资源简介 2025高考数学二轮复习-专题03导数及其应用(选填题)-专项训练考点 五年考情(2020-2024) 命题趋势考点1利用导数求函数单调性,极值最值 2024全国甲卷 Ⅰ卷 2023 Ⅱ卷 乙 甲 2022甲卷 Ⅰ卷 Ⅱ卷 乙卷 2021 甲卷 Ⅰ卷 2020Ⅰ卷 Ⅲ卷 构造函数利用导数求函数单调性从而进行比较大小,利用导数求函数的极值点以及最值问题收高考必考题型考点2构造函数利用导数求单调性比较大小 2023甲卷 2022甲卷 Ⅰ卷 Ⅱ卷 2021乙卷 Ⅱ卷 2020ⅠⅡⅢ卷考点3导数综合应用 2021上海卷 Ⅱ卷 2022天津卷 2023天津卷 2021Ⅰ卷 北京卷 零点含参问题的讨论是导数综合题型的重难点考点01 利用导数求函数单调性,极值最值单选题1.(2024·全国·高考甲卷)设函数,则曲线在点处的切线与两坐标轴所围成的三角形的面积为( )A. B. C. D.2.(2023年全国新高考Ⅱ卷)已知函数在区间上单调递增,则a的最小值为( ).A. B.e C. D.3.(2023年全国高考乙卷数学(文)试题)函数存在3个零点,则的取值范围是( )A. B. C. D.4.(2023年全国高考甲卷数学(文)试题)曲线在点处的切线方程为( )A. B. C. D.5.(2022年全国高考甲卷数学(文)试题)当时,函数取得最大值,则( )A. B. C. D.16.(2021年全国高考甲卷数学(文)试题)设,若为函数的极大值点,则( )A. B. C. D.7.(2021年全国新高考Ⅰ卷)若过点可以作曲线的两条切线,则( )A. B.C. D.8.(2020年全国高考Ⅰ卷)函数的图像在点处的切线方程为( )A. B.C. D.9.(2020年全国高考Ⅲ卷)若直线l与曲线y=和x2+y2=都相切,则l的方程为( )A.y=2x+1 B.y=2x+ C.y=x+1 D.y=x+10.(2019年全国高考Ⅲ卷)已知曲线在点处的切线方程为,则( )A. B. C. D.二 多选题11 (2024·全国·高考Ⅰ卷)设函数,则( )A.是的极小值点 B.当时,C.当时, D.当时,三 填空题12.(2024·全国·高考Ⅰ卷)若曲线在点处的切线也是曲线的切线,则 .13.(2023·全国乙卷)设,若函数在上单调递增,则a的取值范围是______.14.(2022 全国乙卷)已知和分别是函数(且)的极小值点和极大值点.若,则a的取值范围是____________.15.(2022年全国新高考Ⅰ卷)若曲线有两条过坐标原点的切线,则a的取值范围是________________.16.(2021·全国甲卷)曲线在点处的切线方程为__________.17.(2021年全国新高考Ⅰ卷)函数的最小值为______.三、双空题18.(2022年全国高考Ⅱ卷)曲线过坐标原点的两条切线的方程为____________,____________.考点02 构造函数利用导数求单调性比较大小一、单选题1.(2023年全国高考甲卷数学(文)试题)已知函数.记,则( )A. B. C. D.2.(2022年全国高考甲卷数学(文)试题)已知,则( )A. B. C. D.3.(2022年全国新高考Ⅰ卷数学试题)设,则( )A. B. C. D.4.(2021年全国高考Ⅱ卷数学试题)已知,,,则下列判断正确的是( )A. B. C. D.5.(2020年全国高考Ⅲ卷数学试题)设,,,则( )A. B. C. D.6(2022·全国甲卷)已知,则( )A. B. C. D.7.(2021·全国乙卷)设,,.则( )A. B. C. D.8.(2020年全国新高考Ⅰ卷)若,则( )A. B. C. D.9.(2020年全国高考Ⅱ卷)若,则( )A. B. C. D.10.(2020年全国高考Ⅲ卷)已知55<84,134<85.设a=log53,b=log85,c=log138,则( )A.a考点03 导数综合应用一、单选题1.(2024·上海·高考真题)已知函数的定义域为R,定义集合,在使得的所有中,下列成立的是( )A.存在是偶函数 B.存在在处取最大值C.存在是严格增函数 D.存在在处取到极小值二、多选题2.(2024·全国·高考Ⅱ卷)设函数,则( )A.当时,有三个零点B.当时,是的极大值点C.存在a,b,使得为曲线的对称轴D.存在a,使得点为曲线的对称中心三 填空题3.(2022·天津·统考高考真题)设,对任意实数x,记.若至少有3个零点,则实数的取值范围为______.4.(2021年全国新高考Ⅰ卷数学试题)函数的最小值为______.5.(2023·天津·统考高考真题)若函数有且仅有两个零点,则的取值范围为_________.6.(2021·北京·统考高考真题)已知函数,给出下列四个结论:①若,恰 有2个零点;②存在负数,使得恰有1个零点;③存在负数,使得恰有3个零点;④存在正数,使得恰有3个零点.其中所有正确结论的序号是______参考答案与详细解析考点 五年考情(2020-2024) 命题趋势考点1利用导数求函数单调性,极值最值 2024全国甲卷 Ⅰ卷 2023 Ⅱ卷 乙 甲 2022甲卷 Ⅰ卷 Ⅱ卷 乙卷 2021 甲卷 Ⅰ卷 2020Ⅰ卷 Ⅲ卷 构造函数利用导数求函数单调性从而进行比较大小,利用导数求函数的极值点以及最值问题收高考必考题型考点2构造函数利用导数求单调性比较大小 2023甲卷 2022甲卷 Ⅰ卷 Ⅱ卷 2021乙卷 Ⅱ卷 2020ⅠⅡⅢ卷考点3导数综合应用 2021上海卷 Ⅱ卷 2022天津卷 2023天津卷 2021Ⅰ卷 北京卷 零点含参问题的讨论是导数综合题型的重难点考点01 利用导数求函数单调性,极值最值单选题1.(2024·全国·高考甲卷)设函数,则曲线在点处的切线与两坐标轴所围成的三角形的面积为( )A. B. C. D.【答案】A【分析】借助导数的几何意义计算可得其在点处的切线方程,即可得其与坐标轴交点坐标,即可得其面积.【详解】,则,即该切线方程为,即,令,则,令,则,故该切线与两坐标轴所围成的三角形面积.故选:A.2.(2023年全国新高考Ⅱ卷)已知函数在区间上单调递增,则a的最小值为( ).A. B.e C. D.【答案】C【分析】根据在上恒成立,再根据分参求最值即可求出.【详解】依题可知,在上恒成立,显然,所以,设,所以,所以在上单调递增,,故,即,即a的最小值为.故选:C.3.(2023年全国高考乙卷数学(文)试题)函数存在3个零点,则的取值范围是( )A. B. C. D.【答案】B【分析】写出,并求出极值点,转化为极大值大于0且极小值小于0即可.【详解】,则,若要存在3个零点,则要存在极大值和极小值,则,令,解得或,且当时,,当,,故的极大值为,极小值为,若要存在3个零点,则,即,解得,故选:B.4.(2023年全国高考甲卷数学(文)试题)曲线在点处的切线方程为( )A. B. C. D.【答案】C【分析】先由切点设切线方程,再求函数的导数,把切点的横坐标代入导数得到切线的斜率,代入所设方程即可求解.【详解】设曲线在点处的切线方程为,因为,所以,所以所以所以曲线在点处的切线方程为.故选:C5.(2022年全国高考甲卷数学(文)试题)当时,函数取得最大值,则( )A. B. C. D.1【答案】B【分析】根据题意可知,即可解得,再根据即可解出.【详解】因为函数定义域为,所以依题可知,,,而,所以,即,所以,因此函数在上递增,在上递减,时取最大值,满足题意,即有.故选:B.6.(2021年全国高考甲卷数学(文)试题)设,若为函数的极大值点,则( )A. B. C. D.【答案】D【分析】先考虑函数的零点情况,注意零点左右附近函数值是否变号,结合极大值点的性质,对进行分类讨论,画出图象,即可得到所满足的关系,由此确定正确选项.【详解】若,则为单调函数,无极值点,不符合题意,故.有和两个不同零点,且在左右附近是不变号,在左右附近是变号的.依题意,为函数的极大值点,在左右附近都是小于零的.当时,由,,画出的图象如下图所示: 由图可知,,故.当时,由时,,画出的图象如下图所示: 由图可知,,故.综上所述,成立.故选:D7.(2021年全国新高考Ⅰ卷)若过点可以作曲线的两条切线,则( )A. B.C. D.【答案】D【分析】解法一:根据导数几何意义求得切线方程,再构造函数,利用导数研究函数图象,结合图形确定结果;解法二:画出曲线的图象,根据直观即可判定点在曲线下方和轴上方时才可以作出两条切线.【详解】在曲线上任取一点,对函数求导得,所以,曲线在点处的切线方程为,即,由题意可知,点在直线上,可得,令,则.当时,,此时函数单调递增,当时,,此时函数单调递减,所以,,由题意可知,直线与曲线的图象有两个交点,则,当时,,当时,,作出函数的图象如下图所示: 由图可知,当时,直线与曲线的图象有两个交点.故选:D.解法二:画出函数曲线的图象如图所示,根据直观即可判定点在曲线下方和轴上方时才可以作出两条切线.由此可知. 故选:D.8.(2020年全国高考Ⅰ卷)函数的图像在点处的切线方程为( )A. B.C. D.【答案】B【分析】求得函数的导数,计算出和的值,可得出所求切线的点斜式方程,化简即可.【详解】,,,,因此,所求切线的方程为,即.故选:B.【点睛】本题考查利用导数求解函图象的切线方程,考查计算能力,属于基础题9.(2020年全国高考Ⅲ卷)若直线l与曲线y=和x2+y2=都相切,则l的方程为( )A.y=2x+1 B.y=2x+ C.y=x+1 D.y=x+【答案】D【详解】设直线在曲线上的切点为,则,函数的导数为,则直线的斜率,设直线的方程为,即,由于直线与圆相切,则,两边平方并整理得,解得,(舍),则直线的方程为,即.故选:D.10.(2019年全国高考Ⅲ卷)已知曲线在点处的切线方程为,则( )A. B. C. D.【答案】D【解析】通过求导数,确定得到切线斜率的表达式,求得,将点的坐标代入直线方程,求得.【详解】详解:,将代入得,故选D.【点睛】本题关键得到含有a,b的等式,利用导数几何意义和点在曲线上得到方程关系.二 多选题11 (2024·全国·高考Ⅰ卷)设函数,则( )A.是的极小值点 B.当时,C.当时, D.当时,【答案】ACD【分析】求出函数的导数,得到极值点,即可判断A;利用函数的单调性可判断B;根据函数在上的值域即可判断C;直接作差可判断D.【详解】对A,因为函数的定义域为R,而,易知当时,,当或时,函数在上单调递增,在上单调递减,在上单调递增,故是函数的极小值点,正确;对B,当时,,所以,而由上可知,函数在上单调递增,所以,错误;对C,当时,,而由上可知,函数在上单调递减,所以,即,正确;对D,当时,,所以,正确;故选:ACD.三 填空题12.(2024·全国·高考Ⅰ卷)若曲线在点处的切线也是曲线的切线,则 .【答案】【分析】先求出曲线在的切线方程,再设曲线的切点为,求出,利用公切线斜率相等求出,表示出切线方程,结合两切线方程相同即可求解.【详解】由得,,故曲线在处的切线方程为;由得,设切线与曲线相切的切点为,由两曲线有公切线得,解得,则切点为,切线方程为,根据两切线重合,所以,解得.故答案为:13.(2023·全国乙卷)设,若函数在上单调递增,则a的取值范围是______.【答案】【分析】原问题等价于恒成立,据此将所得的不等式进行恒等变形,可得,由右侧函数的单调性可得实数的二次不等式,求解二次不等式后可确定实数的取值范围.【详解】由函数的解析式可得在区间上恒成立,则,即在区间上恒成立,故,而,故,故即,故,结合题意可得实数的取值范围是.故答案为:.14.(2022 全国乙卷)已知和分别是函数(且)的极小值点和极大值点.若,则a的取值范围是____________.【答案】【分析】法一:依题可知,方程的两个根为,即函数与函数的图象有两个不同的交点,构造函数,利用指数函数的图象和图象变换得到的图象,利用导数的几何意义求得过原点的切线的斜率,根据几何意义可得出答案.【详解】[方法一]:【最优解】转化法,零点的问题转为函数图象的交点因为,所以方程的两个根为,即方程的两个根为,即函数与函数的图象有两个不同的交点,因为分别是函数的极小值点和极大值点,所以函数在和上递减,在上递增,所以当时,,即图象在上方当时,,即图象在下方,图象显然不符合题意,所以.令,则,设过原点且与函数的图象相切的直线的切点为,则切线的斜率为,故切线方程为,则有,解得,则切线的斜率为,因为函数与函数的图象有两个不同的交点,所以,解得,又,所以,综上所述,的取值范围为.[方法二]:【通性通法】构造新函数,二次求导=0的两个根为因为分别是函数的极小值点和极大值点,所以函数在和上递减,在上递增,设函数,则,若,则在上单调递增,此时若,则在上单调递减,在上单调递增,此时若有和分别是函数且的极小值点和极大值点,则,不符合题意;若,则在上单调递减,此时若,则在上单调递增,在上单调递减,令,则,此时若有和分别是函数且的极小值点和极大值点,且,则需满足,,即故,所以.15.(2022年全国新高考Ⅰ卷)若曲线有两条过坐标原点的切线,则a的取值范围是________________.【答案】【分析】设出切点横坐标,利用导数的几何意义求得切线方程,根据切线经过原点得到关于的方程,根据此方程应有两个不同的实数根,求得的取值范围.【详解】∵,∴,设切点为,则,切线斜率,切线方程为:,∵切线过原点,∴,整理得:,∵切线有两条,∴,解得或,∴的取值范围是,故答案为:16.(2021·全国甲卷)曲线在点处的切线方程为__________.【答案】【分析】先验证点在曲线上,再求导,代入切线方程公式即可.【详解】由题,当时,,故点在曲线上.求导得:,所以.故切线方程为.故答案为:.17.(2021年全国新高考Ⅰ卷)函数的最小值为______.【答案】1【分析】由解析式知定义域为,讨论、、,并结合导数研究的单调性,即可求最小值.【详解】由题设知:定义域为,∴当时,,此时单调递减;当时,,有,此时单调递减;当时,,有,此时单调递增;又在各分段的界点处连续,∴综上有:时,单调递减,时,单调递增;∴故答案为:1.三、双空题18.(2022年全国高考Ⅱ卷)曲线过坐标原点的两条切线的方程为____________,____________.【答案】【详解】[方法一]:化为分段函数,分段求分和两种情况,当时设切点为,求出函数导函数,即可求出切线的斜率,从而表示出切线方程,再根据切线过坐标原点求出,即可求出切线方程,当时同理可得;解: 因为,当时,设切点为,由,所以,所以切线方程为,又切线过坐标原点,所以,解得,所以切线方程为,即;当时,设切点为,由,所以,所以切线方程为,又切线过坐标原点,所以,解得,所以切线方程为,即;故答案为:;[方法二]:根据函数的对称性,数形结合当时,设切点为,由,所以,所以切线方程为,又切线过坐标原点,所以,解得,所以切线方程为,即;因为是偶函数,图象为:所以当时的切线,只需找到关于y轴的对称直线即可.[方法三]:因为,当时,设切点为,由,所以,所以切线方程为,又切线过坐标原点,所以,解得,所以切线方程为,即;当时,设切点为,由,所以,所以切线方程为,又切线过坐标原点,所以,解得,所以切线方程为,即;故答案为:;.考点02 构造函数利用导数求单调性比较大小一、单选题1.(2023年全国高考甲卷数学(文)试题)已知函数.记,则( )A. B. C. D.【答案】A【分析】利用作差法比较自变量的大小,再根据指数函数的单调性及二次函数的性质判断即可.【详解】令,则开口向下,对称轴为,因为,而,所以,即由二次函数性质知,因为,而,即,所以,综上,,又为增函数,故,即.故选:A.2.(2022年全国高考甲卷数学(文)试题)已知,则( )A. B. C. D.【答案】A【分析】法一:根据指对互化以及对数函数的单调性即可知,再利用基本不等式,换底公式可得,,然后由指数函数的单调性即可解出.【详解】[方法一]:(指对数函数性质)由可得,而,所以,即,所以.又,所以,即,所以.综上,.[方法二]:【最优解】(构造函数)由,可得.根据的形式构造函数 ,则,令,解得 ,由 知 .在 上单调递增,所以 ,即 ,又因为 ,所以 .故选:A.【点评】法一:通过基本不等式和换底公式以及对数函数的单调性比较,方法直接常用,属于通性通法;法二:利用的形式构造函数,根据函数的单调性得出大小关系,简单明了,是该题的最优解.3.(2022年全国新高考Ⅰ卷数学试题)设,则( )A. B. C. D.【答案】C【分析】构造函数, 导数判断其单调性,由此确定的大小.【详解】方法一:构造法设,因为,当时,,当时,所以函数在单调递减,在上单调递增,所以,所以,故,即,所以,所以,故,所以,故,设,则,令,,当时,,函数单调递减,当时,,函数单调递增,又,所以当时,,所以当时,,函数单调递增,所以,即,所以故选:C.方法二:比较法解: , , ,① ,令则 ,故 在 上单调递减,可得 ,即 ,所以 ;② ,令则 ,令 ,所以 ,所以 在 上单调递增,可得 ,即 ,所以 在 上单调递增,可得 ,即 ,所以故4.(2021年全国高考Ⅱ卷数学试题)已知,,,则下列判断正确的是( )A. B. C. D.【答案】C【分析】对数函数的单调性可比较、与的大小关系,由此可得出结论.【详解】,即.故选:C.5.(2020年全国高考Ⅲ卷数学试题)设,,,则( )A. B. C. D.【答案】A【分析】分别将,改写为,,再利用单调性比较即可.【详解】因为,,所以.故选:A.【点晴】本题考查对数式大小的比较,考查学生转化与化归的思想,是一道中档题.6(2022·全国甲卷)已知,则( )A. B. C. D.【答案】A【分析】由结合三角函数的性质可得;构造函数,利用导数可得,即可得解.【详解】[方法一]:构造函数因为当故,故,所以;设,,所以在单调递增,故,所以,所以,所以,故选A[方法二]:不等式放缩因为当,取得:,故,其中,且当时,,及此时,故,故所以,所以,故选A[方法三]:泰勒展开设,则,,,计算得,故选A.[方法四]:构造函数因为,因为当,所以,即,所以;设,,所以在单调递增,则,所以,所以,所以,故选:A.[方法五]:【最优解】不等式放缩因为,因为当,所以,即,所以;因为当,取得,故,所以.故选:A.【整体点评】方法4:利用函数的单调性比较大小,是常见思路,难点在于构造合适的函数,属于通性通法;方法5:利用二倍角公式以及不等式放缩,即可得出大小关系,属于最优解.7.(2021·全国乙卷)设,,.则( )A. B. C. D.【答案】B【分析】利用对数的运算和对数函数的单调性不难对a,b的大小作出判定,对于a与c,b与c的大小关系,将0.01换成x,分别构造函数,,利用导数分析其在0的右侧包括0.01的较小范围内的单调性,结合f(0)=0,g(0)=0即可得出a与c,b与c的大小关系.【详解】[方法一]:,所以;下面比较与的大小关系.记,则,,由于所以当0所以在上单调递增,所以,即,即;令,则,,由于,在x>0时,,所以,即函数在[0,+∞)上单调递减,所以,即,即b综上,,故选:B.[方法二]:令,即函数在(1,+∞)上单调递减令,即函数在(1,3)上单调递增综上,,故选:B.【点睛】本题考查比较大小问题,难度较大,关键难点是将各个值中的共同的量用变量替换,构造函数,利用导数研究相应函数的单调性,进而比较大小,这样的问题,凭借近似估计计算往往是无法解决的.8.(2020年全国新高考Ⅰ卷)若,则( )A. B. C. D.【答案】B【分析】设,利用作差法结合的单调性即可得到答案.【详解】设,则为增函数,因为所以,所以,所以.,当时,,此时,有当时,,此时,有,所以C、D错误.故选:B.【点晴】本题主要考查函数与方程的综合应用,涉及到构造函数,利用函数的单调性比较大小,是一道中档题.9.(2020年全国高考Ⅱ卷)若,则( )A. B. C. D.【答案】A【分析】将不等式变为,根据的单调性知,以此去判断各个选项中真数与的大小关系,进而得到结果.【详解】由得:,令,为上的增函数,为上的减函数,为上的增函数,,,,,则A正确,B错误;与的大小不确定,故CD无法确定.故选:A.【点睛】本题考查对数式的大小的判断问题,解题关键是能够通过构造函数的方式,利用函数的单调性得到的大小关系,考查了转化与化归的数学思想.10.(2020年全国高考Ⅲ卷)已知55<84,134<85.设a=log53,b=log85,c=log138,则( )A.a【答案】A【分析】由题意可得、、,利用作商法以及基本不等式可得出、的大小关系,由,得,结合可得出,由,得,结合,可得出,综合可得出、、的大小关系.【详解】由题意可知、、,,;由,得,由,得,,可得;由,得,由,得,,可得.综上所述,.故选:A.【点睛】本题考查对数式的大小比较,涉及基本不等式、对数式与指数式的互化以及指数函数单调性的应用,考查推理能力,属于中等题.考点03 导数综合应用一、单选题1.(2024·上海·高考真题)已知函数的定义域为R,定义集合,在使得的所有中,下列成立的是( )A.存在是偶函数 B.存在在处取最大值C.存在是严格增函数 D.存在在处取到极小值【答案】B【分析】对于ACD利用反证法并结合函数奇偶性、单调性以及极小值的概念即可判断,对于B,构造函数即可判断.【详解】对于A,若存在 是偶函数, 取 ,则对于任意 , 而 , 矛盾, 故 A 错误;对于B,可构造函数满足集合,当时,则,当时,,当时,,则该函数的最大值是,则B正确;对C,假设存在,使得严格递增,则,与已知矛盾,则C错误;对D,假设存在,使得在处取极小值,则在的左侧附近存在,使得,这与已知集合的定义矛盾,故D错误;故选:B.二、多选题2.(2024·全国·高考Ⅱ卷)设函数,则( )A.当时,有三个零点B.当时,是的极大值点C.存在a,b,使得为曲线的对称轴D.存在a,使得点为曲线的对称中心【答案】AD【分析】A选项,先分析出函数的极值点为,根据零点存在定理和极值的符号判断出在上各有一个零点;B选项,根据极值和导函数符号的关系进行分析;C选项,假设存在这样的,使得为的对称轴,则为恒等式,据此计算判断;D选项,若存在这样的,使得为的对称中心,则,据此进行计算判断,亦可利用拐点结论直接求解.【详解】A选项,,由于,故时,故在上单调递增,时,,单调递减,则在处取到极大值,在处取到极小值,由,,则,根据零点存在定理在上有一个零点,又,,则,则在上各有一个零点,于是时,有三个零点,A选项正确;B选项,,时,,单调递减,时,单调递增,此时在处取到极小值,B选项错误;C选项,假设存在这样的,使得为的对称轴,即存在这样的使得,即,根据二项式定理,等式右边展开式含有的项为,于是等式左右两边的系数都不相等,原等式不可能恒成立,于是不存在这样的,使得为的对称轴,C选项错误;D选项,方法一:利用对称中心的表达式化简,若存在这样的,使得为的对称中心,则,事实上,,于是即,解得,即存在使得是的对称中心,D选项正确.方法二:直接利用拐点结论任何三次函数都有对称中心,对称中心的横坐标是二阶导数的零点,,,,由,于是该三次函数的对称中心为,由题意也是对称中心,故,即存在使得是的对称中心,D选项正确.故选:AD三 填空题3.(2022·天津·统考高考真题)设,对任意实数x,记.若至少有3个零点,则实数的取值范围为______.【答案】【分析】设,,分析可知函数至少有一个零点,可得出,求出的取值范围,然后对实数的取值范围进行分类讨论,根据题意可得出关于实数的不等式,综合可求得实数的取值范围.【详解】设,,由可得.要使得函数至少有个零点,则函数至少有一个零点,则,解得或.①当时,,作出函数、的图象如下图所示:此时函数只有两个零点,不合乎题意;②当时,设函数的两个零点分别为、,要使得函数至少有个零点,则,所以,,解得;③当时,,作出函数、的图象如下图所示:由图可知,函数的零点个数为,合乎题意;④当时,设函数的两个零点分别为、,要使得函数至少有个零点,则,可得,解得,此时.综上所述,实数的取值范围是.故答案为:.4.(2021年全国新高考Ⅰ卷数学试题)函数的最小值为______.【答案】1【分析】由解析式知定义域为,讨论、、,并结合导数研究的单调性,即可求最小值.【详解】由题设知:定义域为,∴当时,,此时单调递减;当时,,有,此时单调递减;当时,,有,此时单调递增;又在各分段的界点处连续,∴综上有:时,单调递减,时,单调递增;∴故答案为:1.5.(2023·天津·统考高考真题)若函数有且仅有两个零点,则的取值范围为_________.【答案】【分析】根据绝对值的意义,去掉绝对值,求出零点,再根据根存在的条件即可判断的取值范围.【详解】(1)当时,,即,若时,,此时成立;若时,或,若方程有一根为,则,即且;若方程有一根为,则,解得:且;若时,,此时成立.(2)当时,,即,若时,,显然不成立;若时,或,若方程有一根为,则,即;若方程有一根为,则,解得:;若时,,显然不成立;综上,当时,零点为,;当时,零点为,;当时,只有一个零点;当时,零点为,;当时,只有一个零点;当时,零点为,;当时,零点为.所以,当函数有两个零点时,且.故答案为:.【点睛】本题的解题关键是根据定义去掉绝对值,求出方程的根,再根据根存在的条件求出对应的范围,然后根据范围讨论根(或零点)的个数,从而解出.6.(2021·北京·统考高考真题)已知函数,给出下列四个结论:①若,恰 有2个零点;②存在负数,使得恰有1个零点;③存在负数,使得恰有3个零点;④存在正数,使得恰有3个零点.其中所有正确结论的序号是_______.【答案】①②④【分析】由可得出,考查直线与曲线的左、右支分别相切的情形,利用方程思想以及数形结合可判断各选项的正误.【详解】对于①,当时,由,可得或,①正确;对于②,考查直线与曲线相切于点,对函数求导得,由题意可得,解得,所以,存在,使得只有一个零点,②正确;对于③,当直线过点时,,解得,所以,当时,直线与曲线有两个交点,若函数有三个零点,则直线与曲线有两个交点,直线与曲线有一个交点,所以,,此不等式无解,因此,不存在,使得函数有三个零点,③错误;对于④,考查直线与曲线相切于点,对函数求导得,由题意可得,解得,所以,当时,函数有三个零点,④正确.故答案为:①②④.【点睛】思路点睛:已知函数的零点或方程的根的情况,求解参数的取值范围问题的本质都是研究函数的零点问题,求解此类问题的一般步骤:(1)转化,即通过构造函数,把问题转化成所构造函数的零点问题;(2)列式,即根据函数的零点存在定理或结合函数的图象列出关系式;(3)得解,即由列出的式子求出参数的取值范围. 展开更多...... 收起↑ 资源预览