江苏省南京市2024年中考数学试题(含答案)

资源下载
  1. 二一教育资源

江苏省南京市2024年中考数学试题(含答案)

资源简介

江苏省南京市2024年中考数学试题
注意事项:
1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.
2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、考试证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.
3.答选择题必须用2B铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.6毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.
4.作图必须用2B铅笔作答,并请加黑加粗,描写清楚.
一、选择题 (本大题共6小题,每小题2分,共12分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)
1.下列四个数中,是负数的是
A. - 3 B. |- 3| C. -(-3) D. (-3)
2.任意两个奇数的平方差总能
A.被 3 整除 B.被5整除 C.被 6整除 D.被8整除
3.水由氢、氧两种元素组成.一个水分子包含两个氢原子和一个氧原子.一个氢原子的质量约为 kg,一个氧原子的质量约为 kg,一个水分子的质量大约是
A. kg B. kg
C.kg D. kg
4. 如图, 在正n边形中, ∠1=20°, 则n的值是
A. 16 B. 18 C. 20 D. 36
5. 如图, 在四边形ABCD 中, AD∥BC, AD, CD 分别与扇形BAF 相切于点A, E. 若AB=15, BC=17, 则AD 的长为
A. 8 B. 8.5 C. 5 D. 9
数学试卷 第1页 (共6页)
6.某商场促销方案规定:单笔消费金额每满100元立减10元.例如,单笔消费金额为208元时,立减20元.甲在该商场单笔购买2件A商品,立减了20元;乙在该商场单笔购买2件A商品与1件B商品,立减了30元.若B商品的单价是整数元,则它的最小值是
A. 1元 B. 99元 C. 101元 D. 199元
二、填空题 (本大题共10小题,每小题2分,共20分.请把答案填写在答题卡相应位置上)
7.比较大小:- ▲ - (填“>”“<”或“=”号).
8.若式子 在实数范围内有意义,则x的取值范围是 ▲ .
9.计算 的结果是 ▲ .
10. 如果实数a, b满足 ▲ , 那么a, b互为相反数.
11. 方程 的解是 ▲ .
12.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系.完成下表:
R/Ω 4 6 8 …
I/A ▲ 6 4.5 …
13. 如图, 点A, O, B 在同一条直线上, OD 是∠AOC 的平分线, OE 是∠BOC 的平分线. 若∠AOE=162°, 则∠BOD = ▲ °.
14.如图,在边长为4的等边三角形ABC中,AD是中线,将DA 绕点D 顺时针旋转60°得到 DE, 连接BE, 则S△BDE = ▲ .
15.阅读材料:由 可知 的算术平方根是 类似地, 的算术平方根是 ▲ .
16. 已知 是关于x的方程( , b, c是有理数,a≠0)的一个根,则该方程的另外两个根分别是 ▲ , ▲ .
数学试卷 第 2 页 (共6页)
三、解答题 (本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)
17.(7分)解不等式组
18. (7分)计算
19.(7分)已知点A(a,b)与点B关于x轴对称,将点A 向左平移3个单位长度得到点C.若B,C 两点都在函数y=2x+1的图像上,求点A 的坐标.
20. (8分)如图, 在⊙O 的内接四边形ABCD中, AD=BC,对角线AC是⊙O 的直径.求证:四边形ABCD 是矩形.
21.(8分)甲袋子中有2个红球、1个白球;乙袋子中有1个红球、1个白球.这些球除颜色外无其他差别.先从甲袋子中随机摸出1个球放入乙袋子,摇匀后,再从乙袋子中随机摸出1个球.
(1)从甲袋子中摸出的球是白球的概率是 ▲ ;
(2)从两个袋子中摸出的球都是红球的概率是多少
数学试卷 第 3页 (共6页)
22.(8分)某品牌汽车2月份至6月份销售的月增量(单位:万辆)折线统计图如下.
注:月增量=当月的销售量一上月的销售量, 月增长率 例如,8月份的销售量为2万辆,9月份的销售量为2.4万辆,那么9月份销售的月增量为2.4-2=0.4(万辆), 月增长率为20%.
(1)下列说法正确的是( ▲ )
A.2月份的销售量为0.4万辆
B.2月份至6月份销售的月增量的平均数为0.26万辆
C.5月份的销售量最大
D.5月份销售的月增长率最大
(2)6月份的销售量比1月份增加了 ▲ 万辆.
(3)2月份至4月份的月销售量持续减少,你同意这种观点吗 说明理由.
23.(8分)如图,港口B位于港口A 的北偏西37°方向,港口C位于港口A 的北偏东 方向,港口C位于港口B 的北偏东76°方向.一艘海轮从港口A 出发,沿正北方向航行.已知港口 B 到航线的距离为12km,求港口C 到航线的距离.
(参考数据:
数学试卷 第 4页 (共6页)
24. (8分)如图, 在 中, O是AB上一点, 和 关于点O对称, 连接AF, CD.
(1)求证:四边形 ACDF 是平行四边形;
(2)已知AC=4, BC=3, 求四边形ACDF 是菱形时AO的长.
25.(9分)已知二次函数 的图像经过点(1,2),它的顶点(m,n)在函数 的图像上.
(1)当n取最小值时, a = ▲ .
(2)用含m 的代数式表示a.
(3)已知点A(-2, y1), B(-1, y ), C(2, y )都在函数. 的图像上.当 时,结合函数的图像,直接写出m 的取值范围.
26.(8分)
(1)如图(1), 点E, F分别在正方形ABCD 边AB, CD上, 连接EF.求作GH, 使点G, H 分别在边BC, AD上(均不与顶点重合), 且GH⊥EF.
(2)已知点 P,Q,R,S的位置如图(2)所示,若它们分别在一个正方形的四条边上,用两种不同的方法求作该正方形过点 P 的边所在的直线.
要求:①用直尺和圆规作图;②保留作图的痕迹,写出必要的文字说明.
数学试卷 第 5页 (共6页)
27.(10分)如图(1),夜晚,小明从路灯L的正下方. 处出发,先沿平路走到 处,再上坡到达 处.已知小明的身高为1.5m,他在道路上的影长y(单位:m)与行走的路程x(单位:m)之间的函数关系如图(2)所示,其中,OA,BC 是线段,AB 是曲线.
(1)结合 的位置,解释点A 的横坐标、纵坐标的实际意义.
(2)路灯L 的高度是 ▲ m.
(3)设 的坡角为
①通过计算,比较线段OA 与线段BC 的倾斜程度.
②当α取不同的值时、下列关于曲线AB的变化趋势的描述:(a)y随x的增大而增大;(b)y随x的增大而减小;(c)y随x的增大先增大后减小;(d)y随x的增大先减小后增大.其中,所有可能出现的序号是 ▲ (说明:全部填对的得满分,有填错的不得分).
数学试卷 第 6页 (共6页)
2024年南京市中考数学试卷
答案解析
一、选择题 (本大题共6小题,每小题2分,共12分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)
题号 1 2 3 4 5 6
答案 A D C B C A
二、填空题 (本大题共10小题,每小题2分,共20分.请把答案填写在答题卡相应位置上)
7. <
8. x≥-1
9. 2
10. a+b=0
11. x=1
12. 9
13. 108
14.
15. 3-
16. 2,4+
三、解答题 (本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)
17. 解不等式组
解析:
解第一个不等式 x 1> 2(x 1)+3
展开右边: 2(x 1)+3= 2 x +2+3= 2 x +5
不等式变为:x 1> 2(x 1)+5
移项合并同类项:3x 1>5 3x>6 x>2
解第二个不等式x 8<4 x +1
移项合并同类项:
8 1<3 x 9<3 x x > 3
求交集:
两个不等式的解集分别为 x >2 和 x > 3 ,其交集为 x >2x>2。
最终解集:
x >2或(2,+∞)
18题.答案:
计算
解析:
首先,处理括号内的部分:
将1转换为分式形式,使其与有相同的分母:
所以:
接下来, 处理除法部分:
除以一个分数等于乘以它的倒数:
将 因式分解:
所以:
约去公因式x和
最终答案是:
19题答案: A的坐标为(1, -3)
解析:
确定点B的坐标 :
由于点A(a, b)与点B关于x轴对称,因此点B的坐标为(a, -b)。
确定点C的坐标 :
点A向左平移3个单位长度后得到点C,所以点C的坐标为(a-3, b)。
建立方程 :
因为点B和点C都在函数y=2x+1的图像上,所以我们可以建立以下两个方程:
对于点B(a, -b):-b = 2a + 1
对于点C(a-3, b):b = 2(a-3) + 1
解方程组 :
将上述两个方程联立求解:
从第一个方程中解出b:-b = 2a + 1 → b = -(2a + 1)
将b的表达式代入第二个方程:-(2a + 1) = 2(a-3) + 1
展开并化简方程:-2a - 1 = 2a - 6 + 1 → -4a = -4 → a = 1
将a=1代入第一个方程求得b的值:-b = 2×1 + 1 → -b = 3 → b = -3
得出点A的坐标 :
因此,点A的坐标为(1, -3)。
20. (8分)如图, 在⊙O 的内接四边形ABCD中, AD=BC,对角线AC是⊙O 的直径.求证:四边形ABCD 是矩形.
证明:∵AC是⊙O的直径
在和 中

四边形ABCD是平行四边形

是矩形.

展开更多......

收起↑

资源预览