资源简介 2024-2025学年度九年级数学练习一第26章二次函数基础巩固卷本试卷共印8个班: 初三1-8班 命题人:石老师 时间:2025-2-18一、单选题(每题3分,共30分)1.若点都在二次函数的图象上,则( )A. B. C. D.2.从地面竖直向上抛出一小球,小球的高度(单位:)与小球的运动时间(单位:)之间的关系式是.有下列结论:①小球从抛出到落地需要;②小球运动中的高度可以是;③小球运动时的高度小于运动时的高度.其中,正确结论的个数是( )A.0 B.1 C.2 D.33.将抛物线向下平移2个单位后,所得新抛物线的顶点式为( )A. B. C. D.4.二次函数的最小值为( )A.0 B.1 C. D.不能确定5.如图,二次函数的部分图象与x轴的一个交点的横坐标是,顶点坐标为,则下列说法正确的是( )A.二次函数图象的对称轴是直线B.二次函数图象与x轴的另一个交点的横坐标是2C.当时,y随x的增大而减小D.二次函数图象与y轴的交点的纵坐标是36.已知二次函数的图象经过,两点,则下列判断正确的是( )A.可以找到一个实数,使得 B.无论实数取什么值,都有C.可以找到一个实数,使得 D.无论实数取什么值,都有7.已知二次函数,当时,函数取得最大值;当时,函数取得最小值,则t的取值范围是( )B. C. D.8.函数与的图象如图所示,当( )时,,均随着的增大而减小.B.C. D.9.如图,在等腰中,,,动点E,F同时从点A出发,分别沿射线和射线的方向匀速运动,且速度大小相同,当点E停止运动时,点F也随之停止运动,连接,以为边向下做正方形,设点E运动的路程为,正方形和等腰重合部分的面积为y,下列图像能反映y与x之间函数关系的是( )A.B. C. D.10.已知一个二次函数的自变量x与函数y的几组对应值如下表,x … 0 3 5 …y … 0 …则下列关于这个二次函数的结论正确的是( )A.图象的开口向上 B.当时,y的值随x的值增大而增大C.图象经过第二、三、四象限 D.图象的对称轴是直线二、填空题(每题3分,共15分)11.已知二次函数的图象向左平移两个单位得到抛物线,点,在抛物线上,则 (填“>”或“<”);12.若二次函数的图象与轴有交点,则的取值范围是 .13.对于一个二次函数()中存在一点,使得,则称为该抛物线的“开口大小”,那么抛物线“开口大小”为 .14.若抛物线(是常数)与轴没有交点,则的取值范围是 .15.如图,在平面直角坐标系中,抛物线与与相交于点,,点的坐标为,若点在抛物线上,则的长为 .三、解答题(共75分)16.(8分)“尔滨”火了,带动了黑龙江省的经济发展,农副产品也随之畅销全国.某村民在网上直播推销某种农副产品,在试销售的天中,第天且为整数)的售价为(元千克).当时,;当时,.销量(千克)与的函数关系式为,已知该产品第天的售价为元千克,第天的售价为元千克,设第天的销售额为(元).(1) , ;(2)写出第天的销售额与之间的函数关系式;(3)求在试销售的天中,共有多少天销售额超过元?17.(8分)广东省全力实施“百县千镇万村高质量发展工程”,2023年农产品进出口总额居全国首位,其中荔枝鲜果远销欧美.某果商以每吨2万元的价格收购早熟荔枝,销往国外.若按每吨5万元出售,平均每天可售出100吨.市场调查反映:如果每吨降价1万元,每天销售量相应增加50吨.该果商如何定价才能使每天的“利润”或“销售收入”最大?并求出其最大值.(题中“元”为人民币)18.(9分)学校要建一个矩形花圃,其中一边靠墙,另外三边用篱笆围成.已知墙长42m,篱笆长.设垂直于墙的边长为米,平行于墙的边为米,围成的矩形面积为.(1)求与与的关系式.(2)围成的矩形花圃面积能否为,若能,求出的值.(3)围成的矩形花圃面积是否存在最大值?若存在,求出这个最大值,并求出此时的值.19.(10分)2024年“五一”假期期间,阆中古城景区某特产店销售A,B两类特产.A类特产进价50元/件,B类特产进价60元/件.已知购买1件A类特产和1件B类特产需132元,购买3件A类特产和5件B类特产需540元.(1)求A类特产和B类特产每件的售价各是多少元?(2)A类特产供货充足,按原价销售每天可售出60件.市场调查反映,若每降价1元,每天可多售出10件(每件售价不低于进价).设每件A类特产降价x元,每天的销售量为y件,求y与x的函数关系式,并写出自变量x的取值范围.(3)在(2)的条件下,由于B类特产供货紧张,每天只能购进100件且能按原价售完.设该店每天销售这两类特产的总利润为w元,求w与x的函数关系式,并求出每件A类特产降价多少元时总利润w最大,最大利润是多少元?(利润=售价-进价)20.(9分)在平面直角坐标系中,已知抛物线.(1)当时,求抛物线的顶点坐标;(2)已知和是抛物线上的两点.若对于,,都有,求的取值范围.21.(9分)已知二次函数(b,c为常数)的图象经过点,对称轴为直线.(1)求二次函数的表达式;(2)若点向上平移2个单位长度,向左平移m()个单位长度后,恰好落在的图象上,求m的值;(3)当时,二次函数的最大值与最小值的差为,求n的取值范围.22.(10分)如图,已知二次函数的图象与轴交于两点,与轴交于点,其中.(1)求二次函数的表达式;(2)若是二次函数图象上的一点,且点在第二象限,线段交轴于点的面积是的面积的2倍,求点的坐标.23.(12分)综合与探究:如图,在平面直角坐标系中,已知直线与x轴交于点A,与y轴交于点C,过A,C两点的抛物线与x轴的另一个交点为点,点P是抛物线位于第四象限图象上的动点,过点P分别作x轴和y轴的平行线,分别交直线于点E,点F.(1)求抛物线的解析式;(2)点D是x轴上的任意一点,若是以为腰的等腰三角形,请直接写出点D的坐标;(3)当时,求点P的坐标;(4)在(3)的条件下,若点N是y轴上的一个动点,过点N作抛物线对称轴的垂线,垂足为M,连接,则的最小值为______.试卷第1页,共3页试卷第1页,共3页《第26章二次函数基础巩固卷》参考答案题号 1 2 3 4 5 6 7 8 9 10答案 A C A B D C C D A D1.A【分析】本题考查了二次函数的图象和性质、二次函数图象上点的坐标特征等知识点,根据二次函数的解析式得出函数图象的对称轴是y轴(直线),图象的开口向上,在对称轴的右侧,y随x的增大而增大,再比较即可.【详解】解∶ 二次函数的对称轴为y轴,开口向上,∴当时, y随x的增大而增大,∵点都在二次函数的图象上,且,∴,故选∶A.2.C【分析】本题考查二次函数的图像和性质,令解方程即可判断①;配方成顶点式即可判断②;把和代入计算即可判断③.【详解】解:令,则,解得:,,∴小球从抛出到落地需要,故①正确;∵,∴最大高度为,∴小球运动中的高度可以是,故②正确;当时,;当时,;∴小球运动时的高度大于运动时的高度,故③错误;故选C.3.A【分析】本题主要考查了二次函数的平移以及顶点式,根据平移的规律“上加下减.左加右减”可得出平移后的抛物线为,再把化为顶点式即可.【详解】解:抛物线向下平移2个单位后,则抛物线变为,∴化成顶点式则为 ,故选:A.4.B【分析】本题考查了二次函数的最值,熟练二次函数的顶点式是解决问题的关键.由得,即可求解.【详解】解:∵,∴,因此当时,取得最小值1.故选:B.5.D【分析】本题考查了二次函数的性质,待定系数法求二次函数解析式,利用二次函数的性质,对称性,增减性判断选项A、B、C,利用待定系数法求出二次函数的解析式,再求出与y轴的交点坐标即可判定选项D.【详解】解∶ ∵二次函数的顶点坐标为,∴二次函数图象的对称轴是直线,故选项A错误;∵二次函数的图象与x轴的一个交点的横坐标是,对称轴是直线,∴二次函数图象与x轴的另一个交点的横坐标是1,故选项B错误;∵抛物线开口向下, 对称轴是直线,∴当时,y随x的增大而增大,故选项C错误;设二次函数解析式为,把代入,得,解得,∴,当时,,∴二次函数图象与y轴的交点的纵坐标是3,故选项D正确,故选D.6.C【分析】本题考查二次函数的图象和性质,根据题意得到二次函数开口向上,且对称轴为,顶点坐标为,再分情况讨论,当时,当时,, 的大小情况,即可解题.【详解】解:二次函数解析式为,二次函数开口向上,且对称轴为,顶点坐标为,当时,,当时,,,当时,,,故A、B错误,不符合题意;当时,,由二次函数对称性可知,,当时,,由二次函数对称性可知,,不一定大于,故C正确符合题意;D错误,不符合题意;故选:C.7.C【分析】本题考查了二次函数的图象与性质,二次函数的最值等知识.熟练掌握二次函数的图象与性质是解题的关键.由,可知图象开口向上,对称轴为直线,顶点坐标为,当时,,即关于对称轴对称的点坐标为,由当时,函数取得最大值;当时,函数取得最小值,可得,计算求解,然后作答即可.【详解】解:∵,∴图象开口向上,对称轴为直线,顶点坐标为,当时,,∴关于对称轴对称的点坐标为,∵当时,函数取得最大值;当时,函数取得最小值,∴,解得,,故选:C.8.D【分析】本题考查了二次函数以及反比例函数的图象和性质,利用数形结合的思想解决问题是关键.由函数图象可知,当时,随着的增大而减小;位于在一、三象限内,且均随着的增大而减小,据此即可得到答案.【详解】解:由函数图象可知,当时,随着的增大而减小;位于一、三象限内,且在每一象限内均随着的增大而减小,当时,,均随着的增大而减小,故选:D.9.A【分析】本题考查动态问题与函数图象,能够明确y与x分别表示的意义,并找到几何图形与函数图象之间的关系,以及对应点是解题的关键,根据题意并结合选项分析当与重合时,及当时图象的走势,和当时图象的走势即可得到答案.【详解】解:当与重合时,设,由题可得:∴,,在中,由勾股定理可得:,∴,∴,∴当时,,∵,∴图象为开口向上的抛物线的一部分,当在下方时,设,由题可得:∴,,∵,,∴,∴,∴,∴,∴当时,,∵,∴图象为开口向下的抛物线的一部分,综上所述:A正确,故选:A.10.D【分析】本题考查了待定系数法求二次函数解析式,二次函数的性质.先利用待定系数法求得二次函数解析式,再根据二次函数的性质逐一判断即可.【详解】解:由题意得,解得,∴二次函数的解析式为,∵,∴图象的开口向下,故选项A不符合题意;图象的对称轴是直线,故选项D符合题意;当时,y的值随x的值增大而增大,当时,y的值随x的值增大而减小,故选项B不符合题意;∵顶点坐标为且经过原点,图象的开口向下,∴图象经过第一、三、四象限,故选项C不符合题意;故选:D.11.【分析】本题主要考查了二次函数图象的平移以及二次函数的性质,由平移的规律可得出抛物线的解析式为,再利用二次函数图象的性质可得出答案.【详解】解:,∵二次函数的图象向左平移两个单位得到抛物线,∴抛物线的解析式为,∴抛物线开口向上,对称轴为,∴当时,y随x的增大而增大,∵,∴,故答案为:.12.【分析】本题考查了二次函数与一元二次方程的关系,熟练掌握一元二次方程根的情况和二次函数与x轴交点个数的关系是解题的关键;根据二次函数的图象与轴有交点时解题即可.【详解】解:二次函数的图象与轴有交点,,解得,的取值范围为,故答案为:.13.4【分析】本题考查新定义运算与二次函数综合,涉及二次函数性质、分式化简求值等知识,读懂题意,理解新定义抛物线的“开口大小”,利用二次函数图象与性质将一般式化为顶点式得到,按照定义求解即可得到答案,熟记二次函数图象与性质、理解新定义是解决问题的关键.【详解】解:根据抛物线的“开口大小”的定义可知中存在一点,使得,则,,中存在一点,有,解得,则,抛物线“开口大小”为,故答案为:.14.【分析】本题主要考查了抛物线与x轴的交点问题,掌握抛物线与x轴没有交点与没有实数根是解题的关键.由抛物线与x轴没有交点,运用根的判别式列出关于c的一元一次不等式求解即可.【详解】解:∵抛物线与x轴没有交点,∴没有实数根,∴,.故答案为:.15.【分析】本题主要考查了待定系数求二次函数的解析式,二次函数的性质,熟练求解二次函数的解析式是解题的关键.先利用待定系数法求得抛物线,再令,得,解得或,从而即可得解.【详解】解:把点,点代入抛物线得,,解得,∴抛物线,令,得,解得或,∴,∴;故答案为:.16.(1),(2)(3)在试销售的天中,共有天销售额超过元【分析】本题考查了一次函数与二次函数的综合应用;(1)待定系数法求解析式,即可求解;(2)根据销售额等于销量乘以售价,分段列出函数关系式,即可求解;(3)根据题意,根据,列出方程,解方程,即可求解.【详解】(1)解:依题意,将,代入,∴解得:∴故答案为:,.(2)解:依题意,当时,当时,∴(3)解:依题意,当时,当时,解得:为正整数,∴第天至第天,销售额超过元(天)答:在试销售的天中,共有天销售额超过元17.当定价为4.5万元每吨时,利润最大,最大值为312.5万元【分析】本题主要考查了二次函数的实际应用,设每吨降价x万元,每天的利润为w万元,根据利润每吨的利润销售量列出w关于x的二次函数关系式,利用二次函数的性质求解即可.【详解】解:设每吨降价x万元,每天的利润为w万元,由题意得,,∵,∴当时,w有最大值,最大值为,∴,答:当定价为万元每吨时,利润最大,最大值为万元.18.(1);(2)能,(3)的最大值为800,此时【分析】本题主要考查一元二次方程的应用和二次函数的实际应用:(1)根据可求出与之间的关系,根据墙的长度可确定的范围;根据面积公式可确立二次函数关系式;(2)令,得一元二次方程,判断此方程有解,再解方程即可 ;(3)根据自变量的取值范围和二次函数的性质确定函数的最大值即可.【详解】(1)解:∵篱笆长,∴,∵∴∴∵墙长42m,∴,解得,,∴;又矩形面积;(2)解:令,则,整理得:,此时,,所以,一元二次方程有两个不相等的实数根,∴围成的矩形花圃面积能为;∴∴∵,∴;(3)解:∵∴有最大值,又,∴当时,取得最大值,此时,即当时,的最大值为80019.(1)A类特产的售价为60元/件,B类特产的售价为72元/件(2)()(3)A类特产每件售价降价2元时,每天销售利润最犬,最大利润为1840元【分析】本题主要考查一元一次方程的应用、函数关系式和二次函数的性质,根据题意设每件A类特产的售价为x元,则每件B类特产的售价为元,进一步得到关于x的一元一次方程求解即可;根据降价1元,每天可多售出10件列出函数关系式,结合进价与售价,且每件售价不低于进价得到x得取值范围;结合(2)中A类特产降价x元与每天的销售量y件,得到A类特产的利润,同时求得B类特产的利润,整理得到关于x的二次函数,利用二次函数的性质求解即可.【详解】(1)解:设每件A类特产的售价为x元,则每件B类特产的售价为元.根据题意得.解得.则每件B类特产的售价(元).答:A类特产的售价为60元/件,B类特产的售价为72元/件.(2)由题意得∵A类特产进价50元/件,售价为60元/件,且每件售价不低于进价∴.答:().(3).∴当时,w有最大值1840.答:A类特产每件售价降价2元时,每天销售利润最大,最大利润为1840元.20.(1);(2)或【分析】()把代入,转化成顶点式即可求解;()分和两种情况,画出图形结合二次函数的性质即可求解;本题考查了求二次函数的顶点式,二次函数的性质,运用分类讨论和数形结合思想解答是解题的关键.【详解】(1)解:把代入得,,∴抛物线的顶点坐标为;(2)解:分两种情况:抛物线的对称轴是直线;当时,如图,此时,∴,又∵,∴;当时,如图,此时,解得,又∵,∴;综上,当或,都有.21.(1)(2)(3)【分析】本题主要考查了待定系数法,二次函数的图象与性质,(1)采用待定系数法即可求解二次函数关系式;(2)先求出平移后点B的坐标,然后把坐标代入解析式即可;(3)分为,时,时,建立方程解题即可.【详解】(1)解:设二次函数的解析式为,把代入得,解得,∴;(2)解:点B平移后的点的坐标为,则,解得或(舍),∴m的值为;(3)解:当时,∴最大值与最小值的差为,解得:不符合题意,舍去;当时,∴最大值与最小值的差为,符合题意;当时,最大值与最小值的差为,解得或,不符合题意;综上所述,n的取值范围为.22.(1)(2)【分析】本题考查二次函数表达式、二次函数的图象与性质、二元一次方程组、一元二次方程、三角形面积等基础知识,考查运算能力、推理能力、几何直观等.(1)根据待定系数法求解即可;(2)设,因为点在第二象限,所以.依题意,得,即可得出,求出,由,求出,即可求出点的坐标.【详解】(1)解:将代入,得,解得,所以,二次函数的表达式为.(2)设,因为点在第二象限,所以.依题意,得,即,所以.由已知,得,所以.由,解得(舍去),所以点坐标为.23.(1)(2)(3)(4)【分析】本题主要考查了求函数解析式、二次函数与几何的综合等知识点,掌握数形结合思想成为解题的关键.(1)先根据题意确定点A、C的坐标,然后运用待定系数法求解即可;(2)分三种情况分别画出图形,然后根据等腰三角形的定义以及坐标与图形即可解答;(3)先证明可得,设,则,可得,即,求得可得m的值,进而求得点P的坐标;(4)如图:将线段向右平移单位得到,即四边形是平行四边形,可得,即,作关于对称轴的点,则,由两点间的距离公式可得,再根据三角形的三边关系可得即可解答.【详解】(1)解:∵直线与x轴交于点A,与y轴交于点C,∴当时,,即;当时,,即;∵,∴设抛物线的解析式为,把代入可得:,解得:,∴,∴抛物线的解析式为:.(2)解:∵,,∴,∴,如图:当,∴,即;如图:当,∴,即;如图:当,∴,即;综上,点D的坐标为.(3)解:如图:∵轴,∴,∵轴,∴,∵,∴,∴,∵设,则,∴,∴,解得:(负值舍去),当时,,∴.(4)解: ∵抛物线的解析式为:,∴抛物线的对称轴为:直线,如图:将线段向右平移单位得到,∴四边形是平行四边形,∴,即,作关于对称轴的点,则∴,∵,∴的最小值为.故答案为.答案第1页,共2页答案第1页,共2页 展开更多...... 收起↑ 资源预览