专题51 电磁感应中的电路和图像问题-【高分攻略】备战2025年高考物理一轮复习精编学案(教师版+学生版)

资源下载
  1. 二一教育资源

专题51 电磁感应中的电路和图像问题-【高分攻略】备战2025年高考物理一轮复习精编学案(教师版+学生版)

资源简介

中小学教育资源及组卷应用平台
专题51 电磁感应中的电路和图像问题
【考情分析】
考情分析 考题统计
充分理解电源,能判断电源电动势,理解并掌握电路的内电路和外电路,能正确判断电源的正负极;理解并掌握B-t图像、F-t图像、I-t图像、v-t图像等表达的含义,并能正确判断分析电场感应的状态过程变化。 2024·浙江6月·高考物理第5题 2024·浙江6月·高考物理第18题 2024·浙江1月·高考物理第15题 2024·湖南 ·高考物理第4题
【网络建构】
【考点梳理】
考点一.电磁感应中的电路问题
知识点1.电磁感应中电路知识的关系图
知识点2.分析电磁感应电路问题的基本思路
知识点3.电磁感应中电路问题的基本规律
(1)对电源的理解:在电磁感应现象中,产生感应电动势的那部分导体相当于电源,如切割磁感线的导体棒、有磁通量变化的线圈等。
(2)对电路的理解:内电路是切割磁感线的导体棒或磁通量发生变化的线圈;除电源外其余部分是外电路。在外电路中,电流从高电势处流向低电势处,在内电路中,电流则从低电势处流向高电势处。
(3)对路端电压的理解:“电源”两端的电压为路端电压,不是电源的感应电动势。
考点二.电磁感应中电荷量的计算
电磁感应中电荷量的计算公式:q=n
1.推导:根据法拉第电磁感应定律=n,电路中的平均电流为==,所以q=Δt=n。
2.结论:电磁感应过程中产生的感应电荷量由线圈的匝数、磁通量的变化量及电路的总电阻共同决定,与时间Δt无关。
考点三.电磁感应中的图像问题
知识点1.感生类图像问题
(1)问题类型
①给定电磁感应过程,选出或画出正确的图像。
②由给定的图像分析电磁感应过程,求解相应物理量。
(2)分析方法
①电动势大小:E=n,取决于磁通量的变化率。
②电动势方向:用楞次定律和安培定则判断。
知识点2.动生类图像问题
(1)问题类型
由闭合线圈的运动过程画出i-t图像或E-t图像。
(2)分析方法
①电动势大小:E=Blv。
要注意是单边切割还是双边切割(感应电流同向相加、反向相减),等效长度为在磁场中导线首尾相连在垂直于速度方向的投影长度。
②电动势方向:用右手定则判断。
知识点3.解答图像选择问题的常用方法
排除法 定性地分析电磁感应过程中物理量的变化趋势(增大还是减小)、变化快慢(均匀变化还是非均匀变化),特别是分析物理量的正负,以排除错误的选项
函数法 根据题目所给条件定量地写出两个物理量之间的函数关系,然后由函数关系对图像进行分析和判断
知识点4.图像分析问题的“四明确·一理解”
四明确 明确各种正、负号的含义
明确图像所描述的物理意义
明确斜率的含义
明确图像和电磁感应过程之间的对应关系
一理解 三个相似关系及其各自的物理意义v、Δv、;B、ΔB、;Φ、ΔΦ、
【题型过关练】
题型一 电磁感应中的电路问题
1.(多选)如图所示,分布于全空间的匀强磁场垂直于纸面向里,其磁感应强度大小为B=2 T。宽度为L=0.8 m的两导轨间接一阻值为R=0.2 Ω的电阻,电阻为2R的金属棒AC长为2L并垂直于导轨(导轨电阻不计)放置,A端刚好位于导轨,中点D与另一导轨接触。当金属棒以速度v=0.5 m/s向左匀速运动时,下列说法正确的是(  )
A.流过电阻R的电流为2 A
B.A、D两点的电势差为UAD=0.4 V
C.A、C两点的电势差为UAC=-1.6 V
D.A、C两点的电势差为UAC=-1.2 V
【答案】AD
【解析】: 金属棒AD段产生的感应电动势为EAD=BLv=2×0.8×0.5 V=0.8 V,流过电阻R的电流I== A=2 A,根据右手定则,可知A 端的电势低于D端的电势,A、D两点的电势差UAD=-IR=-0.4 V,B错误,A正确;D、C两点的电势差UDC=-BLv=-0.8 V,则UAC=UAD+UDC=-1.2 V,C错误,D正确。
2.如图所示,固定在水平面上的半径为r的金属圆环内存在方向竖直向上、磁感应强度大小为B的匀强磁场。长为l的金属棒,一端与圆环接触良好,另一端固定在竖直导电转轴OO′上,随轴以角速度ω匀速转动,在圆环的A点和电刷间接有阻值为R的电阻和电容为C、板间距为d的平行板电容器,有一带电微粒在电容器极板间处于静止状态。已知重力加速度为g,不计其他电阻和摩擦,下列说法正确的是(  )
A.金属棒产生的电动势为Bl2ω
B.微粒的电荷量与质量之比为
C.电阻消耗的电功率为
D.电容器所带的电荷量为CBr2ω
【答案】B
【解析】: 由法拉第电磁感应定律可知金属棒产生的电动势为E=Br·ωr=Br2ω,A错误;金属棒电阻不计,故电容器两极板间的电压等于棒产生的电动势,微粒的重力与其受到的电场力大小相等,有q=mg,可得=,B正确;电阻消耗的电功率P==,C错误;电容器所带的电荷量Q=CU=CBr2ω,D错误。
3.(多选)如图甲所示的电路中,电阻R1=R,R2=2R,单匝圆形金属线圈半径为r2、圆心为O,线圈的电阻为R,其余导线的电阻不计。半径为r1(r1A.电容器上极板带正电
B.t1时刻,电容器所带的电荷量为
C.t1时刻之后,线圈两端的电压为
D.t1时刻之后,R1两端的电压为
【答案】AC
【解析】: 根据楞次定律可知,线圈产生沿逆时针方向的感应电流,则电容器上极板带正电,故A正确;根据法拉第电磁感应定律有E==S=,稳定电流为I==,UR2=IR2=,电容器所带的电荷量为Q=CUR2=,故B错误;t1时刻之后,线圈两端的电压为U=I(R1+R2)=,故C正确;t1时刻之后,R1两端的电压为UR1=IR1==,故D错误。
题型二 电磁感应中电荷量的计算
1.如图,导体轨道OPQS固定,其中PQS是半圆弧,Q为半圆弧的中点,O为圆心。轨道的电阻忽略不计。OM是有一定电阻、可绕O转动的金属杆,M端位于PQS上,OM与轨道接触良好。空间存在与半圆所在平面垂直的匀强磁场,磁感应强度的大小为B。现使OM从OQ位置以恒定的角速度逆时针转到OS位置并固定(过程Ⅰ);再使磁感应强度的大小以一定的变化率从B增加到B′(过程Ⅱ)。在过程Ⅰ、Ⅱ中,流过OM的电荷量相等,则等于(  )
A. B.
C. D.2
【答案】 B
【解析】 设OM的电阻为R,OM的长度为l。过程Ⅰ,OM转动的过程中产生的平均感应电动势大小为E1====,流过OM的平均电流为I1==,则流过OM的电荷量为q1=I1·Δt1=;过程Ⅱ,磁场的磁感应强度大小均匀增加,则该过程中产生的平均感应电动势大小为E2===,电路中的平均电流为I2==,则流过OM的电荷量为q2=I2·Δt2=;由题
意知q1=q2,联立解得=,选项B正确,A、C、D错误。
2.在竖直向上的匀强磁场中,水平放置一个不变形的单匝金属圆线圈,线圈所围的面积为0.1 m2,线圈电阻为1 Ω。规定线圈中感应电流I的正方向从上往下看是顺时针方向,如图甲所示。磁场的磁感应强度B随时间t的变化规律如图乙所示。以下说法正确的是(  )
A.在0~2 s时间内,I的最大值为0.02 A
B.在3~5 s时间内,I的大小越来越小
C.前2 s内,通过线圈某横截面的总电荷量为0.01 C
D.第3 s内,线圈的发热功率最大
【答案】 C
【解析】 0~2 s时间内,t=0时刻磁感应强度变化率最大,感应电流最大,I===0.01 A,A错误;3~5 s时间内电流大小不变,B错误;前2 s内通过线圈的电荷量q===0.01 C,C正确;第3 s内,B没有变化,线圈中没有感应电流产生,则线圈的发热功率最小,D错误。
题型三 电磁感应中的图像问题
1.(多选)如图所示,边长为L的正方形区域存在垂直纸面向外的匀强磁场,等腰直角三角形导线框ABC以速度v匀速进入磁场区域,且AB=L,若从C点进入磁场开始计时,单位长度导线框的电阻相同,则B、C两点电势差UBC和BC边所受安培力FBC(规定FBC向上为正)随时间变化的图像正确的是(  )
【答案】BD
【解析】0~时间内导线切割磁感线的有效长度均匀增大,如图甲
由右手定则可知感应电流方向由C到B,即C点电势高,则UBC<0,由感应电动势E=Blv=Bv2t,可知感应电动势随时间均匀增大,电阻不变,电路中电流均匀增大,|UBC|均匀增大;在~时间内导线切割磁感线的有效长度均匀减小,感应电动势均匀减小,感应电流均匀减小,|UBC|均匀减小,t=时电路中感应电动势为零,如图乙;
此后由右手定则可知电流方向反向,电流先均匀变大再变小,UBC也是先变大再变小,如图丙、丁,
A错误,B正确;0~时间内BC边受力FBC=BIl=t2,FBC t 图像是开口向上的抛物线;在~时间内,BC边在磁场中的长度不变,由FBC=BIL可知FBC的大小和方向随电流的大小和方向线性变化;在~时间内BC边在磁场中的长度及导线切割磁感线的有效长度都减小,则FBC=BI(3L-vt)=,FBC t图像是开口向下的抛物线,C错误,D正确。
2.光滑绝缘的水平面上有垂直平面的匀强磁场,磁场被分成区域Ⅰ和Ⅱ,宽度均为h,其俯视图如图(a)所示,两磁场磁感应强度随时间t的变化如图(b)所示,0~τ时间内,两区域磁场恒定,方向相反,磁感应强度大小分别为2B0和B0,一电阻为R、边长为h的刚性正方形金属框abcd,平放在水平面上,ab、cd边与磁场边界平行。t=0时,线框ab边刚好跨过区域Ⅰ的左边界以速度v向右运动。在τ时刻,ab边运动到距区域Ⅰ的左边界处,线框的速度近似为零,此时线框被固定,如图(a)中的虚线框所示。随后在τ~2τ时间内,Ⅰ区磁感应强度线性减小到0,Ⅱ区磁场保持不变;2τ~3τ 时间内,Ⅱ区磁感应强度也线性减小到0。求:
(1)t=0时线框所受的安培力F;
(2)t=1.2τ时穿过线框的磁通量Φ;
(3)2τ~3τ时间内,线框中产生的热量Q。
【答案】 (1),方向水平向左(2),方向垂直纸面向里 (3)
【解析】(1)由题图(b)可知,t=0时线框切割磁感线产生的感应电动势为E=2B0hv+B0hv=3B0hv,则感应电流大小为I==,所受的安培力为F=2B0h+B0h=,方向水平向左。
(2)在τ时刻,ab边运动到距区域Ⅰ的左边界处,线框的速度近似为零,此时线框被固定,在τ~2τ时间内,Ⅰ区磁感应强度变化的斜率为k1==-,则t=1.2τ时Ⅰ区的磁感应强度为B1=2B0+k1(1.2τ-τ)=B0,则t=1.2τ时穿过线框的磁通量为Φ=B1h·h-B0h·h=,方向垂直纸面向里。
(3)2τ~3τ时间内,Ⅱ区磁感应强度线性减小到0,则有E′===,感应电流大小为I′==,则2τ~3τ时间内,线框中产生的热量为Q=I′2Rt=。
3.(多选)如图甲所示,正六边形导线框abcdef放在匀强磁场中静止不动,磁场方向与线框平面垂直,磁感应强度B随时间t的变化关系如图乙所示,t=0时刻,磁感应强度B的方向垂直纸面向里。设产生的感应电流顺时针方向为正,竖直边cd所受安培力的方向水平向左为正。则下面关于感应电流i和cd所受安培力F随时间t变化的图像正确的是(  )
【答案】AC
【解析】0~2 s内,磁感应强度方向垂直纸面向里,且逐渐减小,根据楞次定律,感应电流的方向为顺时针方向,为正值,根据法拉第电磁感应定律,E=S=B0S为定值,则感应电流I1=为定值;在2~3 s内,磁感应强度方向垂直纸面向外,且逐渐增大,根据楞次定律,感应电流方向为顺时针方向,为正值,大小与0~2 s内相等;在3~4 s内,磁感应强度垂直纸面向外,且逐渐减小,根据楞次定律,感应电流方向为逆时针方向,为负值,大小与0~2 s内相等;在4~6 s内,磁感应强度方向垂直纸面向里,且逐渐增大,根据楞次定律,感应电流方向为逆时针方向,为负值,大小与0~2 s内相等,故A正确,B错误。在0~2 s内,磁感应强度方向垂直纸面向里,且逐渐减小,电流恒定不变,根据FA=BIL,则安培力逐渐减小,cd边所受安培力方向向右,为负值,0时刻安培力大小为F=2B0I0L;在2~3 s内,磁感应强度方向垂直纸面向外,且逐渐增大,根据FA=BIL,则安培力逐渐增大,cd边所受安培力方向向左,为正值,3 s时安培力大小为B0I0L;在3~4 s内,磁感应强度方向垂直纸面向外,且逐渐减小,则安培力大小逐渐减小,cd边所受安培力方向向右,为负值,3 s时的安培力大小为B0I0L;在4~6 s内,磁感应强度方向垂直纸面向里,且逐渐增大,则安培力大小逐渐增大,cd边所受安培力方向向左,6 s时的安培力大小为2B0I0L,故C正确,D错误。
【真题演练】
1.(2024·浙江·高考真题)如图所示,边长为1m、电阻为0.04Ω的刚性正方形线框 abcd 放在与强磁场中,线框平面与磁场B垂直。若线框固定不动,磁感应强度以均匀增大时,线框的发热功率为P;若磁感应强度恒为0.2T,线框以某一角速度绕其中心轴匀速转动时,线框的发热功率为2P,则ab边所受最大的安培力为(  )
A. N B. C.1N D.
【答案】C
【详解】磁场均匀增大时,产生的感应电动势为
可得
线框以某一角速度绕其中心轴匀速转动时电动势的最大值为
此时有
解得
分析可知当线框平面与磁场方向平行时感应电流最大为
故ab边所受最大的安培力为
故选C。
2.(2024·湖南·高考真题)如图,有一硬质导线Oabc,其中是半径为R的半圆弧,b为圆弧的中点,直线段Oa长为R且垂直于直径ac。该导线在纸面内绕O点逆时针转动,导线始终在垂直纸面向里的匀强磁场中。则O、a、b、c各点电势关系为( )
A. B.
C. D.
【答案】C
【详解】如图,相当于Oa、Ob、Oc导体棒转动切割磁感线,根据右手定则可知O点电势最高;根据
同时有
可得

故选C。
3.(2023·福建·高考真题)如图,M、N是两根固定在水平面内的光滑平行金属导轨,导轨足够长且电阻可忽略不计;导轨间有一垂直于水平面向下的匀强磁场,其左边界垂直于导轨;阻值恒定的两均匀金属棒a、b均垂直于导轨放置,b始终固定。a以一定初速度进入磁场,此后运动过程中始终与导轨垂直且接触良好,并与b不相碰。以O为坐标原点,水平向右为正方向建立x轴坐标;在运动过程中,a的速度记为v,a克服安培力做功的功率记为P。下列v或P随x变化的图像中,可能正确的是(  )
A. B.
C. D.
【答案】A
【详解】AB.设导轨间磁场磁感应强度为B,导轨间距为L,金属棒总电阻为R,由题意导体棒a进入磁场后受到水平向左的安培力作用,做减速运动,根据动量定理有
根据
可得
又因为
联立可得
根据表达式可知v与x成一次函数关系,故A正确,B错误;
CD.a克服安培力做功的功率为
故图像为开口向上的抛物线,由于F和v都在减小,故P在减小,故CD错误。
故选A。
4.(2024·浙江·高考真题)某小组探究“法拉第圆盘发电机与电动机的功用”,设计了如图所示装置。飞轮由三根长的辐条和金属圆环组成,可绕过其中心的水平固定轴转动,不可伸长细绳绕在圆环上,系着质量的物块,细绳与圆环无相对滑动。飞轮处在方向垂直环面的匀强磁场中,左侧电路通过电刷与转轴和圆环边缘良好接触,开关S可分别与图示中的电路连接。已知电源电动势、内阻、限流电阻、飞轮每根辐条电阻,电路中还有可调电阻R2(待求)和电感L,不计其他电阻和阻力损耗,不计飞轮转轴大小。
(1)开关S掷1,“电动机”提升物块匀速上升时,理想电压表示数。
①判断磁场方向,并求流过电阻R1的电流I;
②求物块匀速上升的速度v。
(2)开关S掷2,物块从静止开始下落,经过一段时间后,物块匀速下降的速度与“电动机”匀速提升物块的速度大小相等,
①求可调电阻R2的阻值;
②求磁感应强度B的大小。
【答案】(1)①垂直纸面向外,10A;②5m/s;(2)①;②2.5T
【详解】(1)①物块上升,则金属轮沿逆时针方向转动,辐条受到的安培力指向逆时针方向,辐条中电流方向从圆周指向O点,由左手定则可知,磁场方向垂直纸面向外;由闭合电路的欧姆定律可知

②辐条切割磁感线产生的电动势与电源电动势相反,设每根辐条产生的电动势为E1,则
解得
此时金属轮可视为电动机
当物块P匀速上升时
解得
另解:因,根据
解得
(2)①物块匀速下落时,由受力分析可知,辐条受到的安培力与第(1)问相同,经过R2的电流
由题意可知
每根辐条切割磁感线产生的感应电动势
解得
另解:由能量关系可知
解得
②根据

解得
.(2024·浙江·高考真题)如图1所示,扫描隧道显微镜减振装置由绝缘减振平台和磁阻尼减振器组成。平台通过三根关于轴对称分布的相同轻杆悬挂在轻质弹簧的下端O,弹簧上端固定悬挂在点,三个相同的关于轴对称放置的减振器位于平台下方。如图2所示,每个减振器由通过绝缘轻杆固定在平台下表面的线圈和固定在桌面上能产生辐向磁场的铁磁体组成,辐向磁场分布关于线圈中心竖直轴对称,线圈所在处磁感应强度大小均为B。处于静止状态的平台受到外界微小扰动,线圈在磁场中做竖直方向的阻尼运动,其位移随时间变化的图像如图3所示。已知时速度为,方向向下,、时刻的振幅分别为,。平台和三个线圈的总质量为m,弹簧的劲度系数为k,每个线圈半径为r、电阻为R。当弹簧形变量为时,其弹性势能为。不计空气阻力,求
(1)平台静止时弹簧的伸长量;
(2)时,每个线圈所受到安培力F的大小;
(3)在时间内,每个线圈产生的焦耳热Q;
(4)在时间内,弹簧弹力冲量的大小。
【答案】(1);(2);(3);(4)
【详解】(1)平台静止时,穿过三个线圈的的磁通量不变,线圈中不产生感应电流,线圈不受到安培力作用,O点受力平衡,因此由胡克定律可知此时弹簧的伸长量
(2)在时速度为,设每个线圈的周长为L,由电磁感应定律可得线圈中产生的感应电流
每个线圈所受到安培力F的大小
(3)由减震器的作用平台上下不移动,由能量守恒定律可得平台在时间内,振动时能量的减少量为,由能量守恒定律
在时间内,振动时能量的减少转化为线圈的焦耳热,可知每个线圈产生的焦耳热
(4)取向上为正方向,全程由动量定理可得
其中
联立解得弹簧弹力冲量的大小为
21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
专题51 电磁感应中的电路和图像问题
考情分析 考题统计
充分理解电源,能判断电源电动势,理解并掌握电路的内电路和外电路,能正确判断电源的正负极;理解并掌握B-t图像、F-t图像、I-t图像、v-t图像等表达的含义,并能正确判断分析电场感应的状态过程变化。 2024·浙江6月·高考物理第5题 2024·浙江6月·高考物理第18题 2024·浙江1月·高考物理第15题 2024·湖南 ·高考物理第4题
【网络建构】
【考点梳理】
考点一.电磁感应中的电路问题
知识点1.电磁感应中电路知识的关系图
知识点2.分析电磁感应电路问题的基本思路
知识点3.电磁感应中电路问题的基本规律
(1)对电源的理解:在电磁感应现象中,产生感应电动势的那部分导体相当于电源,如切割磁感线的导体棒、有磁通量变化的线圈等。
(2)对电路的理解:内电路是切割磁感线的导体棒或磁通量发生变化的线圈;除电源外其余部分是外电路。在外电路中,电流从高电势处流向低电势处,在内电路中,电流则从低电势处流向高电势处。
(3)对路端电压的理解:“电源”两端的电压为路端电压,不是电源的感应电动势。
考点二.电磁感应中电荷量的计算
电磁感应中电荷量的计算公式:q=n
1.推导:根据法拉第电磁感应定律=n,电路中的平均电流为==,所以q=Δt=n。
2.结论:电磁感应过程中产生的感应电荷量由线圈的匝数、磁通量的变化量及电路的总电阻共同决定,与时间Δt无关。
考点三.电磁感应中的图像问题
知识点1.感生类图像问题
(1)问题类型
①给定电磁感应过程,选出或画出正确的图像。
②由给定的图像分析电磁感应过程,求解相应物理量。
(2)分析方法
①电动势大小:E=n,取决于磁通量的变化率。
②电动势方向:用楞次定律和安培定则判断。
知识点2.动生类图像问题
(1)问题类型
由闭合线圈的运动过程画出i-t图像或E-t图像。
(2)分析方法
①电动势大小:E=Blv。
要注意是单边切割还是双边切割(感应电流同向相加、反向相减),等效长度为在磁场中导线首尾相连在垂直于速度方向的投影长度。
②电动势方向:用右手定则判断。
知识点3.解答图像选择问题的常用方法
排除法 定性地分析电磁感应过程中物理量的变化趋势(增大还是减小)、变化快慢(均匀变化还是非均匀变化),特别是分析物理量的正负,以排除错误的选项
函数法 根据题目所给条件定量地写出两个物理量之间的函数关系,然后由函数关系对图像进行分析和判断
知识点4.图像分析问题的“四明确·一理解”
四明确 明确各种正、负号的含义
明确图像所描述的物理意义
明确斜率的含义
明确图像和电磁感应过程之间的对应关系
一理解 三个相似关系及其各自的物理意义v、Δv、;B、ΔB、;Φ、ΔΦ、
【题型过关练】
题型一 电磁感应中的电路问题
1.(多选)如图所示,分布于全空间的匀强磁场垂直于纸面向里,其磁感应强度大小为B=2 T。宽度为L=0.8 m的两导轨间接一阻值为R=0.2 Ω的电阻,电阻为2R的金属棒AC长为2L并垂直于导轨(导轨电阻不计)放置,A端刚好位于导轨,中点D与另一导轨接触。当金属棒以速度v=0.5 m/s向左匀速运动时,下列说法正确的是(  )
A.流过电阻R的电流为2 A
B.A、D两点的电势差为UAD=0.4 V
C.A、C两点的电势差为UAC=-1.6 V
D.A、C两点的电势差为UAC=-1.2 V
2.如图所示,固定在水平面上的半径为r的金属圆环内存在方向竖直向上、磁感应强度大小为B的匀强磁场。长为l的金属棒,一端与圆环接触良好,另一端固定在竖直导电转轴OO′上,随轴以角速度ω匀速转动,在圆环的A点和电刷间接有阻值为R的电阻和电容为C、板间距为d的平行板电容器,有一带电微粒在电容器极板间处于静止状态。已知重力加速度为g,不计其他电阻和摩擦,下列说法正确的是(  )
A.金属棒产生的电动势为Bl2ω
B.微粒的电荷量与质量之比为
C.电阻消耗的电功率为
D.电容器所带的电荷量为CBr2ω
3.(多选)如图甲所示的电路中,电阻R1=R,R2=2R,单匝圆形金属线圈半径为r2、圆心为O,线圈的电阻为R,其余导线的电阻不计。半径为r1(r1A.电容器上极板带正电
B.t1时刻,电容器所带的电荷量为
C.t1时刻之后,线圈两端的电压为
D.t1时刻之后,R1两端的电压为
题型二 电磁感应中电荷量的计算
1.如图,导体轨道OPQS固定,其中PQS是半圆弧,Q为半圆弧的中点,O为圆心。轨道的电阻忽略不计。OM是有一定电阻、可绕O转动的金属杆,M端位于PQS上,OM与轨道接触良好。空间存在与半圆所在平面垂直的匀强磁场,磁感应强度的大小为B。现使OM从OQ位置以恒定的角速度逆时针转到OS位置并固定(过程Ⅰ);再使磁感应强度的大小以一定的变化率从B增加到B′(过程Ⅱ)。在过程Ⅰ、Ⅱ中,流过OM的电荷量相等,则等于(  )
A. B.
C. D.2
2.在竖直向上的匀强磁场中,水平放置一个不变形的单匝金属圆线圈,线圈所围的面积为0.1 m2,线圈电阻为1 Ω。规定线圈中感应电流I的正方向从上往下看是顺时针方向,如图甲所示。磁场的磁感应强度B随时间t的变化规律如图乙所示。以下说法正确的是(  )
A.在0~2 s时间内,I的最大值为0.02 A
B.在3~5 s时间内,I的大小越来越小
C.前2 s内,通过线圈某横截面的总电荷量为0.01 C
D.第3 s内,线圈的发热功率最大
题型三 电磁感应中的图像问题
1.(多选)如图所示,边长为L的正方形区域存在垂直纸面向外的匀强磁场,等腰直角三角形导线框ABC以速度v匀速进入磁场区域,且AB=L,若从C点进入磁场开始计时,单位长度导线框的电阻相同,则B、C两点电势差UBC和BC边所受安培力FBC(规定FBC向上为正)随时间变化的图像正确的是(  )
2.光滑绝缘的水平面上有垂直平面的匀强磁场,磁场被分成区域Ⅰ和Ⅱ,宽度均为h,其俯视图如图(a)所示,两磁场磁感应强度随时间t的变化如图(b)所示,0~τ时间内,两区域磁场恒定,方向相反,磁感应强度大小分别为2B0和B0,一电阻为R、边长为h的刚性正方形金属框abcd,平放在水平面上,ab、cd边与磁场边界平行。t=0时,线框ab边刚好跨过区域Ⅰ的左边界以速度v向右运动。在τ时刻,ab边运动到距区域Ⅰ的左边界处,线框的速度近似为零,此时线框被固定,如图(a)中的虚线框所示。随后在τ~2τ时间内,Ⅰ区磁感应强度线性减小到0,Ⅱ区磁场保持不变;2τ~3τ 时间内,Ⅱ区磁感应强度也线性减小到0。求:
(1)t=0时线框所受的安培力F;
(2)t=1.2τ时穿过线框的磁通量Φ;
(3)2τ~3τ时间内,线框中产生的热量Q。
3.(多选)如图甲所示,正六边形导线框abcdef放在匀强磁场中静止不动,磁场方向与线框平面垂直,磁感应强度B随时间t的变化关系如图乙所示,t=0时刻,磁感应强度B的方向垂直纸面向里。设产生的感应电流顺时针方向为正,竖直边cd所受安培力的方向水平向左为正。则下面关于感应电流i和cd所受安培力F随时间t变化的图像正确的是(  )
【真题演练】
1.(2024·浙江·高考真题)如图所示,边长为1m、电阻为0.04Ω的刚性正方形线框 abcd 放在与强磁场中,线框平面与磁场B垂直。若线框固定不动,磁感应强度以均匀增大时,线框的发热功率为P;若磁感应强度恒为0.2T,线框以某一角速度绕其中心轴匀速转动时,线框的发热功率为2P,则ab边所受最大的安培力为(  )
A. N B. C.1N D.
2.(2024·湖南·高考真题)如图,有一硬质导线Oabc,其中是半径为R的半圆弧,b为圆弧的中点,直线段Oa长为R且垂直于直径ac。该导线在纸面内绕O点逆时针转动,导线始终在垂直纸面向里的匀强磁场中。则O、a、b、c各点电势关系为( )
A. B.
C. D.
3.(2023·福建·高考真题)如图,M、N是两根固定在水平面内的光滑平行金属导轨,导轨足够长且电阻可忽略不计;导轨间有一垂直于水平面向下的匀强磁场,其左边界垂直于导轨;阻值恒定的两均匀金属棒a、b均垂直于导轨放置,b始终固定。a以一定初速度进入磁场,此后运动过程中始终与导轨垂直且接触良好,并与b不相碰。以O为坐标原点,水平向右为正方向建立x轴坐标;在运动过程中,a的速度记为v,a克服安培力做功的功率记为P。下列v或P随x变化的图像中,可能正确的是(  )
A. B.
C. D.
4.(2024·浙江·高考真题)某小组探究“法拉第圆盘发电机与电动机的功用”,设计了如图所示装置。飞轮由三根长的辐条和金属圆环组成,可绕过其中心的水平固定轴转动,不可伸长细绳绕在圆环上,系着质量的物块,细绳与圆环无相对滑动。飞轮处在方向垂直环面的匀强磁场中,左侧电路通过电刷与转轴和圆环边缘良好接触,开关S可分别与图示中的电路连接。已知电源电动势、内阻、限流电阻、飞轮每根辐条电阻,电路中还有可调电阻R2(待求)和电感L,不计其他电阻和阻力损耗,不计飞轮转轴大小。
(1)开关S掷1,“电动机”提升物块匀速上升时,理想电压表示数。
①判断磁场方向,并求流过电阻R1的电流I;
②求物块匀速上升的速度v。
(2)开关S掷2,物块从静止开始下落,经过一段时间后,物块匀速下降的速度与“电动机”匀速提升物块的速度大小相等,
①求可调电阻R2的阻值;
②求磁感应强度B的大小。
.(2024·浙江·高考真题)如图1所示,扫描隧道显微镜减振装置由绝缘减振平台和磁阻尼减振器组成。平台通过三根关于轴对称分布的相同轻杆悬挂在轻质弹簧的下端O,弹簧上端固定悬挂在点,三个相同的关于轴对称放置的减振器位于平台下方。如图2所示,每个减振器由通过绝缘轻杆固定在平台下表面的线圈和固定在桌面上能产生辐向磁场的铁磁体组成,辐向磁场分布关于线圈中心竖直轴对称,线圈所在处磁感应强度大小均为B。处于静止状态的平台受到外界微小扰动,线圈在磁场中做竖直方向的阻尼运动,其位移随时间变化的图像如图3所示。已知时速度为,方向向下,、时刻的振幅分别为,。平台和三个线圈的总质量为m,弹簧的劲度系数为k,每个线圈半径为r、电阻为R。当弹簧形变量为时,其弹性势能为。不计空气阻力,求
(1)平台静止时弹簧的伸长量;
(2)时,每个线圈所受到安培力F的大小;
(3)在时间内,每个线圈产生的焦耳热Q;
(4)在时间内,弹簧弹力冲量的大小。
21世纪教育网(www.21cnjy.com)

展开更多......

收起↑

资源列表