 D 正确.故选:ABD.k=1 2r5 rr 2 212.【详解】由题意可得Tr+1 =C5 ( x ) =Cr5 2r x10 3r, x r r 1 1令10 3r = 7 ,则 r =1,所以C5 2 =C5 2 =10 .13.【详解】 A( 1,0)关于直线 l : y = x+3的对称点为 A ( 3,2),连接 A B交直线 l于点 P,则椭圆c 1 5C的长轴长的最小值为 A B = 2 5 ,所以椭圆C的离心率的最大值为 = = .a 5 5答案第 2 页,共 7 页{#{QQABTYwQogCIAAAAAQgCQQ0gCEIQkhEAAYgOwFAEoAABSRFABAA=}#}14.【详解】设点 P在平面 ABC内的投影为 P ,因为直线 PA,PC与平面ABC所成角分别为 , ,且 = 2 = 60 ,则 = 30 ,根据线面夹角关3系可知 P P = 3 P C , P P = P A ,所以3 P C = P A ,由阿波罗尼3斯圆可知,投影 P 在圆上运动,以 AC为 x轴,过 AC的中点O作垂线,建立如图所示直角坐标系.令 P ( x, y ),由题可知 A( 2,0),B (0,2),C (2,0).22 2 2 2 5 9则3 (x 2) + y = (x+ 2) + y ,化简得 x + y2 = , 2 4 5 3可知 P 在以 , 0 为圆心,半径为 的圆上, 2 2当 P C 最小时, P P 最小,即三棱锥 P ABC的体积最小,3 5 此时 P (1,0), P C = 2 =1, min 2 2 ∴ P点在底面 ABC上的射影 P 在 AC上,且 APC = 90 ,又 ABC = 90 ,1∴三棱锥 P ABC的外接球的球心为 AC的中点,外接球的半径 R = AC = 2,2S 2∴ 球表面积 = 4πR = 4π 22 =16π. 15.解:(1)由 3 sin 2A+ cos 2A = 2sin 2A+ = 2,得 sin 2A+ =1, ·············· 1 分 6 6 因为 A (0, ),所以 A = , ·············································································· 3 分62因为b = 2a,所以 sin B = 2 sin A = , ···························································· 4 分2 3 因为B (0, ),所以 B = 或B = ; ································································· 7 分4 4 7 (2)由(1)知 A = ,B = ,则C = = ,6 4 6 4 127 3 2 1 2 6 + 2且 sinC = sin = sin( + ) = + = , ·································· 8 分12 3 4 2 2 2 2 4过点 B作BD⊥ AC于点D,则BD = 2 + 6,BD所以 sin A = , AB = 2 2 +2 6 , ···································································· 10 分ABAC BC 2 2 2 6AC BC AB在 ABC中,由正弦定理 ,得 7 ,sin ABC sin BAC sin ACB sin sin sin4 6 12所以 AC = 4 2 ,BC = 4, ·················································································· 12 分故 ABC的周长为C ABC = AB + BC + AC = 2 2 + 2 6 + 4+ 4 2 = 6 2 + 2 6 + 4. ······· 13 分答案第 3 页,共 7 页{#{QQABTYwQogCIAAAAAQgCQQ0gCEIQkhEAAYgOwFAEoAABSRFABAA=}#}*16.解:(1)因为 a1a2a3 an = n+1(n N ),当 n 2时,a1a2a3 an 1 = n, ··············· 1 分n +1两式相除得: an = ( n 2 ), ··········································································· 2 分nn +1又a1 = 2符合上式,故 an = ; ········································································· 3 分nna(2)b = nn+1n = , ······················································································· 4 分2n 2n2 3 4 n+1 1 2 3 n n+1Sn = + + + + , Sn = + + + + , ································· 5 分2 22 23 2n 2 22 23 2n 2n+11 1 1 1 1 1 n +1 n+1 n +1 3 n +3两式相减得: Sn =1+ + + + =1+4 2 = 2 3 n n+1 , ·········· 7 分 2 2 2 2 2 1 2n+1 2 2n+11 2n+3即 Sn = 3 , ······························································································· 8 分2n (n+1)(n+3)由 Sn + 3,得 , ·································································· 9 分n +1 2n(n+1)(n+3) (n+ 2)(n+ 4)设 f (n) = ,则 f (n+1) = ,2n 2n+1(n+ 2)(n+ 4) (n+1)(n+3) n2 2n+ 2所以 f (n+1) f (n) = = , ····························· 11 分2n+1 2n 2n+1由n N* 可知, n2 2n+2随n的增大而减小,所以 n2 2n+2 1 2+2 = 1 0,所以 f (n+1) f (n) 0恒成立,所以{ f (n)}单调递减, ············································· 13 分所以 f (n) 的最大值为 f (1) = 4, ············································································ 14 分所以 4. ······································································································ 15 分17.解:(1)不妨设 AD =1,在 ADB中, AB = 2,AD =1, DAB = 60 ,由余弦定理,BD2 = AB2 + AD2 2AB AD cos DAB = 22 +12 2 2 1 cos60 = 3, ·· 1 分得BD = 3 ,故 AD2 + BD2 = AB2,则 AD ⊥ DB, ·················································· 2 分因为 A1D⊥平面 ABCD,AD 平面 ABCD,故 A1D ⊥ AD, ······································· 3 分因为 A1D DB =D,A1D,DB 平面 A1BD,所以 AD ⊥平面 A1BD, ···························· 4 分而 AD 平面 ADD1A1,所以平面 A1BD⊥平面 ADD1A1; ············································ 5 分(2)由(1)知,DA,DB,DA1 两两垂直,如图所示,以D为坐标原点,建立的空间直角坐标系D xyz, ···································· 6 分答案第 4 页,共 7 页{#{QQABTYwQogCIAAAAAQgCQQ0gCEIQkhEAAYgOwFAEoAABSRFABAA=}#}则D (0,0,0) , A(1,0,0) ,B (0, 3,0) , A1 (0,0, 3) ,C ( 1, 3,0),所以 A1B = (0, 3, 3), A1D = (0,0, 3), ·························································· 7 分设DE = DC1 (0 1),则DE = DC1 = ( 2 , 3 , 3 ),所以 A1E = A1D +DE = ( 2 , 3 , 3 3), ························································ 9 分 n A1B = 3y1 3z1 = 0设 n = (x1, y1, z1 )为平面 A1EB的一个法向量,则 , n A1E = 2 x1 + 3 y1 ( 3 3 ) z1 = 0令 z = 2 ,则 y = 2 , x = 2 3 3 ,所以 n = (2 3 3,2 , 2 1 1 1 ), ························ 11 分因为 y轴⊥平面BCC m = 0,1,01B1,则可取 ( )为平面BCC1B1的一个法向量, ·················· 12 分n m 2 5设平面 A1EB与平面BCC B cos = = =1 1的夹角为 ,则 , ····· 13 分n m 20 2 12 +3 51解得 = , ······································································································ 14 分4DE 1故 = . ····································································································· 15 分EC1 318.解:(1)依题意 (x 1)22+ y2 = x 2 , ····················································· 1 分2x2 4x + 4 x2两边平方得 x2 2x +1+ y2 = ,化简得 + y2 =1,2 2x2所以曲线 E的方程为 + y2 =1; ·········································································· 3 分2(2)设 lAB : x =my+1, A(x1, y1),B(x2, y2), x = my +1 2 2 2m 1联立 x2 ,得 (m + 2) y + 2my 1= 0,所以 y1 + y2 = , y1y2 = , ···· 5 分 + y2 =1 m2 + 2 m2 + 2 2由 2F2A+ F2B = 0,得 2(x 1, y ) + (x 1, y ) = 0,所以 y2 = 2y1, ···························· 6 1 1 2 2 分2m 1 2代入 y1 + y2 22, y1y2 ,消 y2 ,可得 y1 = , 2y y1 = ,消 1 ,解得m = , ········· 8 分m2 + 2 m2 + 2 72m 2因为 A在 x轴上方,所以 y1 = 0,所以m 0,所以m = , ························· 9 分m2 + 2 71 14所以直线 AB的斜率是 = ; ········································································· 10 分m 2(3)延长CF2,交椭圆于点G,CF2 //DF1,由对称性可知GF2 =DF1,△F S = S1GF2和 CDF1等底等高, FGF CDF , ························································· 11 分 1 2 1答案第 5 页,共 7 页{#{QQABTYwQogCIAAAAAQgCQQ0gCEIQkhEAAYgOwFAEoAABSRFABAA=}#}1四边形CF2F1D的面积 S = S GCF = F1F2 ( yC yG ) = yC yG, ································ 12 分 1 2 2n 1设 lCD : x = ny+1,由(2)同理可知 yC + yG = , y y = , ·························· 13 分n2C G+ 2 n2 + 22 2 8n2 +8所以 S = y y = ( y y ) = ( y + y , ···························· 14 分 C G C G C G ) 4yC yG =n2 + 28n2 +8 2 2t 2 2令 n2= = 2+1 = t, t 1,所以 n2 + 2 t2 +1 1 , ·········································· 15 分t +t等号成立,当且仅当 t =1即 n = 0, ········································································ 16 分所以S 的最大值为 2 ,此时C D分别在F2 F1正上方. ·············································· 17 分19.解:(1)函数 g (x) = ln (1+ x) ax的定义域为 ( 1, ),1g '(x) = a, ····························································································· 1 分1+ x①当 a 0时, g '( x) 0, g ( x)在 ( 1, )上单调递增; ········································· 2 分1 1②当 a 0时,由 g '( x) 0得, x 1,由 g '( x) 0得, x 1,a a 1 1 所以 g ( x)在 1, 1 上单调递增,在 1,+ 上单调递减, a a 综上所述,①当 a 0时, g ( x)在 ( 1, )上单调递增; 1 1 ②当 a 0时, g ( x)在 1, 1 上单调递增,在 1,+ 上单调递减; ··················· 4 分 a a (2)因为 f (0) = 0, f (x) 0 ,1所以 x = 0是 f ( x)的极大值点,因为 f (x) = cos x + a,x +1所以 f (0) = 2 a = 0 a = 2,只需证,当 a = 2时, f (x) = sinx + ln (1+ x) 2x 0恒成立即可, ······························· 6 分1因为 f (x) = cos x + 2,x +11 1令 (x) = f (x) = cos x + 2,则 (x) = sin x 2 ,x +1 (x+1)1①当 x ( 1,0)时, 12 , (x) 0,则 ( x)在 ( 1,0)单调递减,(x+1)所以 f (x) f (0) = 0, f ( x)在 ( 1,0)单调递增, f (x) f (0) = 0 ,②当 x (0,+ )时, f ( x) 0,则 f ( x)在 (0,+ )单调递减,所以 f (x) f (0) = 0,综上所述, a = 2符合题意; ················································································· 10 分(3)由(2)可知, sin x 2x ln (x +1),当且仅当 x = 0时取等号,2n 1 2n 1 2n 1 所以 sin 2 ln 1+ , ····················································· 11 分i=n+1 i 1 i=n+1 i 1 i=n+1 i 1 答案第 6 页,共 7 页{#{QQABTYwQogCIAAAAAQgCQQ0gCEIQkhEAAYgOwFAEoAABSRFABAA=}#}2n 2n 1 i n +1 n + 2 2n ln 1+ = ln = ln + ln + + ln = ln 2, ······················ 12 分i=n+1 i 1 i=n+1 i 1 n n +1 2n 12n 1 2n 1 2n 2 n 2n 1 2n 2 n2n n 1 因为 ln = ln = ln + ln + + ln = ln ,n 1 2n 2 2n 3 n 1 2n 2 2n 3 n 1 i=n+1 n 2 ······················································································································· 13 分1 i 1 所以即证 ln , ·················································································· 14 分i 1 i 2 i 1 1 1 1令 x = =1+ (1,+ ),则 =1 ,i 2 i 2 i 1 x1所以即证:1 ln x, x (1,+ ),x1 1 1 1 x令m(x) =1 ln x,则m (x) = = ,x x2 x x2所以 x (1,+ )时,m ( x) 0 ,m ( x)单调递减,1所以m (x) m (1) = 0,即1 ln x, x (1,+ ),x2n 1 2n 1综上所述, sin 2ln ln2,n 2,n N . ····································· 17 分i=n+1 i 1 n 1答案第 7 页,共 7 页{#{QQABTYwQogCIAAAAAQgCQQ0gCEIQkhEAAYgOwFAEoAABSRFABAA=}#} 展开更多...... 收起↑ 资源列表 福州三中2024-2025学年第一学期高三第三次质量检测数学答案.pdf 福州三中2024-2025学年第一学期高三第三次质量检测数学试卷.pdf