资源简介 4.1 指数与指数幂的运算(1)【学习目标】1.通过类比整数指数幂运算,能进行实数指数幂的运算.2.通过具体实例的学习,能进行简单的根式与指数式的互化.【学习重难点】学习重点:会进行实数指数幂的运算.学习难点:能进行简单的根指互化.【学法指导】初中学习整数指数幂时,是由正整数指数幂到负整数指数幂的推广,现在可进一步体会整数指数幂的运算推广到实数指数幂运算.【学习过程】一、自主学习(预习教材P104~P106,回答下列问题)【知识点一】 一般地,如果,那么叫做的次方根,其中,且.(1)当n是奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数,可表示为 ;(2)当n是偶数时,正数的n次方根有两个,这两个数互为相反数.可表示为 ()(3)负数 偶次方根.(4)0的任何次方根都是0,记作: .自主小测:32的5次方根为 ;-32的5次方根为 ;16的4次方根为 .思考:以下两个等式和一定成立吗?【知识点二】根式的性质 自主小测:求下列各式的值二、合作学习观察下列等式间的互化规律(根指互化):你能把下面的根式化成分数指数幂的形式吗?(1) (2)结论:规定,正数的正分数指数幂的意义是(a>0,m,m,n>1)正数的负分数指数幂的意义与负整数指数幂的意义相仿,规定: = (a>0,m,m,n>1)整数指数幂的运算性质对于实数指数幂的运算同样适用:①(,)②(,)③(,)1.若,,则等于( )A. B. C. D.2.求值:三、课堂小结四、当堂检测1.化简求值= . (=五、课后作业课本P107 练习1,2,34.1 指数与指数幂的运算(2)【学习目标】1.通过具体实例的学习结合完全平方式,进行简单的化简运算.2.通过具体实例的学习,进行简单的求值运算.【学习重难点】重点:化简、求值运算.难点:化简、求值运算.【学法指导】通过例题学习,进一步讲整数指数幂的运算推广到实数指数幂运算.【考点链接】【学习过程】一、自主学习正数的正分数指数幂的意义是(a>0,m,m,n>1)正数的负分数指数幂的意义与负整数指数幂的意义相仿,规定:_____________ (a>0,m,m,n>1)整数指数幂的运算性质对于实数指数幂的运算同样适用:①(,)②(,)③(,)二、合作学习1.将下列根式化成指数幂的形式:(1)(a>0); (2)(b>0).2.已知,求下列各式的值:(1); (2);三、课堂小结四、当堂检测1.化简求值:(1)++-×.(选做);2.已知:,求的值.五、课后作业化简求值(式中字母均为正数) 展开更多...... 收起↑ 资源列表 指数与指数幂的运算(1).docx 指数与指数幂的运算(2).docx