浙江省近两年中考数学真题:基础解答题整理(学生卷+教师卷)

资源下载
  1. 二一教育资源

浙江省近两年中考数学真题:基础解答题整理(学生卷+教师卷)

资源简介

中小学教育资源及组卷应用平台
中考数学基础解答题整理
参考答案与试题解析
一.解答题(共25小题)
1.(2024 浙江)计算:.
【考点】实数的运算;负整数指数幂;绝对值;立方根.
【分析】利用负整数指数幂,立方根的定义,绝对值的性质计算即可.
【解答】解:原式=4﹣2+5
=7.
【点评】本题考查实数的运算,负整数指数幂,立方根,绝对值,熟练掌握相关运算法则是解题的关键.
2.(2024 浙江)解方程组:.
【考点】解二元一次方程组.
【分析】先有①×3+②得出10x=5,求出x,再把x代入①求出y即可.
【解答】解:,
①×3+②得:10x=5,
解得:x,
把x代入①得:2y=5,
解得:y=﹣4,
所以方程组的解是.
【点评】本题考查了二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.
3.(2024 浙江)如图,在△ABC中,AD⊥BC,AE是BC边上的中线,AB=10,AD=6,tan∠ACB=1.
(1)求BC的长;
(2)求sin∠DAE的值.
【考点】解直角三角形;勾股定理.
【分析】(1)由tan∠ACB=1可得CD=AD=6,根据勾股定理可得BD的长,进而求得BC的长;
(2)根据AE是BC边上的中线可得CE的长,由DE=CE﹣CD可得DE的长,根据勾股定理可得AE的长,再根据三角函数的定义解答即可.
【解答】解:(1)∵AD⊥BC,AB=10,AD=6,
∴BD8;
∵tan∠ACB=1,
∴CD=AD=6,
∴BC=BD+CD=8+6=14;
(2)∵AE是BC边上的中线,
∴CE7,
∴DE=CE﹣CD=7﹣6=1,
∵AD⊥BC,
∴,
∴sin∠DAE.
【点评】本题考查了解直角三角形以及勾股定理,在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.
4.(2024 浙江)某校开展科学活动.为了解学生对活动项目的喜爱情况,随机抽取部分学生进行问卷调查.调查问卷和统计结果描述如下:
科学活动喜爱项目调查问卷以下问题均为单选题,请根据实际情况填写.问题1:在以下四类科学“嘉年华”项目中,你最喜爱的是  A (A)科普讲座(B)科幻电影(C)AI应用(D)科学魔术如果问题1选择C.请继续回答问题2.问题2:你更关注的AI应用是  E (E)辅助学习(F)虚拟体验(G)智能生活(H)其他
根据以上信息.解答下列问题:
(1)本次调查中最喜爱“AI应用”的学生中更关注“辅助学习”有多少人?
(2)若该学校共有1200名学生,根据统计信息,估计该校最喜爱“科普讲座”的学生人数.
【考点】用样本估计总体;统计表.
【分析】(1)用本次调查中最喜爱“AI应用”的学生人数乘E所占百分比即可;
(2)用1200乘该校最喜爱“科普讲座”项目的百分比即可.
【解答】解:(1)80×40%=32(人),
答:本次调查中最喜爱“AI应用”的学生中更关注“辅助学习”有32人;
(2)1200324(人),
答:估计该校最喜爱“科普讲座”的学生人数大约有324人.
【点评】本题考查扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.
5.(2024 浙江)尺规作图问题:
如图1,点E是 ABCD边AD上一点(不包含A,D),连接CE.用尺规作AF∥CE,F是边BC上一点.
小明:如图2.以C为圆心,AE长为半径作弧,交BC于点F,连接AF,则AF∥CE.
小丽:以点A为圆心,CE长为半径作弧,交BC于点F,连接AF,则AF∥CE.
小明:小丽,你的作法有问题.
小丽:哦…我明白了!
(1)证明AF∥CE;
(2)指出小丽作法中存在的问题.
【考点】平行四边形的判定与性质.
【分析】(1)根据小明的作法知,CF=AE,根据平行四边形的性质求出AD∥BC,根据“一组对边平行且相等的四边形是平行四边形”求出四边形AFCE是平行四边形,根据“平行四边形的对边互相平行”即可得证;
(2)以A为圆心,EC为半径画弧,交BC于点F,此时可能会有两个交点,只有其中之一符合题意.
【解答】(1)证明:根据小明的作法知,CF=AE,
∵四边形ABCD是平行四边形,
∴AD∥BC,
又∵CF=AE,
∴四边形AFCE是平行四边形,
∴AF∥CE;
(2)解:以A为圆心,EC为半径画弧,交BC于点F,此时可能会有两个交点,只有其中之一符合题意.
故小丽的作法有问题.
【点评】此题考查了平行四边形的判定与性质,熟记平行四边形的判定定理与性质定理是解题的关键.
6.(2023 湖州)计算:.
【考点】实数的运算.
【分析】根据实数的运算顺序进行计算即可.
【解答】解:原式=4﹣2×3
=4﹣6
=﹣2.
【点评】本题考查实数的运算,掌握二次根式的性质是解题的关键.
7.(2023 湖州)解一元一次不等式组.
【考点】解一元一次不等式组.
【分析】先解每一个不等式,再求它们的公共部分.
【解答】解:解不等式①,得x>﹣1,
解不等式②,得x<2,
所以原不等式组的解集是﹣1<x<2.
【点评】本题考查了解一元一次不等式组,掌握解一元一次不等式是解题的关键,
8.(2023 湖州)如图,在△ABC中,AB=AC,AD⊥BC于点D,点E为AB的中点,连结DE.已知BC=10,AD=12,求BD,DE的长.
【考点】三角形中位线定理;等腰三角形的性质;直角三角形斜边上的中线;勾股定理.
【分析】根据等腰三角形的性质求出,根据勾股定理求出AB=13,
【解答】解∵AB=AC,AD⊥BC于点D,
∴,
∵BC=10,
∴BD=5,
∵AD⊥BC于点D,
∴∠ADB=90°,
在Rt△ABD中,AB2=AD2+BD2,
∵AD=12,
∴,
∵E为AB的中点,D点为BC的中点,
∴.
【点评】此题考查了三角形中位线的判定与性质、等腰三角形的性质,熟记三角形中位线的判定与性质、等腰三角形的性质是解题的关键.
9.(2023 湖州)4月23日是世界读书日.为了解学生的阅读喜好,丰富学校图书资源,某校将课外书籍设置了四类:文学类、科技类、艺术类、其他类,随机抽查了部分学生,要求每名学生从中选择自己最喜欢的一类,将抽查结果绘制成如图统计图(不完整).
请根据图中信息解答下列问题:
(1)求被抽查的学生人数,并求出扇形统计图中m的值.
(2)请将条形统计图补充完整.(温馨提示:请画在答题卷相对应的图上)
(3)若该校共有1200名学生,根据抽查结果,试估计全校最喜欢“文学类”书籍的学生人数.
【考点】条形统计图;全面调查与抽样调查;用样本估计总体;扇形统计图.
【分析】(1)将其他类人数除以其所占的比即可求出被抽查的人数;将科技类人数除以被抽查的人数化成百分数,即可求出m的值;
(2)先求出艺术类人数,再补全条形统计图即可;
(3)将1200乘以样本中最喜欢“文学类”书籍所占的比例即可估计全校最喜欢“文学类”书籍的学生人数.
【解答】解:(1)被抽查的学生人数是 40÷20%=200(人),
∵,
∴扇形统计图中m的值是40,
答:被抽查的学生人数为200人,扇形统计图中m的值为40;
(2)200﹣60﹣80﹣40=20(人),
补全的条形统计图如图所示.
(3)∵(人),
∴估计全校最喜欢“文学类”书籍的学生人数共有360人.
【点评】本题考查条形统计图,扇形统计图,用样本估计总体,能从统计图中获取有用信息是解题的关键.
10.(2023 湖州)如图,在Rt△ABC中,∠ACB=90°,点O在边AC上,以点O为圆心,OC为半径的半圆与斜边AB相切于点D,交OA于点E,连结OB.
(1)求证:BD=BC.
(2)已知OC=1,∠A=30°,求AB的长.
【考点】切线的性质;含30度角的直角三角形.
【分析】(1)根据切线性质得到∠ODB=∠OCB=90°,再根据HL证明Rt△ODB≌Rt△OCB,从而得到结论;
(2)分别在Rt△OBC中,利用三角函数求出BC的长,和在Rt△ABC中,利用三角函数求出即可求出AB的长.
【解答】(1)证明 如图,连结OD,
∵半圆O与AB相切于点D,
∴OD⊥AB,
∵∠ACB=90°,
∴∠ODB=∠OCB=90°,
在Rt△ODB和Rt△OCB中,
∴Rt△ODB≌Rt△OCB(HL),
∴BD=BC;
(2)解 如图,∵∠A=30°,∠ACB=90°,
∴∠ABC=60°,
∵Rt△ODB≌Rt△OCB,
∴,
在Rt△OBC中,
∵OC=1,
∴,
在Rt△ABC中,

【点评】本题考查圆的切线性质,全等三角形判定和性质,解直角三角形,熟悉相关图形的性质是解题的关键.
11.(2023 衢州)(1)计算:(a+2)(a﹣2).
(2)化简:2.
【考点】分式的加减法;平方差公式.
【分析】(1)根据平方差公式进行计算即可;
(2)根据分式的加法法则进行计算即可.
【解答】解:(1)(a+2)(a﹣2)
=a2﹣22
=a2﹣4;
(2)2
=a.
【点评】本题考查了分式的加法和平方差公式,能正确根据平方差公式进行计算是解(1)的关键,能正确根据分式的加法法则进行计算是解(2)的关键.
12.(2023 衢州)小红在解方程时,第一步出现了错误:
解:2×7x=(4x﹣1)+1,…
(1)请在相应的方框内用横线划出小红的错误处.
(2)写出你的解答过程.
【考点】解一元一次方程.
【分析】(1)根据等式的性质,解一元一次方程的步骤即可判断;
(2)首先去分母、然后去括号、移项、合并同类项、系数化为1即可求解.
【解答】解:(1)如图:
(2)去分母:2×7x=(4x﹣1)+6,
去括号:14x=4x﹣1+6,
移项:14x﹣4x=﹣1+6,
合并同类项:10x=5,
系数化1:x.
【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.
13.(2023 衢州)已知:如图,在△ABC和△DEF中,B,E,C,F在同一条直线上.下面四个条件:
①AB=DE;②AC=DF;③BE=CF;④∠ABC=∠DEF.
(1)请选择其中的三个条件,使得△ABC≌△DEF(写出一种情况即可).
(2)在(1)的条件下,求证:△ABC≌△DEF.
【考点】全等三角形的判定.
【分析】(1)根据两三角形全等的判定定理,选择合适的条件即可.
(2)根据(1)中所选条件,进行证明即可.
【解答】解:(1)由题知,
选择的三个条件是:①②③;
或者选择的三个条件是:①③④.
证明:(2)当选择①②③时,
∵BE=CF,
∴BE+EC=CF+EC,
即BC=EF.
在△ABC和△DEF中,

∴△ABC≌△DEF(SSS).
当选择①③④时,
∵BE=CF,
∴BE+EC=CF+EC,
即BC=EF.
在△ABC和△DEF中,

∴△ABC≌△DEF(SAS).
【点评】本题考查全等三角形的证明,熟知全等三角形的判定定理是解题的关键.
14.(2023 衢州)【数据的收集与整理】
根据国家统计局统一部署,衢州市统计局对2022年我市人口变动情况进行了抽样调查,抽样比例为5‰.根据抽样结果推算,我市2022年的出生率为5.5‰,死亡率为8‰,人口自然增长率为﹣2.5‰,常住人口数为a人(‰表示千分号).
(数据来源:衢州市统计局)
【数据分析】
(1)请根据信息推测人口自然增长率与出生率、死亡率的关系.
(2)已知本次调查的样本容量为11450,请推算a的值.
(3)将我市及全国近五年的人口自然增长率情况绘制成如图统计图.根据统计图分析:
①对图中信息作出评判(写出两条).
②为扭转目前人口自然增长率的趋势,请给出一条合理化建议.
【考点】扇形统计图;总体、个体、样本、样本容量.
【分析】(1)根据自然增长率与出生率、死亡率的数值即可推测它们之间的关系;
(2)根据样本容量=总体×抽样比例求出a的值即可;
(3)①根据统计图进行解答,合理即可;
②根据目前人口自然增长率的趋势,提出建议改善现状,合理即可.
【解答】解:(1)根据题意可知,人口自然增长率=出生率﹣死亡率.
(2)5‰a=11450,解得a=2290000.
(3)①近5年来,我市及全国人口自然增长率逐年下降;自2021年起,我市人口呈现负增长(答案不唯一,合理即可);
②建议国家加大政策优惠力度和补贴力度,降低生育成本,鼓励人们多生育(答案不唯一,合理即可).
【点评】本题考查总体、个体、样本、样本容量,理解并掌握它们的概念是本题的关键.
15.(2023 衢州)如图,在Rt△ABC中,∠ACB=90°,O为AC边上一点,连结OB.以OC为半径的半圆与AB边相切于点D,交AC边于点E.
(1)求证:BC=BD.
(2)若OB=OA,AE=2.
①求半圆O的半径.
②求图中阴影部分的面积.
【考点】圆的综合题.
【分析】(1)连结OD.由切线的性质得出∠ODB=90°,证明Rt△ODB≌Rt△OCB(HL),由全等三角形的性质得出BC=BD.
(2)①证出∠OBD=∠OBC=∠A=30°,由直角三角形的性质得出答案;
②由勾股定理求出AD=2,∠AOD=60°,由三角形面积公式和扇形的面积公式可得出答案.
【解答】(1)证明:如图,连结OD.
∵BD是圆O的切线,D为切点,
∴∠ODB=90°,
∵∠ACB=90°,OC=OD,OB=OB,
∴Rt△ODB≌Rt△OCB(HL),
∴BC=BD.
(2)解:①∵OB=OA,
∴∠OBD=∠A,
∵Rt△ODB≌Rt△OCB,
∴∠OBD=∠OBC,
∴∠OBD=∠OBC=∠A,
∵∠OBD+∠OBC+∠A=90°,
∴∠OBD=∠OBC=∠A=30°,
在Rt△ODA 中,sin∠A,
∴ODOA.
∵OD=OE,
∴OEOA,
∴OE=AE=2,
∴半圆O的半径为2.
②在Rt△ODA中,OD=2,OA=4,
∴AD2,
∴S△OAD2,
∵∠A=30°,
∴∠AOD=60°,
∴S阴影部分=S△ODA﹣S扇形ODE=22.
【点评】此题考查了切线的性质,扇形的面积,锐角三角函数定义,全等三角形的判定与性质,勾股定理,熟练掌握切线的性质是解本题的关键.
16.(2023 温州)计算:
(1)|﹣1|()﹣2﹣(﹣4);
(2).
【考点】分式的加减法;负整数指数幂;实数的运算.
【分析】(1)直接利用立方根的性质以及负整数指数幂的性质、绝对值的性质分别化简,进而得出答案;
(2)直接利用分式的加减运算法则计算,再利用分式的性质化简得出答案.
【解答】解:(1)原式=1﹣2+9+4
=12;
(2)原式
=a﹣1.
【点评】此题主要考查了实数的运算以及分式的加减运算,正确掌握相关运算法则是解题关键.
17.(2023 温州)如图,在2×4的方格纸ABCD中,每个小方格的边长为1.已知格点P,请按要求画格点三角形(顶点均在格点上).
(1)在图1中画一个等腰三角形PEF,使底边长为,点E在BC上,点F在AD上,再画出该三角形绕矩形ABCD的中心旋转180°后的图形;
(2)在图2中画一个Rt△PQR,使∠P=45°,点Q在BC上,点R在AD上,再画出该三角形向右平移1个单位后的图形.
【考点】作图﹣旋转变换;等腰三角形的判定与性质;直角三角形的性质;勾股定理;作图﹣平移变换.
【分析】(1)根据题意作出图形即可;
(2)作等腰直角三角形PQR,可得结论.
【解答】解:(1)图形如图1所示(答案不唯一);
(2)图形如图2所示(答案不唯一).
【点评】本题考查作图﹣旋转变换,平移变换等知识,解题的关键是掌握在旋转变换,平移变换的性质,属于中考常考题型.
18.(2023 温州)某公司有A,B,C三种型号电动汽车出租,每辆车每天费用分别为300元、380元、500元.阳阳打算从该公司租一辆汽车外出旅游一天,往返行程为210km,为了选择合适的型号,通过网络调查,获得三种型号汽车充满电后的里程数据如图所示.
型号 平均里程(km) 中位数(km) 众数(km)
B 216 215 220
C 227.5 227.5 225
(1)阳阳已经对B,C型号汽车数据统计如表,请继续求出A型号汽车的平均里程、中位数和众数;
(2)为了尽可能避免行程中充电耽误时间,又能经济实惠地用车,请你从相关统计量和符合行程要求的百分比等进行分析,给出合理的用车型号建议.
【考点】众数;算术平均数;中位数.
【分析】(1)根据平均数、中位数、众数的定义即可求解;
(2)根据平均数、中位数、众数的意义,结合往返行程为210km,三种型号电动汽车出租的每辆车每天的费用即可作出判断.
【解答】解:(1)A型号汽车的平均里程为:200(km),
20个数据按从小到大的顺序排列,第10,11个数据均为200km,所以中位数为200km;
205km出现了六次,次数最多,所以众数为205km;
(2)选择B型号汽车.理由如下:
A型号汽车的平均里程、中位数和众数均低于210km,且只有10%的车辆能达到行程要求,故不建议选择;B,C型号汽车的平均里程、中位数和众数都超过210km,其中B型号汽车有90%符合行程要求,很大程度上可以避免行程中充电耽误时间,且B型号汽车比C型号汽车更经济实惠,故建议选择B型号汽车.
【点评】本题考查的是折线统计图,平均数、众数和中位数的定义.平均数是指在一组数据中所有数据之和再除以数据的个数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;一组数据中出现次数最多的数据叫做众数.掌握定义是解题的关键.
19.(2023 温州)如图,在直角坐标系中,点A(2,m)在直线y=2x上,过点A的直线交y轴于点B(0,3).
(1)求m的值和直线AB的函数表达式;
(2)若点P(t,y1)在线段AB上,点Q(t﹣1,y2)在直线y=2x上,求y1﹣y2的最大值.
【考点】待定系数法求一次函数解析式;一次函数的性质;一次函数图象上点的坐标特征.
【分析】(1)将A点代入直线解析式,求出m.利用待定系数法解出AB直线函数解析式;
(2)分别用t表示出y1和y2,列出y1﹣y2,的函数解析式,找出y随t的变化,利用t的最值求出答案.
【解答】解:(1)把点A(2,m)代入y=2x中,得m;
设直线AB的函数表达式为:y=kx+b,把A(2,),B(0,3)代入得:
,解得,
∴直线AB的函数表达式为yx+3.
(2)∵点P(t,y1)在线段AB上,
∴y1t+3(0≤t≤2),
∵点Q(t﹣1,y2)在直线y=2x上,
∴y2=2(t﹣1)2t,
∴y1﹣y2t+3﹣(2t)t,
∵0,
∴y1﹣y2随t的增大而减小,
∴当t=0,y1﹣y2的最大值为.
【点评】本题以一次函数为背景考查了一次函数图象的性质,考查学生对待定系数法的运用能力,题目难度不大,解决问题的关键是求出y1﹣y2的表达式,利用t的最值求出答案.
20.(2023 温州)如图,已知矩形ABCD,点E在CB延长线上,点F在BC延长线上,过点F作FH⊥EF交ED的延长线于点H,连结AF交EH于点G,GE=GH.
(1)求证:BE=CF;
(2)当,AD=4时,求EF的长.
【考点】矩形的性质;全等三角形的判定与性质.
【分析】(1)根据直角三角形斜边上的中线等于斜边的一半得到GE=GF,再根据等边对等角得出∠E=∠GFE,根据矩形的性质得出AB=DC,∠ABC=∠DCB=90°,于是可证△ABF和△DCE全等,得到BF=CE,从而问题得证;
(2)先证△ECD∽△EFH,得出比例式,再结合已知即可求出EF的长.
【解答】(1)证明:∵FH⊥EF,
∴∠HFE=90°,
∵GE=GH,
∴,
∴∠E=∠GFE,
∵四边形ABCD是矩形,
∴AB=DC,∠ABC=∠DCB=90°,
∴△ABF≌△DCE(AAS),
∴BF=CE,
∴BF﹣BC=CE﹣BC,
即BE=CF;
(2)解:∵四边形ABCD是矩形,
∴DC⊥BC,即DC⊥EF,AB=CD,BC=AD=4,
∵FH⊥EF,
∴CD∥FH,
∴△ECD∽△EFH,
∴,
∴,
∵,
∴,
设BE=CF=x,
∴EC=x+4,EF=2x+4,
∴,
解得x=1,
∴EF=6.
【点评】本题考查了矩形的性质,三角形全等的判定与性质,相似三角形的判定与性质,熟练掌握这些图形的性质是解题的关键.
21.(2023 绍兴)(1)计算:;
(2)解不等式:3x﹣2>x+4.
【考点】解一元一次不等式;实数的运算;零指数幂.
【分析】(1)先算零指数幂,二次根式的化简,绝对值,再算加减即可;
(2)利用解一元一次不等式的方法进行求解即可.
【解答】解:(1)
=1;
(2)3x﹣2>x+4,
移项得:3x﹣x>4+2,
即:2x>6,
系数化为1,得:x>3,
∴原不等式的解集是:x>3.
【点评】本题主要考查解一元一次不等式,实数的运算,解答的关键是对相应的知识的掌握.
22.(2023 绍兴)某校兴趣小组通过调查,形成了如表调查报告(不完整).
调查目的 1.了解本校初中生最喜爱的球类运动项目2.给学校提出更合理地配置体育运动器材和场地的建议
调查方式 随机抽样调查 调查对象 部分初中生
调查内容 调查你最喜爱的一个球类运动项目(必选)A.篮球 B.乒乓球 C.足球 D.排球 E.羽毛球
调查结果
建议 …
结合调查信息,回答下列问题:
(1)本次调查共抽查了多少名学生?
(2)估计该校900名初中生中最喜爱篮球项目的人数.
(3)假如你是小组成员,请向该校提一条合理建议.
【考点】用样本估计总体;全面调查与抽样调查.
【分析】(1)根据乒乓球的人数和所占的百分比即可得出答案;
(2)用900乘样本中最喜爱篮球项目的人数所占比例即可;
(3)根据最喜爱的球类运动项目所占百分比解答即可(答案不唯一).
【解答】解:(1)30÷30%=100(名),
答:本次调查共抽查了100名学生.
(2)被抽查的100人中最喜爱羽毛球的人数为:100×5%=5(名),
∴被抽查的100人中最喜爱篮球的人数为:100﹣30﹣10﹣15﹣5=40(名),
360(名),
答:估计该校900名初中生中最喜爱篮球项目的人数为360名.
(3)答案不唯一,如:因为喜欢篮球的学生较多,建议学校多配置篮球器材、增加篮球场地等.
【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.
23.(2023 绍兴)图1是某款篮球架,图2是其示意图,立柱OA垂直地面OB,支架CD与OA交于点A,支架CG⊥CD交OA于点G,支架DE平行地面OB,篮筐EF与支架DE在同一直线上,OA=2.5米,AD=0.8米.∠AGC=32°.
(1)求∠GAC的度数;
(2)某运动员准备给篮筐挂上篮网,如果他站在凳子上,最高可以把篮网挂到离地面3米处,那么他能挂上篮网吗?请通过计算说明理由.(参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62)
【考点】解直角三角形的应用.
【分析】(1)根据垂直定义可得∠ACG=90°,然后利用直角三角形的两个锐角互余进行计算,即可解答;
(2)延长OA,ED交于点M,根据垂直定义可得∠AOB=90°,从而利用平行线的性质可得∠DMA=∠AOB=90°,再根据对顶角相等可得∠DAM=∠GAC=58°,从而利用直角三角形的两个锐角互余可得∠ADM=32°,然后在Rt△ADM中,利用锐角三角函数的定义求出AM的长,从而利用线段的和差关系求出MO的长,比较即可解答.
【解答】解:(1)∵CG⊥CD,
∴∠ACG=90°,
∵∠AGC=32°,
∴∠GAC=90°﹣∠AGC=90°﹣32°=58°,
∴∠GAC的度数为58°;
(2)该运动员能挂上篮网,
理由如下:延长OA,ED交于点M,
∵OA⊥OB,
∴∠AOB=90°,
∵DE∥OB,
∴∠DMA=∠AOB=90°,
∵∠GAC=58°,
∴∠DAM=∠GAC=58°,
∴∠ADM=90°﹣∠DAM=32°,
在Rt△ADM中,AD=0.8米,
∴AM=AD sin32°≈0.8×0.53=0.42(米),
∴OM=OA+AM=2.5+0.424=2.924(米),
∵2.924米<3米,
∴该运动员能挂上篮网.
【点评】本题考查了解直角三角形的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.
24.(2023 绍兴)一条笔直的路上依次有M,P,N三地,其中M,N两地相距1000米.甲、乙两机器人分别从M,N两地同时出发,去目的地N,M,匀速而行.图中OA,BC分别表示甲、乙机器人离M地的距离y(米)与行走时间x(分钟)的函数关系图象.
(1)求OA所在直线的表达式;
(2)出发后甲机器人行走多少时间,与乙机器人相遇?
(3)甲机器人到P地后,再经过1分钟乙机器人也到P地,求P,M两地间的距离.
【考点】待定系数法求一次函数解析式.
【分析】(1)利用待定系数法,将(5,1000)代入解析式中,求出答案;
(2)俩机器人相向而行,同时出发,相遇时两人路程应为MN的长度,列出方程即可;
(3)设甲到P地时间为t分钟,乙到P地时间为(t+1)分钟,分别求出两人到P地时,与M的距离,列出方程,解出答案.
【解答】解:(1)由图象可知,OA所在直线为正比例函数,
∴设y=kx,
∵A(5,1000),
1000=5k,k=200,
∴OA所在直线的表达式为y=200x.
(2)由图可知甲机器人速度为:1000÷5=200(米/分钟),
乙机器人速度为:1000÷10=100(米/分钟),
两人相遇时:(分钟),
答:出发后甲机器人行走分钟,与乙机器人相遇.
(3)设甲机器人行走t分钟时到P地,P地与M地距离为200t,
则乙机器人(t+1)分钟后到P地,P地与M地距离1000﹣100(t+1),
由200t=1000﹣100(t+1),解得t=3,
∴200t=600,
答:P,M两地间的距离为600米.
【点评】本题以一次函数综合运用为背景,考查了学生在函数中数形结合的能力,此类题目的关键是弄懂题意,求出每个人的速度,明确相向而行时相遇时两人的路程和等于总路程,进而求解.
25.(2023 绍兴)如图,AB是⊙O的直径,C是⊙O上一点,过点C作⊙O的切线CD,交AB的延长线于点D,过点A作AE⊥CD于点E.
(1)若∠EAC=25°,求∠ACD的度数;
(2)若OB=2,BD=1,求CE的长.
【考点】切线的性质;圆周角定理.
【分析】(1)由垂直的定义得到∠AEC=90°,由三角形外角的性质即可求出∠ACD的度数;
(2)由勾股定理求出CD的长,由平行线分线段成比例定理得到,代入有关数据,即可求出CE的长.
【解答】解:(1)∵AE⊥CD于点E,
∴∠AEC=90°
∴∠ACD=∠AEC+∠EAC=90°+25°=115°;
(2)∵CD是⊙O的切线,
∴半径OC⊥DE,
∴∠OCD=90°,
∵OC=OB=2,BD=1,
∴OD=OB+BD=3,
∴CD.
∵∠OCD=∠AEC=90°,
∴OC∥AE,
∴,
∴,
∴CE.
【点评】本题考查切线的性质,垂线,平行线分线段成比例,勾股定理,三角形外角的性质,关键是由三角形外角的性质求出∠ACD的度数,由勾股定理求出CD的长,由平行线分线段成比例定理即可求出CE的长.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
中考数学基础解答题整理
一.解答题(共25小题)
1.(2024 浙江)计算:.
2.(2024 浙江)解方程组:.
3.(2024 浙江)如图,在△ABC中,AD⊥BC,AE是BC边上的中线,AB=10,AD=6,tan∠ACB=1.
(1)求BC的长;
(2)求sin∠DAE的值.
4.(2024 浙江)某校开展科学活动.为了解学生对活动项目的喜爱情况,随机抽取部分学生进行问卷调查.调查问卷和统计结果描述如下:
科学活动喜爱项目调查问卷以下问题均为单选题,请根据实际情况填写.问题1:在以下四类科学“嘉年华”项目中,你最喜爱的是    (A)科普讲座(B)科幻电影(C)AI应用(D)科学魔术如果问题1选择C.请继续回答问题2.问题2:你更关注的AI应用是    (E)辅助学习(F)虚拟体验(G)智能生活(H)其他
根据以上信息.解答下列问题:
(1)本次调查中最喜爱“AI应用”的学生中更关注“辅助学习”有多少人?
(2)若该学校共有1200名学生,根据统计信息,估计该校最喜爱“科普讲座”的学生人数.
5.(2024 浙江)尺规作图问题:
如图1,点E是 ABCD边AD上一点(不包含A,D),连接CE.用尺规作AF∥CE,F是边BC上一点.
小明:如图2.以C为圆心,AE长为半径作弧,交BC于点F,连接AF,则AF∥CE.
小丽:以点A为圆心,CE长为半径作弧,交BC于点F,连接AF,则AF∥CE.
小明:小丽,你的作法有问题.
小丽:哦…我明白了!
(1)证明AF∥CE;
(2)指出小丽作法中存在的问题.
6.(2023 湖州)计算:.
7.(2023 湖州)解一元一次不等式组.
8.(2023 湖州)如图,在△ABC中,AB=AC,AD⊥BC于点D,点E为AB的中点,连结DE.已知BC=10,AD=12,求BD,DE的长.
9.(2023 湖州)4月23日是世界读书日.为了解学生的阅读喜好,丰富学校图书资源,某校将课外书籍设置了四类:文学类、科技类、艺术类、其他类,随机抽查了部分学生,要求每名学生从中选择自己最喜欢的一类,将抽查结果绘制成如图统计图(不完整).
请根据图中信息解答下列问题:
(1)求被抽查的学生人数,并求出扇形统计图中m的值.
(2)请将条形统计图补充完整.(温馨提示:请画在答题卷相对应的图上)
(3)若该校共有1200名学生,根据抽查结果,试估计全校最喜欢“文学类”书籍的学生人数.
10.(2023 湖州)如图,在Rt△ABC中,∠ACB=90°,点O在边AC上,以点O为圆心,OC为半径的半圆与斜边AB相切于点D,交OA于点E,连结OB.
(1)求证:BD=BC.
(2)已知OC=1,∠A=30°,求AB的长.
11.(2023 衢州)(1)计算:(a+2)(a﹣2).
(2)化简:2.
12.(2023 衢州)小红在解方程时,第一步出现了错误:
解:2×7x=(4x﹣1)+1,…
(1)请在相应的方框内用横线划出小红的错误处.
(2)写出你的解答过程.
13.(2023 衢州)已知:如图,在△ABC和△DEF中,B,E,C,F在同一条直线上.下面四个条件:
①AB=DE;②AC=DF;③BE=CF;④∠ABC=∠DEF.
(1)请选择其中的三个条件,使得△ABC≌△DEF(写出一种情况即可).
(2)在(1)的条件下,求证:△ABC≌△DEF.
14.(2023 衢州)【数据的收集与整理】
根据国家统计局统一部署,衢州市统计局对2022年我市人口变动情况进行了抽样调查,抽样比例为5‰.根据抽样结果推算,我市2022年的出生率为5.5‰,死亡率为8‰,人口自然增长率为﹣2.5‰,常住人口数为a人(‰表示千分号).
(数据来源:衢州市统计局)
【数据分析】
(1)请根据信息推测人口自然增长率与出生率、死亡率的关系.
(2)已知本次调查的样本容量为11450,请推算a的值.
(3)将我市及全国近五年的人口自然增长率情况绘制成如图统计图.根据统计图分析:
①对图中信息作出评判(写出两条).
②为扭转目前人口自然增长率的趋势,请给出一条合理化建议.
15.(2023 衢州)如图,在Rt△ABC中,∠ACB=90°,O为AC边上一点,连结OB.以OC为半径的半圆与AB边相切于点D,交AC边于点E.
(1)求证:BC=BD.
(2)若OB=OA,AE=2.
①求半圆O的半径.
②求图中阴影部分的面积.
16.(2023 温州)计算:
(1)|﹣1|()﹣2﹣(﹣4);
(2).
17.(2023 温州)如图,在2×4的方格纸ABCD中,每个小方格的边长为1.已知格点P,请按要求画格点三角形(顶点均在格点上).
(1)在图1中画一个等腰三角形PEF,使底边长为,点E在BC上,点F在AD上,再画出该三角形绕矩形ABCD的中心旋转180°后的图形;
(2)在图2中画一个Rt△PQR,使∠P=45°,点Q在BC上,点R在AD上,再画出该三角形向右平移1个单位后的图形.
18.(2023 温州)某公司有A,B,C三种型号电动汽车出租,每辆车每天费用分别为300元、380元、500元.阳阳打算从该公司租一辆汽车外出旅游一天,往返行程为210km,为了选择合适的型号,通过网络调查,获得三种型号汽车充满电后的里程数据如图所示.
型号 平均里程(km) 中位数(km) 众数(km)
B 216 215 220
C 227.5 227.5 225
(1)阳阳已经对B,C型号汽车数据统计如表,请继续求出A型号汽车的平均里程、中位数和众数;
(2)为了尽可能避免行程中充电耽误时间,又能经济实惠地用车,请你从相关统计量和符合行程要求的百分比等进行分析,给出合理的用车型号建议.
19.(2023 温州)如图,在直角坐标系中,点A(2,m)在直线y=2x上,过点A的直线交y轴于点B(0,3).
(1)求m的值和直线AB的函数表达式;
(2)若点P(t,y1)在线段AB上,点Q(t﹣1,y2)在直线y=2x上,求y1﹣y2的最大值.
20.(2023 温州)如图,已知矩形ABCD,点E在CB延长线上,点F在BC延长线上,过点F作FH⊥EF交ED的延长线于点H,连结AF交EH于点G,GE=GH.
(1)求证:BE=CF;
(2)当,AD=4时,求EF的长.
21.(2023 绍兴)(1)计算:;
(2)解不等式:3x﹣2>x+4.
22.(2023 绍兴)某校兴趣小组通过调查,形成了如表调查报告(不完整).
调查目的 1.了解本校初中生最喜爱的球类运动项目2.给学校提出更合理地配置体育运动器材和场地的建议
调查方式 随机抽样调查 调查对象 部分初中生
调查内容 调查你最喜爱的一个球类运动项目(必选)A.篮球 B.乒乓球 C.足球 D.排球 E.羽毛球
调查结果
建议 …
结合调查信息,回答下列问题:
(1)本次调查共抽查了多少名学生?
(2)估计该校900名初中生中最喜爱篮球项目的人数.
(3)假如你是小组成员,请向该校提一条合理建议.
23.(2023 绍兴)图1是某款篮球架,图2是其示意图,立柱OA垂直地面OB,支架CD与OA交于点A,支架CG⊥CD交OA于点G,支架DE平行地面OB,篮筐EF与支架DE在同一直线上,OA=2.5米,AD=0.8米.∠AGC=32°.
(1)求∠GAC的度数;
(2)某运动员准备给篮筐挂上篮网,如果他站在凳子上,最高可以把篮网挂到离地面3米处,那么他能挂上篮网吗?请通过计算说明理由.(参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62)
24.(2023 绍兴)一条笔直的路上依次有M,P,N三地,其中M,N两地相距1000米.甲、乙两机器人分别从M,N两地同时出发,去目的地N,M,匀速而行.图中OA,BC分别表示甲、乙机器人离M地的距离y(米)与行走时间x(分钟)的函数关系图象.
(1)求OA所在直线的表达式;
(2)出发后甲机器人行走多少时间,与乙机器人相遇?
(3)甲机器人到P地后,再经过1分钟乙机器人也到P地,求P,M两地间的距离.
25.(2023 绍兴)如图,AB是⊙O的直径,C是⊙O上一点,过点C作⊙O的切线CD,交AB的延长线于点D,过点A作AE⊥CD于点E.
(1)若∠EAC=25°,求∠ACD的度数;
(2)若OB=2,BD=1,求CE的长.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)

展开更多......

收起↑

资源列表