资源简介 2009年高考数学试题分类汇编——圆锥曲线1.(2009浙江文)已知椭圆的左焦点为,右顶点为,点在椭圆上,且轴, 直线交轴于点.若,则椭圆的离心率是( )21世纪教育网 A. B. C. D. 答案:D 【命题意图】对于对解析几何中与平面向量结合的考查,既体现了几何与向量的交汇,也体现了数形结合的巧妙应用.【解析】对于椭圆,因为,则 21世纪教育网 2.(2009山东卷文)设斜率为2的直线过抛物线的焦点F,且和轴交于点A,若△OAF(O为坐标原点)的面积为4,则抛物线方程为( ). A. B. C. D. 【解析】: 抛物线的焦点F坐标为,则直线的方程为,它与轴的交点为A,所以△OAF的面积为,解得.所以抛物线方程为,故选B. 答案:B.【命题立意】:本题考查了抛物线的标准方程和焦点坐标以及直线的点斜式方程和三角形面积的计算.考查数形结合的数学思想,其中还隐含着分类讨论的思想,因参数的符号不定而引发的抛物线开口方向的不定以及焦点位置的相应变化有两种情况,这里加绝对值号可以做到合二为一.3.(2009安徽卷文)下列曲线中离心率为的是21世纪教育网 A. B. C. D. 【解析】依据双曲线的离心率可判断得..选B。【答案】B4.(2009安徽卷文)直线过点(-1,2)且与直线垂直,则的方程是 A. B. C. D. 【解析】可得斜率为即,选A。【答案】A5.(2009天津卷文)设双曲线的虚轴长为2,焦距为,则双曲线的渐近线方程为( )A B C D【答案】C 【解析】由已知得到,因为双曲线的焦点在x轴上,故渐近线方程为【考点定位】本试题主要考查了双曲线的几何性质和运用。考察了同学们的运算能力和推理能力。6.(2009辽宁卷文)已知圆C与直线x-y=0 及x-y-4=0都相切,圆心在直线x+y=0上,则圆C的方程为(A) (B) (C) (D) 【解析】圆心在x+y=0上,排除C、D,再结合图象,或者验证A、B中圆心到两直线的距离等于半径即可.【答案】B7.(2009宁夏海南卷文)已知圆:+=1,圆与圆关于直线对称,则圆的方程为(A)+=1 (B)+=1(C)+=1 (D)+=1【答案】B【解析】设圆的圆心为(a,b),则依题意,有,解得:,对称圆的半径不变,为1,故选B。.8.(2009福建卷文)若双曲线的离心率为2,则等于A. 2 B. C. D. 1解析解析 由,解得a=1或a=3,参照选项知而应选D.9.(2009年广东卷文)以点(2,)为圆心且与直线相切的圆的方程是 .【答案】【解析】将直线化为,圆的半径,所以圆的方程为 21世纪教育网 10.(2009天津卷文)若圆与圆的公共弦长为,则a=________.【答案】1 【解析】由已知,两个圆的方程作差可以得到相交弦的直线方程为 ,利用圆心(0,0)到直线的距离d为,解得a=1【考点定位】本试题考查了直线与圆的位置关系以及点到直线的距离公式的运用。考察了同学们的运算能力和推理能力。11.(2009宁夏海南卷文)已知抛物线C的顶点坐标为原点,焦点在x轴上,直线y=x与抛物线C交于A,B两点,若为的中点,则抛物线C的方程为 。【答案】【解析】设抛物线为y2=kx,与y=x联立方程组,消去y,得:x2-kx=0,=k=2×2,故.12.(2009年广东卷文)(本小题满分14分)已知椭圆G的中心在坐标原点,长轴在轴上,离心率为,两个焦点分别为和,椭圆G上一点到和的距离之和为12.圆:的圆心为点.(1)求椭圆G的方程(2)求的面积(3)问是否存在圆包围椭圆G?请说明理由.【解析】(1)设椭圆G的方程为: ()半焦距为c; 则 , 解得 , 所求椭圆G的方程为:. 21世纪教育网 (2 )点的坐标为 (3)若,由可知点(6,0)在圆外, 若,由可知点(-6,0)在圆外; 不论K为何值圆都不能包围椭圆G.13.(2009浙江文)(本题满分15分)已知抛物线:上一点到其焦点的距离为. (I)求与的值; (II)设抛物线上一点的横坐标为,过的直线交于另一点,交轴于点,过点作的垂线交于另一点.若是的切线,求的最小值.解析(Ⅰ)由抛物线方程得其准线方程:,根据抛物线定义点到焦点的距离等于它到准线的距离,即,解得抛物线方程为:,将代入抛物线方程,解得(Ⅱ)由题意知,过点的直线斜率存在且不为0,设其为。则,当 则。联立方程,整理得:即:,解得或,而,直线斜率为 21世纪教育网 ,联立方程整理得:,即: ,解得:,或,而抛物线在点N处切线斜率:MN是抛物线的切线,, 整理得,解得(舍去),或,14. (2009山东卷文)(本小题满分14分)设,在平面直角坐标系中,已知向量,向量,,动点的轨迹为E.(1)求轨迹E的方程,并说明该方程所表示曲线的形状; 21世纪教育网 (2)已知,证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且(O为坐标原点),并求出该圆的方程;(3)已知,设直线与圆C:(1解:(1)因为,,,所以, 即. 21世纪教育网 当m=0时,方程表示两直线,方程为;当时, 方程表示的是圆当且时,方程表示的是椭圆; 当时,方程表示的是双曲线.(2).当时, 轨迹E的方程为,设圆心在原点的圆的一条切线为,解方程组得,即,要使切线与轨迹E恒有两个交点A,B, 则使△=,即,即, 且,要使, 需使,即,所以, 即且, 即恒成立.所以又因为直线为圆心在原点的圆的一条切线,所以圆的半径为,, 所求的圆为.当切线的斜率不存在时,切线为,与交于点或也满足.综上, 存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且.(3)当时,轨迹E的方程为,设直线的方程为,因为直线与圆C:(1因为与轨迹E只有一个公共点B1,由(2)知得,即有唯一解则△=, 即, ②由①②得, 此时A,B重合为B1(x1,y1)点, 21世纪教育网 由 中,所以,, B1(x1,y1)点在椭圆上,所以,所以,在直角三角形OA1B1中,因为当且仅当时取等号,所以,即当时|A1B1|取得最大值,最大值为1.【命题立意】:本题主要考查了直线与圆的方程和位置关系,以及直线与椭圆的位置关系,可以通过解方程组法研究有没有交点问题,有几个交点的问题.15.(2009安徽卷文)(本小题满分12分)已知椭圆(a>b>0)的离心率为,以原点为圆心。椭圆短半轴长半径的圆与直线y=x+2相切,(Ⅰ)求a与b;21世纪教育网 (Ⅱ)设该椭圆的左,右焦点分别为和,直线过且与x轴垂直,动直线与y轴垂直,交与点p..求线段P垂直平分线与的交点M的轨迹方程,并指明曲线类型。【思路】(1)由椭圆建立a、b等量关系,再根据直线与椭圆相切求出a、b.(2)依据几何关系转化为代数方程可求得,这之中的消参就很重要了。【解析】(1)由于 ∴ ∴ 又 ∴b2=2,a2=3因此,. 21世纪教育网 (2)由(1)知F1,F2两点分别为(-1,0),(1,0),由题意可设P(1,t).(t≠0).那么线段PF1中点为,设M(x、y)是所求轨迹上的任意点.由于则消去参数t得,其轨迹为抛物线(除原点)16.(2009江西卷文)(本小题满分14分)如图,已知圆是椭圆的内接△的内切圆, 其中为椭圆的左顶点. (1)求圆的半径;(2)过点作圆的两条切线交椭圆于两点,证明:直线与圆相切. 解: (1)设,过圆心作于,交长轴于由得,即 (1) 而点在椭圆上, (2)由(1)、 (2)式得,解得或(舍去)(2) 设过点与圆相切的直线方程为: (3)则,即 (4)解得将(3)代入得,则异于零的解为设,,则则直线的斜率为:于是直线的方程为: 即则圆心到直线的距离 21世纪教育网 故结论成立.17.(2009天津卷文)(本小题满分14分)已知椭圆()的两个焦点分别为,过点的直线与椭圆相交于点A,B两点,且(Ⅰ求椭圆的离心率(Ⅱ)直线AB的斜率;(Ⅲ)设点C与点A关于坐标原点对称,直线上有一点H(m,n)()在的外接圆上,求的值。【答案】(1)(2)(3)【解析】 (1)解:由,得,从而,整理得,故离心率(2)解:由(1)知,,所以椭圆的方程可以写为设直线AB的方程为即由已知设则它们的坐标满足方程组 21世纪教育网 消去y整理,得依题意,而,有题设知,点B为线段AE的中点,所以联立三式,解得,将结果代入韦达定理中解得(3)由(2)知,,当时,得A由已知得线段的垂直平分线l的方程为直线l与x轴的交点是的外接圆的圆心,因此外接圆的方程为直线的方程为,于是点满足方程组由,解得,故当时,同理可得【考点定位】本小题主要考查椭圆的标准方程和几何性质,直线方程,圆的方程等基础知识。考查用代数方法研究圆锥曲线的性质和数形结合的思想,考查运算能力和推理能力。18.(2009辽宁卷文)(本小题满分12分)已知,椭圆C以过点A(1,),两个焦点为(-1,0)(1,0)。求椭圆C的方程;E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值。 (22)解:(Ⅰ)由题意,c=1,可设椭圆方程为。 因为A在椭圆上,所以,解得=3,=(舍去)。所以椭圆方程为 . ......4分(Ⅱ)设直线AE方程:得,代入得 设E(,),F(,).因为点A(1,)在椭圆上,所以, 。 .......8分又直线AF的斜率与AE的斜率互为相反数,在上式中以代,可得, 。所以直线EF的斜率。即直线EF的斜率为定值,其值为。 .......12分19.(2009宁夏海南卷文)(本小题满分12分)已知椭圆的中心为直角坐标系的原点,焦点在轴上,它的一个项点到两个焦点的距离分别是7和1求椭圆的方程‘若为椭圆的动点,为过且垂直于轴的直线上的点,(e为椭圆C的离心率),求点的轨迹方程,并说明轨迹是什么曲线。解:(Ⅰ)设椭圆长半轴长及分别为a,c,由已知得 { 解得a=4,c=3, 21世纪教育网 所以椭圆C的方程为 (Ⅱ)设M(x,y),P(x,),其中由已知得而,故 ①由点P在椭圆C上得 代入①式并化简得所以点M的轨迹方程为轨迹是两条平行于x轴的线段. 20.(2009福建卷文)(本小题满分14分)已知直线经过椭圆 21世纪教育网 的左顶点A和上顶点D,椭圆的右顶点为,点和椭圆上位于轴上方的动点,直线,与直线分别交于两点。 (I)求椭圆的方程; (Ⅱ)求线段MN的长度的最小值; (Ⅲ)当线段MN的长度最小时,在椭圆上是否存在这样的点,使得的面积为?若存在,确定点的个数,若不存在,说明理由解法一:(I)由已知得,椭圆的左顶点为上顶点为 故椭圆的方程为(Ⅱ)直线AS的斜率显然存在,且,故可设直线的方程为,从而由得0设则得,从而 21世纪教育网 即又由得故又 当且仅当,即时等号成立21世纪教育网 时,线段的长度取最小值(Ⅲ)由(Ⅱ)可知,当取最小值时, 此时的方程为 要使椭圆上存在点,使得的面积等于,只须到直线的距离等于,所以在平行于且与距离等于的直线上。设直线则由解得或 展开更多...... 收起↑ 资源预览