四川省遂宁市2024-2025学年高二上学期期末质量监测数学试题(PDF版,含答案)

资源下载
  1. 二一教育资源

四川省遂宁市2024-2025学年高二上学期期末质量监测数学试题(PDF版,含答案)

资源简介

数学参考答案及评分标准
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项符
合题目要求,
1.B2.A
3.C
4.D5.C
6.A7.C
8.B
二、选择题:本题共3小题,每小题6分,共18分.9、10题选对1个得2分,选对2个得4分,全部
选对的得6分,有选错的得0分;11题选对1个得3分,全部选对的得6分,有选错的得0分.
9.ACD
10.ABC 11.BD
三、填空题:本题共3小题,每小题5分,共15分
12.2
13.3
14.±6
四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤
15.(13分)
【解析】(1)依题意,可知2a=8,得a=4,……
2分
由e一£=号,獬得=2,
4分
所以b=Q2-C2=25,…
6分
散椭圆C的方程为6十兰1。…
7分
(2)椭圆C1的焦点为F,(一2,0),F2(2,0),且短轴长为43.…8分
以F(-2,0),F(2,0)为左右顶点的双曲线C的方程设为=1(m>0,>0).…
……9分
依题意,得=2,n=2v3,
10分
所以,双曲线C的方程为号一益=1,
11分
其渐近线方程为y=士√x.
13分
16.(15分)
【解析】(1)圆M的标准方程为:(x一2)2+(y一2)2=4,圆M的圆心为(2,2),半径为2.
……2分
直线I:kx-y十k=0,
圆心M到1的距离d=2k-2+-13k-2
)…4分
√k十1
√k2十I
因为直线1与圆M相切,所以3张-2-2,
√十I
高二数学容案第1页(共4页)
解得一号或6=Q
7分
(2)直线l与圆M相交于不同的两点.…
8分
理由如下:
当k=1时,直线1:x-y十1=0,
由(1)可知,圆心M到直线l的距离d=
9分
所以直线(与圆M相交于不同的两点.…
10分
【注:也可以根据(1)中直线(与圆M相切时的斜率进一步得到,直线(与圆M相交时,其斜
率满足0所以|AB引=2
=√/14,
13分
2
所以△MAB的面积S△AB=
IABId-
2.
15分
17.(15分)
【解析】(1)经过多轮比赛后,估计甲走的步数比乙多.
2分
原因是每轮比赛中甲向前走一步的可能性更大,具体如下:…4分
一轮比赛中,记“甲向前走一步”为事件A,“乙向前走一步”为事件B,
根据古典概型概率的计算可得P(A)=号,P(B)=号,
5分
则P(A)>P(B),即每轮比赛中甲向前走一步的可能性更大.…6分
所以多轮比赛后,估计甲走的步数比乙多.……7分
(2)在2轮比赛后,事件“乙走的步数比甲多”包含“乙恰好向前走一步,甲没有前进”和“乙恰
好向前走两步,甲最多向前走一步”两个事件,分别记为C,D,且事件C,D为互斥事件.则
PO=PUBBAA+BA)=2X×号×号×号-壳:
10分
P(D)=P(BBAA+BBAA+BBAA)=号×号×(号×+号×号+3×号),
13分
所以2轮比赛后,乙走的步数比甲多概率为P(C+P(D)=
75
…15分
18.(17分)
【解析】(1)证明:在图①中,作AB的靠近B的三等分点H,连接DH,
所以AB=3HB,结合AB=3DE和DE∥HB.
H
所以四边形EDHB为平行四边形,
所以DH=EB.
高二数学容案第2页(共4页)秘密★启用前
遂宁市2024一2025学年度高中二年级第一学期期末质量监测
数学试题
本试卷分选择题和非选择题两部分。满分150分,考试时间120分钟。
注意事项:
1.答题前,务必将自己的姓名、座位号和准考证号填写在答题卡规定的位置上。
2,答选择题时,必须使用2B铅笔将答题卡上对应题目的答案标号涂黑。如需改动,用橡皮
擦干净后,再挺涂其他答案标号。
3.答非选择题时,必须使用0,5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4,所有题目必须在答题卡上作答,在试题卷上答题无效。
5.考试结束后,只将答题卡交回。
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合
题目要求的、
1.双曲线号-苦=1的离心率为
A.√2
B.√5
C.2
D3
2.某农场共有300头牛,其中甲品种牛30头,乙品种牛90头,丙品种牛180头,现采知分层抽样
的方法抽取60头牛进行某项指标检测,则抽取甲、乙、丙三个品种牛的头数分别为
A.6,18,36
B.6,20,34
C.10,18,32
D.10,20,30
3.经过点P(2,3)且与直线2x一y=0垂直的直线1的方程为
A2x+y-7=0
B.2x-y-1=0
C.x+2y-8=0
D.x十2y+4=0
4,将一枚质地均匀的正四面体教具连续抛掷n(n≥8,n∈N·)次,第5次和第8次果一面朝下的
概率分别记为p,q,则p,9的犬小关系为
A.p,q的大小由n确定
B.C.>q
D.力=g
5.已知圆C1:(g士1)2十(y+4)2=25,圆C2:x2+y2-4x-4y一1=0,则圆C与圆C2的位置关
系是
A.外离
B.外切
C.相交
D.内含
高二数学试题第1页(共4页)
6.已知空间向量4=1,1,1),b=(0,m,2),c=(10,0),若a,b,c典面,则实数m的值为
A.2
B.-2
C.-1
D.1
7.某地区今年行了校园足球联赛,赛季结束后的数据显示:甲学校足球代表队(下称甲队),每场
比赛平均失球数是1.3,每场失球不数的标准差是1.2:乙学校足球代表队(下称乙队)每场比
赛平均失球数是1.9,每场失球个数的标准差是0:5.下列说法中正确的是
A.平均来说乙队比甲队防守效果好
B.甲队此乙队技术水平更稳定
C.甲队在防守中有时表现较差,有时表现又非常好
D.甲队每场比赛必失球
8.已知点集21={(x,y)|x十y十|x一y|=2};22={(x,y)|(ax十y)2十(ax一y)2=4,a∈R}分
别表示曲线:,,若1,D2有四个公共点,则a的取值范围
A.(-√2,√2)
B.(-√2,-U(1w2)
C.(-∞,-1)U(1,+∞)
D.(-2,-1)U(1,2)
二、选择题:本题共3小题,每小题6分,共计18分.在每小题给出的选项中,有多项符合题目要
求.全部选对的得6分,部分选对的得部分分,有选错的得0分,
9.某人连续投篮三次,每次投一球,记事件A为“三次都投宋”,事件B为“三次都没投中”,事件
C为“恰有二次投中”,事件D为“至少有二次投中”,则
AA二D
B.B∩D≠⑦
C..AUC=D
D.BD=B
10.下列说法中,正确的是
A.直线2x+1=0的一个方向向量为(0,1)
B.A(3,1),B(5,2),C(-3.一2)三点共线
C,直线2(m十1)x十(3一mv9一5m=0(其中m∈R)必过定点(3,1)
D经过点P(0,l),倾斜角为0的直线方程为y=xtan0十1
11.在平面直角坐标系中,已知两定点A(0,一1),B(0,1),动点P满足直线PA与直线PB的斜
率之积为(m≠0),记P的轨迹为C,则下列描述正确的是
A当=一1时,曲线C是以原点为圆心,半径为1的圆
B.当m>0时,点P所在曲线的焦点在y轴上
C.当<0时,过点(1,0)的直线1与曲线6至少有一个公共点
D当?>0,时,直线y=kx十2与曲线C有两个不同公共点,则mk2≠1
高:二数学试题第2页(共4页)

展开更多......

收起↑

资源列表