资源简介 青岛市2025年高三年级部分学生调研检测数学试题2025.01本试卷共4页,19题.全卷满分150分,考试用时120分钟,注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上,并将准考证号条形码粘贴在答题卡上的指定位置,2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需要改动,用橡皮擦干净后,再选涂其它答案标号,回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知样本数据1,3,5,7,9,11,13,15,则该组数据的中位数是A.6B.7C.8D.9名若*=1+i,其中x,y∈R,则|2y+xi=2iA.2B.5C.3√万D3己知等差数列{am}的前n项和为Sn,a3=2,则S=A.7B.8C.9D.104.已知圆C:(x-a)2+y2=4与圆C2:x2+(y-b)2-1恰有3条公切线,则ab的最大值是A.9B.4C.25引设函数f)=coswx,f(x)-f()归2,-x=),则0可以是B.1C.2D.36“椭园”C臣”+学=(a>0)是一种优美的封闭由线1如图是当m=2a=h=1时C的图象,点2是C与y轴正半轴的交点,过原点O的直线交C于点A,B,则QA·QB的取值范围是A.g7c.[0,gD.[0.数学试题第1页共4页2已知a>0,不等式g≥1n(ax)恒成立,a的最大值是&.2eB.ec.veD.1e&.实系数一元三次方程ax3+bx2+cx+d=0在复数集内有3个根x,x2,x3,则古++后+名+出,=-.设,西是方程bax一2x2+x-1=0的3个根,则7+1+12+。2A.-4B.-3C.3D.4二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对得部分分,有选错的得0分.9.已知随机变量X,Y满足Y=2X+1,X~N(2,1),则A.P(X≤1)=2B.E(X)=2C.E(Y)=5D.D(Y)=31Q,已知点P是圆M:(x+3)2+y=16上一动点,点M(3),线段PN的中垂线1交直线PM于点Q,若点Q的轨迹为曲线C,则A曲线C的方程为女y41B.线段PN中点的轨迹方程为x2+y2=41W的最小值为5D.直线!与曲线C只有一个公共点11.曲线f(x)=x2-4在点(xn,f(xn)处的切线与x轴的交点横坐标为x+1,x1=3,则A.m1=+2B.数列m名。+3为等差数列2 Xn-2C专-25+52-1D.数列{xn-2}的前n项和小于2数学试题第2页共4页青岛市 2025年高三年级部分学生调研检测数学参考答案及评分标准一、单项选择题:本题共 8小题,每小题 5分,共 40分.1--8:CBDA CDBB二、多项选择题:本题共 3小题,每小题 6分,共 18分.9.BC 10.ABD 11.ACD三、填空题:本题共 3个小题,每小题 5分,共 15分.312.5; 13. ; 14.300.2四、解答题:本题共 5小题,共 77分.15.(13分)8 8.5 9 9.5 10解:(1)依题意得: x 9 ·············································· 1分5y 11.5 10.5 9 7.5 6.5 9 ···································································2分55 (xi x )(yi y)b i 1 5 (xi x )2i 1(8 9)(11.5 9) (8.5 9)(10.5 9) (9 9)(9 9) (9.5 9)(7 .5 9) (10 9)(6.5 9) (8 9)2 (8.5 9)2 (9 9)2 (9.5 9)2 (10 9)2 6.5 2.6 ······························································································ 5分2.5a y b x 9 2.6 9 32.4,所以 y b x a 2.6x 32.4 ···························7分(2)由题意,销售利润为 f (x) y (x 7) ······················································· 8分 ( 2.6x 32.4)(x 7) 2.6x2 50.6x 226.8 ············································11分当 x 50.6 9.7时, f (x)取最大值,5.2所以预测销售价格是9.7万元/吨时,该产品销售利润最大··································· 13分16.(15分)解:(1)由b2 c(a c)得b2 ac c2 ························································· 1分由余弦定理得b2 a2 c2 2accos B,得 ac c2 a2 c2 2accos B ····································································· 2分得 c a 2ccosB ······················································································· 3分由正弦定理得数学参考答案 第 1 页 共 6 页{#{QQABJYop4gqYwATACB4qQQXiCQkQsIOiJUgEBRCQqAQCyRFIFIA=}#}sinC sin A 2sinC cosB sin(B C) 2sinC cosB sin(B C) ·················4分所以C B C或C B C π,得 B 2C或 B π(舍掉)···········································································5分所以 B 2C ································································································6分(2)由(1)可知 B 2C, A π 3C2 sin A 2 sin 3C所以 ·······························································7分cosC sin B cosC sin 2C2 sin 2C cosC cos 2C sinC cosC 2sinC cosC2 2sinC cos2 C cos 2C sinC cosC 2sinC cosC2 4cos2 C 1 3 2cosC ······················································10分cosC 2cosC 2cosC 0 C π由题意, 0 2C π , 0 π 3C ππ得0 C ,···························································································11分31所以 cosC 1,··················································································· 12分23所以 2cosC 3 2 2cosC 2 3,····································· 13分2cosC 2cosC3当且仅当 2cosC,即 cosC 3 时,等号成立,······························ 14分2cosC 22 sin A所以 的最小值是 2 3 ······························································· 15分cosC sin B17.(15分)解:(1)设 B(x1, y1),点 B,C 关于 x轴对称,所以 BC x轴....................................... 2分 x2 3y2所以 1 1 ,解得 x1 6p .............................................................................................4分 y21 2 px1又因为△OBC 的重心坐标为 (4,0),所以6p 6, p 1 .............................................. 5分所以 的方程为: y2 2x ..................................................................................................... 6分(2)设点 B在点C的左侧,显然 BPD CPD,且 PD x轴,所以直线 PB,PC的倾斜角 1 , 2互补,斜率互为相反数...................................................................................8分设直线 PB与圆D的切点为H ,则数学参考答案 第 2 页 共 6 页{#{QQABJYop4gqYwATACB4qQQXiCQkQsIOiJUgEBRCQqAQCyRFIFIA=}#}2 5sin BPD |DH | 5 5 , tan BPD 1 ,|DP | 2 5 2设 B(x1 , y1 ),C(x2 , y2 ),tan 2 k y 2 y 2 2所以 1 ,即 1 1PB 2,解得 y 1, x1 ....... 11分x 2 1 11 2 y1 2 y1 2 22同理 tan 2 2 92 ,即 kPC 2,解得 y2 3, x2 ...................................12分y2 2 21 9所以 B( , 1),C( , 3),直线 BC的方程为: 2x 4y 3 0 .................................. 13分2 2| BC | 4 16 2 5 ,点 P BC d | 4 8 3 | 3 5到直线 的距离 .................................................................. 14分20 2S 1 | BC | d 1 2 5 3 5 15所以 △PBC .............................................................. 15分2 2 2 218.(17分)解:(1)因为 BD AC1, BD AC , AC1 AC A,所以 BD 平面 AA1C1C ················································································3分又因为 BD 平面 ABCD,所以平面 AA1C1C 平面 ABCD ·······························4分(2)因为 BD 平面 AA1C1C,所以 AA1 BD,又因为 AA1 BC , BC BD B,所以 AA1 平面 ABCD ·····························5分此时四棱柱 ABCD A1B1C1D1是棱长为 2的为正方体,(法 1)(ⅰ)以 A为原点, AB, AD, AA1所在直线分别为 x轴, y轴, z轴,建立空间直角坐标系 A xyz,则 A(0,0,0), A1(0,0, 2),O1(0,1,1),P(1 cos ,1 sin ,0) , m A A 0设平面 A1AP的一个法向量为m (x1, y1, z1),则 1 , m AP 0 z 0所以 1 ,令 x 1 sin , (1 cos )x1 (1 sin ) y1 01 得m (1 sin , (1 cos ),0) ····································································· 8分 m AO 0设平面 APO1的一个法向量为 n (x2 , y2 , z2 ),则 1 , m AP 0数学参考答案 第 3 页 共 6 页{#{QQABJYop4gqYwATACB4qQQXiCQkQsIOiJUgEBRCQqAQCyRFIFIA=}#} y2 z 0所以 2 ,令 x2 1 sin , (1 cos )x2 (1 sin ) y2 0 得 n (1 sin , (1 cos ),1 cos ) ···························································· 9分设二面角 A1 AP O1的大小为 2cos (1 sin ) (1 cos )2则 (1 sin )2 (1 cos )2 (1 sin )2 2(1 cos )2(1 sin )2 (1 cos )2 (1 sin )2 2(1 cos )21 (1 cos )2 (1 sin )2 2(1 cos )21 1 2 (1 sin )22 22(1 cos )当且当仅当 sin 1时取,此时点 P为 AB中点·············································13分π所以二面角 A1 AP O1的最大值为 ··························································· 14分4(ⅱ)又因为,点 P,P1,P2均在一个与正方体各棱都相切的球W 上,球W 直径为 2 2当 P1,P2恰分别为 A1D1,CC1中点时, 则W (1,1,1),P(1,0,0),P1(0,1, 2),P2(2, 2,1) ,显然WP (WP1 WP2),所以,W ,P,P1,P2四点共面·········································································· 16分所以此时△PP1P2外接圆直径的最大,最大值恰为球W 直径 2 2 ························ 17分(法 2)(ⅰ)以 A为原点, AB, AD, AA1所在直线分别为 x轴, y轴, z轴,建立空间直角坐标系 A xyz,设直线 AP与直线 BC交点为K,则 A(0,0,0), A1(0,0, 2),O1(0,1,1),K (2, t,0)(t 0) , m A A 0设平面 A 11AP的一个法向量为m (x1, y1, z1),则 , m AK 0 z1 0所以 ,令 x1 t, 2x1 ty1 0得m (t, 2,0) ··························································································11分 n AO 0设平面 APO1的一个法向量为 n (x2 , y2 , z2 ),则 1 , n AK 0 y所以 2 z2 0 ,令 x2 t, 2x2 ty2 0数学参考答案 第 4 页 共 6 页{#{QQABJYop4gqYwATACB4qQQXiCQkQsIOiJUgEBRCQqAQCyRFIFIA=}#} 得 n (t, 2,2) ···························································································12分设二面角 A1 AP O1的大小为 ,2 2则 cos t 4 t 4 4 2 2 1 2 ,t2 8 t2 4 t 8 t 8 2等号当仅当 t 0时取,此时点 P为 AB中点···················································· 13分π所以二面角 A1 AP O1的最大值为 ··························································· 14分4(ⅱ)因为点 P,P1,P2均在一个与正方体各棱都相切的球W 上,球W 直径为 2 2 ····15分当 P1,P2恰分别为 A1D1,CC1中点时, 则W (1,1,1),P(1,0,0),P1(0,1, 2),P2(2,0,1) ,显然WP (WP1 WP2),所以,W ,P,P1,P2四点共面·········································································· 16分所以此时 PP1P2外接圆直径的最大,最大值恰为球W 直径 2 2 ························· 17分(法 3)(ⅰ)记 A1在平面 APO1上的正投影为H, A1在直线 AP上的投影为G,连结GH ,则 A1G AP, A1H AP, A1G A1H A1,所以 AP 平面 A1GH ,所以 AP GH ,即 A1GH为二面角的平面角,记 A1GH ························12分AH AO 2显然 sin 1 1 1 ,等号当且仅当H 与O1重合,G 与 A重合时取,A1G A1A 2此时点 P为 AB中点····················································································13分π所以二面角 A1 AP O1的最大值为 ··························································· 14分4(ⅱ)因为点 P,P1,P2均在一个与正方体各棱都相切的球W 上,球W 直径为 2 2 ····15分当 P1,P2恰分别为 A1D1,CC1中点时,以 A为原点,AB, AD, AA1所在直线分别为 x轴,y轴,z轴,建立空间直角坐标系 A xyz, 则W (1,1,1),P(1,0,0),P1(0,1, 2),P2(2,0,1) ,显然WP (WP1 WP2),所以,W ,P,P1,P2四点共面·········································································· 16分所以此时 PP1P2外接圆直径的最大,最大值恰为球W 直径 2 2 ························· 17分19.(17分)(1)因为G ai (x) 2 3x x3 ·······································································1分3所以GT a (x) G a (x 1) 2 3(x 1) (x 1)3 6 6x 3x2 x3 ,1 i 3 i 3因为6,6,3是3的倍数,6不是32的倍数,1不是3的倍数,所以T1 ai 3是3 不可分的············································································· 3分(2)由(1)知,T1 ai 3 {6,6,3,1}是3 不可分的,所以T1 ai 3 {6,6,3,1}不是可约的·······················4分数学参考答案 第 5 页 共 6 页{#{QQABJYop4gqYwATACB4qQQXiCQkQsIOiJUgEBRCQqAQCyRFIFIA=}#}若 ai 3 2,3,0,1 是可约的,则存在 bi m与 ci k 使得G a (x) G b (x)Gi 3 i m c (x) ······ 6分i k则GT {a } (x) G a (x 1) G b (x 1)G c (x 1) G1 i 3 i 3 i m i k T1 b (x)GT c (x),i m 1 i k此与T1 ai 3 {6,6,3,1}不是可约的矛盾,因此 ai 3 2,3,0,1 不是可约的·················· 9分(3)对于 ai n 121,11,0, ,0,3 ,若存在 t Z,以及质数 p,使得Tt ai n是 p 不可分的,由G ai (x) 121 11x 3xn ,GT a (x) 121 11(x t) 3(x t)nn 1 i nn 2 121 11t 3t n (3nt n 1 11)x 3 C i t ixn i 3xnn ········································ 11分i 1则有3不是 p的倍数;C i int 以及3ntn 1 11和3t n 11t 121是 p的倍数;但3t n 11t 121不是 p2的倍数·····································································13分分两种情况讨论:1)若 t是 p的倍数,则由3t n 11t 121是 p的倍数,有 p 11,此与3t n 11t 121不是 p2的倍数矛盾·························································································15分2)若 t不是 p的倍数,则由C1nt1是 p的倍数,有 n是 p的倍数;再由3nt n 1 11是 p的倍数,仍然有 p 11,此与3t n 11t 121是 p的倍数矛盾,所以原结论成立·························································································· 17分数学参考答案 第 6 页 共 6 页{#{QQABJYop4gqYwATACB4qQQXiCQkQsIOiJUgEBRCQqAQCyRFIFIA=}#} 展开更多...... 收起↑ 资源列表 2024~2025年青岛市高三上数学期末1中试题 - 评分标准.pdf 山东省青岛市2025届高三上学期部分学生调研检测(1月)数学试题.pdf