2025年九年级中考数学二轮复习专题圆的证明与计算练习(含答案)

资源下载
  1. 二一教育资源

2025年九年级中考数学二轮复习专题圆的证明与计算练习(含答案)

资源简介

2025年九年级中考数学二轮复习专题圆的证明与计算练习
一、选择题
1.如图,四边形ABCD是⊙O的内接四边形,AB是⊙O的直径,若∠BEC=20°,则∠ADC的度数为(  )
A.100° B.110° C.120° D.130°
2.数学活动课上,同学们要测一个如图所示的残缺圆形工件的半径,小明的解决方案是:在工件圆弧上任取两点A,B,连接AB,作AB的垂直平分线CD交AB于点D,交于点C,测出AB=40cm,CD=10cm,则圆形工件的半径为(  )
A.50cm B.35cm C.25cm D.20cm
3.刘徽(今山东滨州人)是魏晋时期我国伟大的数学家,中国古典数学理论的奠基者之一,被誉为“世界古代数学泰斗”.刘徽在注释《九章算术》时十分重视一题多解,其中最典型的是勾股容方和勾股容圆公式的推导,他给出了内切圆直径的多种表达形式.如图,Rt△ABC中,∠C=90°,AB,BC,CA的长分别为c,a,b.则可以用含c,a,b的式子表示出△ABC的内切圆直径d,下列表达式错误的是(  )
A.d=a+b﹣c B.
C. D.d=|(a﹣b)(c﹣b)|
4.如图,△ABC内接于⊙O,BC为⊙O的直径,AD平分∠BAC交⊙O于D,则的值为(  )
A. B. C.2 D.2
5.如图,⊙O是锐角三角形ABC的外接圆,OD⊥AB,OE⊥BC,OF⊥AC.垂足分别为D,E,F,连接DE,EF,FD.若DE+DF=6.5,△ABC的周长为21,则EF的长为(  )
A.8 B.4 C.3.5 D.3
二、填空题
6.如图,四边形ABCD内接于⊙O,若四边形OABC是菱形,则∠D=   °.
7.如图,AB是⊙O的直径,BC是⊙O的切线,点B为切点.连接AC交⊙O于点D,点E是⊙O上一点,连接BE,DE,过点A作AF∥BE交BD的延长线于点F.若BC=5,CD=3,∠F=∠ADE,则AB的长度是    ;DF的长度是    .
8.如图,△ABC中,BA=BC,以BC为直径的半圆O分别交AB,AC于点D,E.过点E作半圆O的切线,交AB于点M,交BC的延长线于点N.若ON=10,cos∠ABC,则半径OC的长为    .
9.若圆锥的底面半径是1cm,它的侧面展开图的圆心角是直角,则该圆锥的高为    cm.
10.如图,⊙M的圆心为M(4,0),半径为2,P是直线y=x+4上的一个动点,过点P作⊙M的切线,切点为Q,则PQ的最小值为    .
三、解答题
11.如图,点C在以AB为直径的⊙O上,点D在BA的延长线上,∠DCA=∠CBA.
(1)求证:DC是⊙O的切线;
(2)点G是半径OB上的点,过点G作OB的垂线与BC交于点F,与DC的延长线交于点E,若sinD,DA=FG=2,求CE的长.
12.如图,△ABC内接于⊙O,AB是⊙O的直径,点E在⊙O上,点C是的中点,AE⊥CD,垂足为点D,DC的延长线交AB的延长线于点F.
(1)求证:CD是⊙O的切线;
(2)若CD,∠ABC=60°,求线段AF的长.
13.如图,BE是⊙O的直径,点A在⊙O上,点C在BE的延长线上,∠EAC=∠ABC,AD平分∠BAE交⊙O于点D,连结DE.
(1)求证:CA是⊙O的切线;
(2)当AC=8,CE=4时,求DE的长.
14.如图,AB是⊙O的直径,△ABC内接于⊙O,点I为△ABC的内心,连接CI并延长交⊙O于点D,E是上任意一点,连接AD,BD,BE,CE.
(1)若∠ABC=25°,求∠CEB的度数;
(2)找出图中所有与DI相等的线段,并证明;
(3)若CI=2,DI,求△ABC的周长.
15.如图,AB是⊙O的直径,点C是⊙O上的一点,点P是BA延长线上的一点,连接AC,∠PCA=∠B.
(1)求证:PC是⊙O的切线;
(2)若sin∠B,求证:AC=AP;
(3)若CD⊥AB于D,PA=4,BD=6,求AD的长.
参考答案
一、选择题
题号 1 2 3 4 5
答案 B C D A B
二、填空题
6.答案为:60.
7.答案为:,.
8.答案为:6.
9.答案为:.
10.答案为:2.
三、解答题
11.【解答】解:(1)证明:连接OC
∵OB=OC
∴∠OBC=∠OCB,
∵∠DCA=∠OBC,
∴∠DCA=∠OCB,
而AB是⊙O的直径,
∴∠ACB=90°,
∴∠DCA+∠OCA=∠OCA+∠OCB=90°,
∴∠OCD=90°,
∴DC是⊙O的切线,
(2)设OC=OA=r,
∵,
∴,
∴r=8,
∴OC=OA=8,
在 Rt△OCD 中,,
∵∠DCA+∠ECF=∠BFG+∠CBA=90°,
∴∠ECF=∠BFG,
又∵∠BFG=∠EFC,
∴∠ECF=∠EFC,
∴EC=EF,设EC=EF=x,
∵∠D=∠D,∠DCO=∠DGE,
∴△DOC∽△DEG,
∴,则 ,
解得:x=14,
经检验x=14是所列方程的解,
∴CE=14.
12.【解答】(1)证明:连接OC,
∵点C是的中点,
∴,
∴∠BAC=∠CAE,
∵OC=OA,
∴∠OCA=∠OAC,
∴∠OCA=∠CAD,
∴OC∥AD,
∵AE⊥CD,
∴OC⊥DF,
∵OC是⊙O的半径,
∴CD是⊙O的切线;
(2)解:∵AB是⊙O的直径,
∴∠ACB=90°,
∵∠ABC=60°,
∴∠BAC=30°,
∴∠CAD=∠BAC=30°,
∵∠D=90°,CD,
∴AD3,
∵∠F=180°﹣∠D﹣∠BAD=30°,
∴AF=2AD=6.
13.【解答】(1)证明:连接OA,
∵BE是⊙O的直径,
∴∠BAE=90°,
∴∠BAO+∠OAE=90°,
∵OA=OB,
∴∠ABC=∠BAO,
∵∠EAC=∠ABC,
∴∠CAE=∠BAO,
∴∠CAE+∠OAE=90°,
∴∠OAC=90°,
∵OA是⊙O的半径,
∴CA是⊙O的切线;
(2)解:∵∠EAC=∠ABC,∠C=∠C,
∴△ABC∽△EAC,
∴,
∴,
∴BC=16,
∴BE=BC﹣CE=12,
连接BD,
∵AD平分∠BAE,
∴∠BAD=∠EAD,
∴,
∴BD=DE,
∵BE是⊙O的直径,
∴∠BDE=90°,
∴DE=BDBE=6.
14.【解答】解:(1)∵AB是⊙O的直径,
∴∠ADB=∠ACB=90°,
又∵∠ABC=25°,
∴∠CAB=90°﹣25°=65°,
∵四边形ABEC是⊙O内接四边形,
∴∠CEB+∠CAB=180°,
∴∠CEB=180°﹣∠CAB=115°;
(2)DI=AD=BD,
连接AI,
∵点I为△ABC的内心,
∴∠CAI=∠BAI,,
∴,
∴∠DAB=∠DCB=∠ACI,AD=BD,
∵∠DAI=∠DAB+∠BAI,∠DIA=∠ACI+∠CAI,
∴∠DAI=∠DIA,
∴DI=AD=BD;
(3)过I分别作IQ⊥AB,IF⊥AC,IP⊥BC,垂足分别为Q、F、P,
∵点I为△ABC的内心,即为△ABC的内切圆的圆心,
∴Q、F、P分别为该内切圆与△ABC三边的切点,
∴AQ=AF,CF=CP,BQ=BP,
∵,∠IFC=90°,∠ACI=45°,
∴CF=CI cos45°=2=CP,
∵DI=AD=BD,,∠ADB=90°,
∴,
∴△ABC的周长为AB+AC+BC
=AB+AF+CF+CP+BP
=AB+AQ+BQ+2CF
=2AB+2CF
=2×13+2×2=30.
15.【解答】(1)证明:如图,连接OC,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠BCO+∠OCA=90°,
∵OB=OC,
∴∠B=∠BCO,
∵∠PCA=∠B,
∴∠PCA=∠BCO,
∴∠PCA+∠OCA=90°,
∴OC⊥PC,
∴PC是⊙O的切线;
(2)证明:∵sin∠B,
∴∠B=30°,
∴∠PCA=∠B=30°,
由(1)知∠ACB=90°,
∴∠CAB=60°,
∴∠P=∠CAB﹣∠PCA=30°,
∴∠PCA=∠P,
∴AC=AP;
(3)设AD=x,在Rt△ACB中,CD⊥AB,
∴CD2=AD×BD=6x,
∵∠P=∠P,∠PCA=∠B,
∴△PAC∽△PCB,
∴,
∴PC2=PA PB=4(6+4+x)=4(10+x),
在Rt△PCD中,由勾股定理得PD2+CD2=PC2,
即(4+x)2+6x=4(10+x),
整理得x2+10x﹣24=0,
解得x1=2,x2=﹣12(舍去),
故AD=2

展开更多......

收起↑

资源预览