资源简介 中小学教育资源及组卷应用平台2024-2025七年级下册数学同步练习重难点突破【浙教版】专题1.2 同位角、内错角、同旁内角七大题型(一课一练)[本试卷包含了常见考题,对基础知识进行巩固测试]一、单选题(本大题共10个小题,每题3分,共30分,每题均有四个选项,其中只有一个选项符合规定)1.下列四个选项中,与是内错角的是( )A. B.C. D.【答案】B【详解】解:A、与不是内错角,则此项不符合题意;B、与是内错角,则此项符合题意;C、与不是内错角,则此项不符合题意;D、与不是内错角,则此项不符合题意;故选:B.2.(文化情境·风筝)风筝由中国古代劳动人民发明于东周春秋时期,相传墨翟以木头制成木鸟,研制三年而成,是人类最早的风筝起源,如图风筝的骨架构成了多种位置关系的角.下列角中与构成同位角和内错角的分别是( )A., B., C., D.,【答案】B【详解】解:的同位角有:,的同旁内角有:,的内错角有:.故选:B3.由图可知,和是一对( )A.对顶角 B.同位角 C.内错角 D.同旁内角【答案】D【详解】解:和符合同旁内角的定义,故选:D.4.如图,直线与直线被直线所截,分别交、于点、,过点作射线,则图中的同位角有( ) A. B.或C.或 D.或或【答案】B【详解】解:由题意可知,的同位角为或者.故选:.5.如图,直线a,b被c所截,下列四个结论:①∠1和∠3互为对顶角;②∠4和∠8是同位角;③∠3和∠7是内错角;④∠4和∠7是同旁内角.其中,结论一定正确的有( )A.4个 B.3个 C.2个 D.1个【答案】A【详解】①∠1和∠3互为对顶角,说法正确;②∠4和∠8是同位角,说法正确;③∠3和∠7是内错角,说法正确;④∠4和∠7是同旁内角,说法正确;结论一定正确的有①②③④共4个;故选:A.6.数学课上老师用双手表示了“三线八角”图形,如图所示(两大拇指代表被截直线,食指代表截线).从左至右依次表示( )A.同旁内角、同位角、内错角 B.同位角、内错角、同旁内角C.内错角、同旁内角、同位角 D.内错角、同位角、同旁内角【答案】D【详解】解:根据同位角、内错角、同旁内角的概念,可知第一个图是内错角,第二个图是同位角,第三个图是同旁内角.故选:D.7.如图,直线、被所截,图中标注的角中是同位角的是( ) A.与 B.与 C.与 D.与【答案】D【详解】解:A.与是同旁内角,选项错误;B.与不是同位角,选项错误;C.与是内错角,选项错误;D.与是同位角,选项正确.故选:D.8.如图,直线a,b被直线c所截,则与的位置关系是( )A.同位角 B.对顶角 C.同旁内角 D.内错角【答案】D【详解】解:与的位置关系是内错角.故选:D.9.如图,已知与,其中与相交,下列结论中错误的是( )A.与是同旁内角 B.与是对顶角C.与是内错角 D.与是同位角【答案】C【详解】解:A、与是同旁内角,原说法正确,不符合题意;B、与是对顶角,原说法正确,不符合题意;C、与不是内错角,原说法错误,符合题意;D、与是同位角,原说法正确,不符合题意;故选:C.10.如图,下列判断:①与是同位角;②与是同旁内角;③与是内错角;④与是同位角.其中正确的是( )A. B.C. D.【答案】A【详解】解:①由同位角的概念得出:与是同位角,正确;②由同旁内角的概念得出:与是同旁内角,正确;③由内错角的概念得出:与不是内错角,错误;④由内错角的概念得出:与是内错角,错误.故正确的有2个,是,故选:A.二、填空题(本大题共8个小题,每小题3分,共24分)11.已知点C为的边上一点,射线交于点D,则图中与是同位角的是 .【答案】、【详解】解:由同位角的定义可得,与是同位角的是和,故答案为:、.12.如图,与是同旁内角的是 .【答案】【详解】解:根据同旁内角的概念可得:和是同旁内角.故答案为:.13.如图,和 是同位角,和 是内错角,的邻补角是 .【答案】 或【详解】解:由题意知,和是同位角,和是内错角,的邻补角是或,故答案为:,,或.14.在如图所示的6个角中,同位角有 对,它们是 ;内错角有 对,它们是 ;同旁内角有 对,它们是 .【答案】 2 与,与 2 与,与 4 与,与,与,与【详解】解:在如图所示的6个角中,同位角有2对,它们是与,与,内错角有2对,它们是与,与;同旁内角有4对,它们是与,与,与,与.故答案为:2;与,与;2; 与,与;4;与,与,与,与.15.如图,三条直线两两相交,与是 角,与是 角,与是 角.【答案】 邻补 内错 同位【详解】解:由图可知:与是邻补角,与是内错角,与是同位角,故答案为:①邻补;②内错;③同位16.如图,图中内错角有 对.【答案】5【详解】解:与,与,与,与,与都是内错角,∴图中内错角有5对,故答案为:5.17.如图,可以与组成内错角的角有 个,它们分别是 .【答案】 2 ,【详解】解:与组成内错角的角有2个,它们分别是和.故答案为:2,,.18.如图所示,直线与被直线所截得的内错角是 ;直线与被直线所截得的内错角是 ;的内错角是 .【答案】 和 和 和【详解】解:直线与被直线所截得的内错角是和;直线与被直线所截得的内错角是和;的内错角是和.故答案为:和;和;和.三、解答题(本大题共6个小题,共46分,解答应写出文字说明、证明过程或演算步骤.)19.如图,在用数字表示的角中,哪些是同位角?哪些是内错角?哪些是同旁内角?【答案】同位角:和和;内错角:和和;同旁内角:和和和和.【详解】解:同位角:和,和;内错角:和,和;同旁内角:和,和,和,和.20.如图,按要求画图并回答问题:(1)过点A画点A到直线的垂线段,垂足为D;(2)过点D画直线,交的延长线于点E;(3)的内错角是 ;(4)在线段中,最短的是 ,理由为 .【答案】(1)见解析(2)见解析(3)(4),垂线段最短【详解】(1)解:如图,即为所求;(2)解:如图,即为所求; (3)解:的内错角是,故答案为:;(4)解:在线段中,最短的是,理由为垂线段最短.故答案为:,垂线段最短.21.如图,写出图中所有的内错角和同旁内角.解:内错角是与,与;(第一步)同旁内角是与,与.(第二步)上面的解答过程是否正确?若不正确,请指出哪一步出错,并写出你认为正确的结论.【答案】不正确.第二步出错,同旁内角是与,与,与,与,与.【详解】不正确.第二步出错同旁内角是与,与,与,与,与.22.如图所示,(1)和是 、 被 所截得的 角.(2)和∠ 是、被 所截得的内错角.(3)∠ 和∠ 是、被所截而成的同旁内角.(4)∠ 和∠ 是、被所截得的内错角.【答案】(1);;;同位(2);(3);(4);【详解】(1)解:和是、被所截得的同位角,故答案为:;;;同位;(2)解:和是、被所截得的内错角,故答案为:;;(3)解:和是、被所截而成的同旁内角,故答案为:;;(4)解:和是、被所截得的内错角,故答案为:;.23.如图,射线与直线分别相交于点H,G. 按要求完成下列各小题. (1)图中共有 对对顶角, 对内错角;(2)①的同旁内角是 ;②和是由哪两条直线被哪一条直线所截形成的?它们是具有什么位置关系的角?(3)过点G画射线的垂线,交于点M,并指出哪条线段的长度表示点G到的距离.【答案】(1)4;4(2)①,;②和是直线被直线所截形成;同位角(3)图见解析,【详解】(1)解:由图可知:和,和,和,和是对顶角,共4对;和,和,和,和是内错角,共4对; 故答案为:4;4(2)①由图可知:的同旁内角是,;故答案为:,;②和是直线被直线所截形成的同位角;(3)如图; 由图可知:线段的长即为点G到的距离.24.如图,直线DE和BC被直线AB所截.(1)与、与,与各有什么特殊的位置关系?(2)与是内错角吗?为什么?(3)如果,那么等于吗?和互补吗?为什么?【答案】(1)与是内错角,与是同旁内角,与是同位角(2)与不是内错角.因为内错角必须在截线的两侧,两条被截直线之间(3),和互补,理由见解析【详解】(1)∵与两个角都在两直线的中间, 截线的两侧,∴与是内错角,∵与两个角都在两直线的中间, 截线的同旁,∴与是同旁内角,∵与两个角都在截线的同旁,又分别处在被截的两条直线同侧位置,∴与是同位角.故答案为:与是内错角,与是同旁内角,与是同位角(2)∵内错角必须在两条被截直线之间,∴与不是内错角.故答案为:与不是内错角.因为内错角必须在截线的两侧,两条被截直线之间(3)理由: ∵,而,,∵和互补,,∴和也互补.故答案为:,和互补中小学教育资源及组卷应用平台2024-2025七年级下册数学同步练习重难点突破【浙教版】专题1.2 同位角、内错角、同旁内角七大题型(一课一练)[本试卷包含了常见考题,对基础知识进行巩固测试]一、单选题(本大题共10个小题,每题3分,共30分,每题均有四个选项,其中只有一个选项符合规定)1.下列四个选项中,与是内错角的是( )A. B.C. D.2.(文化情境·风筝)风筝由中国古代劳动人民发明于东周春秋时期,相传墨翟以木头制成木鸟,研制三年而成,是人类最早的风筝起源,如图风筝的骨架构成了多种位置关系的角.下列角中与构成同位角和内错角的分别是( )A., B., C., D.,3.由图可知,和是一对( )A.对顶角 B.同位角 C.内错角 D.同旁内角4.如图,直线与直线被直线所截,分别交、于点、,过点作射线,则图中的同位角有( ) A. B.或C.或 D.或或5.如图,直线a,b被c所截,下列四个结论:①∠1和∠3互为对顶角;②∠4和∠8是同位角;③∠3和∠7是内错角;④∠4和∠7是同旁内角.其中,结论一定正确的有( )A.4个 B.3个 C.2个 D.1个6.数学课上老师用双手表示了“三线八角”图形,如图所示(两大拇指代表被截直线,食指代表截线).从左至右依次表示( )A.同旁内角、同位角、内错角 B.同位角、内错角、同旁内角C.内错角、同旁内角、同位角 D.内错角、同位角、同旁内角7.如图,直线、被所截,图中标注的角中是同位角的是( ) A.与 B.与 C.与 D.与8.如图,直线a,b被直线c所截,则与的位置关系是( )A.同位角 B.对顶角 C.同旁内角 D.内错角9.如图,已知与,其中与相交,下列结论中错误的是( )A.与是同旁内角 B.与是对顶角C.与是内错角 D.与是同位角10.如图,下列判断:①与是同位角;②与是同旁内角;③与是内错角;④与是同位角.其中正确的是( )A. B.C. D.二、填空题(本大题共8个小题,每小题3分,共24分)11.已知点C为的边上一点,射线交于点D,则图中与是同位角的是 .12.如图,与是同旁内角的是 .13.如图,和 是同位角,和 是内错角,的邻补角是 .14.在如图所示的6个角中,同位角有 对,它们是 ;内错角有 对,它们是 ;同旁内角有 对,它们是 .15.如图,三条直线两两相交,与是 角,与是 角,与是 角.16.如图,图中内错角有 对.17.如图,可以与组成内错角的角有 个,它们分别是 .18.如图所示,直线与被直线所截得的内错角是 ;直线与被直线所截得的内错角是 ;的内错角是 .三、解答题(本大题共6个小题,共46分,解答应写出文字说明、证明过程或演算步骤.)19.如图,在用数字表示的角中,哪些是同位角?哪些是内错角?哪些是同旁内角?20.如图,按要求画图并回答问题:(1)过点A画点A到直线的垂线段,垂足为D;(2)过点D画直线,交的延长线于点E;(3)的内错角是 ;(4)在线段中,最短的是 ,理由为 .21.如图,写出图中所有的内错角和同旁内角.解:内错角是与,与;(第一步)同旁内角是与,与.(第二步)上面的解答过程是否正确?若不正确,请指出哪一步出错,并写出你认为正确的结论.22.如图所示,(1)和是 、 被 所截得的 角.(2)和∠ 是、被 所截得的内错角.(3)∠ 和∠ 是、被所截而成的同旁内角.(4)∠ 和∠ 是、被所截得的内错角.23.如图,射线与直线分别相交于点H,G. 按要求完成下列各小题. (1)图中共有 对对顶角, 对内错角;(2)①的同旁内角是 ;②和是由哪两条直线被哪一条直线所截形成的?它们是具有什么位置关系的角?(3)过点G画射线的垂线,交于点M,并指出哪条线段的长度表示点G到的距离.24.如图,直线DE和BC被直线AB所截.(1)与、与,与各有什么特殊的位置关系?(2)与是内错角吗?为什么?(3)如果,那么等于吗?和互补吗?为什么? 展开更多...... 收起↑ 资源列表 【新教材】专题1.2同位角、内错角、同旁内角七大题型(一课一练)2024-2025七年级下册数学同步讲练【浙教2024版】-原卷版.docx 【新教材】专题1.2同位角、内错角、同旁内角七大题型(一课一练)2024-2025七年级下册数学同步讲练【浙教2024版】-解析版.docx