资源简介 中小学教育资源及组卷应用平台中考数学基础解答题整理参考答案与试题解析一.解答题(共25小题)1.(2024 浙江)计算:.【考点】实数的运算;负整数指数幂;绝对值;立方根.【分析】利用负整数指数幂,立方根的定义,绝对值的性质计算即可.【解答】解:原式=4﹣2+5=7.【点评】本题考查实数的运算,负整数指数幂,立方根,绝对值,熟练掌握相关运算法则是解题的关键.2.(2024 浙江)解方程组:.【考点】解二元一次方程组.【分析】先有①×3+②得出10x=5,求出x,再把x代入①求出y即可.【解答】解:,①×3+②得:10x=5,解得:x,把x代入①得:2y=5,解得:y=﹣4,所以方程组的解是.【点评】本题考查了二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.3.(2024 浙江)如图,在△ABC中,AD⊥BC,AE是BC边上的中线,AB=10,AD=6,tan∠ACB=1.(1)求BC的长;(2)求sin∠DAE的值.【考点】解直角三角形;勾股定理.【分析】(1)由tan∠ACB=1可得CD=AD=6,根据勾股定理可得BD的长,进而求得BC的长;(2)根据AE是BC边上的中线可得CE的长,由DE=CE﹣CD可得DE的长,根据勾股定理可得AE的长,再根据三角函数的定义解答即可.【解答】解:(1)∵AD⊥BC,AB=10,AD=6,∴BD8;∵tan∠ACB=1,∴CD=AD=6,∴BC=BD+CD=8+6=14;(2)∵AE是BC边上的中线,∴CE7,∴DE=CE﹣CD=7﹣6=1,∵AD⊥BC,∴,∴sin∠DAE.【点评】本题考查了解直角三角形以及勾股定理,在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.4.(2024 浙江)某校开展科学活动.为了解学生对活动项目的喜爱情况,随机抽取部分学生进行问卷调查.调查问卷和统计结果描述如下:科学活动喜爱项目调查问卷以下问题均为单选题,请根据实际情况填写.问题1:在以下四类科学“嘉年华”项目中,你最喜爱的是 A (A)科普讲座(B)科幻电影(C)AI应用(D)科学魔术如果问题1选择C.请继续回答问题2.问题2:你更关注的AI应用是 E (E)辅助学习(F)虚拟体验(G)智能生活(H)其他根据以上信息.解答下列问题:(1)本次调查中最喜爱“AI应用”的学生中更关注“辅助学习”有多少人?(2)若该学校共有1200名学生,根据统计信息,估计该校最喜爱“科普讲座”的学生人数.【考点】用样本估计总体;统计表.【分析】(1)用本次调查中最喜爱“AI应用”的学生人数乘E所占百分比即可;(2)用1200乘该校最喜爱“科普讲座”项目的百分比即可.【解答】解:(1)80×40%=32(人),答:本次调查中最喜爱“AI应用”的学生中更关注“辅助学习”有32人;(2)1200324(人),答:估计该校最喜爱“科普讲座”的学生人数大约有324人.【点评】本题考查扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.5.(2024 浙江)尺规作图问题:如图1,点E是 ABCD边AD上一点(不包含A,D),连接CE.用尺规作AF∥CE,F是边BC上一点.小明:如图2.以C为圆心,AE长为半径作弧,交BC于点F,连接AF,则AF∥CE.小丽:以点A为圆心,CE长为半径作弧,交BC于点F,连接AF,则AF∥CE.小明:小丽,你的作法有问题.小丽:哦…我明白了!(1)证明AF∥CE;(2)指出小丽作法中存在的问题.【考点】平行四边形的判定与性质.【分析】(1)根据小明的作法知,CF=AE,根据平行四边形的性质求出AD∥BC,根据“一组对边平行且相等的四边形是平行四边形”求出四边形AFCE是平行四边形,根据“平行四边形的对边互相平行”即可得证;(2)以A为圆心,EC为半径画弧,交BC于点F,此时可能会有两个交点,只有其中之一符合题意.【解答】(1)证明:根据小明的作法知,CF=AE,∵四边形ABCD是平行四边形,∴AD∥BC,又∵CF=AE,∴四边形AFCE是平行四边形,∴AF∥CE;(2)解:以A为圆心,EC为半径画弧,交BC于点F,此时可能会有两个交点,只有其中之一符合题意.故小丽的作法有问题.【点评】此题考查了平行四边形的判定与性质,熟记平行四边形的判定定理与性质定理是解题的关键.6.(2023 湖州)计算:.【考点】实数的运算.【分析】根据实数的运算顺序进行计算即可.【解答】解:原式=4﹣2×3=4﹣6=﹣2.【点评】本题考查实数的运算,掌握二次根式的性质是解题的关键.7.(2023 湖州)解一元一次不等式组.【考点】解一元一次不等式组.【分析】先解每一个不等式,再求它们的公共部分.【解答】解:解不等式①,得x>﹣1,解不等式②,得x<2,所以原不等式组的解集是﹣1<x<2.【点评】本题考查了解一元一次不等式组,掌握解一元一次不等式是解题的关键,8.(2023 湖州)如图,在△ABC中,AB=AC,AD⊥BC于点D,点E为AB的中点,连结DE.已知BC=10,AD=12,求BD,DE的长.【考点】三角形中位线定理;等腰三角形的性质;直角三角形斜边上的中线;勾股定理.【分析】根据等腰三角形的性质求出,根据勾股定理求出AB=13,【解答】解∵AB=AC,AD⊥BC于点D,∴,∵BC=10,∴BD=5,∵AD⊥BC于点D,∴∠ADB=90°,在Rt△ABD中,AB2=AD2+BD2,∵AD=12,∴,∵E为AB的中点,D点为BC的中点,∴.【点评】此题考查了三角形中位线的判定与性质、等腰三角形的性质,熟记三角形中位线的判定与性质、等腰三角形的性质是解题的关键.9.(2023 湖州)4月23日是世界读书日.为了解学生的阅读喜好,丰富学校图书资源,某校将课外书籍设置了四类:文学类、科技类、艺术类、其他类,随机抽查了部分学生,要求每名学生从中选择自己最喜欢的一类,将抽查结果绘制成如图统计图(不完整).请根据图中信息解答下列问题:(1)求被抽查的学生人数,并求出扇形统计图中m的值.(2)请将条形统计图补充完整.(温馨提示:请画在答题卷相对应的图上)(3)若该校共有1200名学生,根据抽查结果,试估计全校最喜欢“文学类”书籍的学生人数.【考点】条形统计图;全面调查与抽样调查;用样本估计总体;扇形统计图.【分析】(1)将其他类人数除以其所占的比即可求出被抽查的人数;将科技类人数除以被抽查的人数化成百分数,即可求出m的值;(2)先求出艺术类人数,再补全条形统计图即可;(3)将1200乘以样本中最喜欢“文学类”书籍所占的比例即可估计全校最喜欢“文学类”书籍的学生人数.【解答】解:(1)被抽查的学生人数是 40÷20%=200(人),∵,∴扇形统计图中m的值是40,答:被抽查的学生人数为200人,扇形统计图中m的值为40;(2)200﹣60﹣80﹣40=20(人),补全的条形统计图如图所示.(3)∵(人),∴估计全校最喜欢“文学类”书籍的学生人数共有360人.【点评】本题考查条形统计图,扇形统计图,用样本估计总体,能从统计图中获取有用信息是解题的关键.10.(2023 湖州)如图,在Rt△ABC中,∠ACB=90°,点O在边AC上,以点O为圆心,OC为半径的半圆与斜边AB相切于点D,交OA于点E,连结OB.(1)求证:BD=BC.(2)已知OC=1,∠A=30°,求AB的长.【考点】切线的性质;含30度角的直角三角形.【分析】(1)根据切线性质得到∠ODB=∠OCB=90°,再根据HL证明Rt△ODB≌Rt△OCB,从而得到结论;(2)分别在Rt△OBC中,利用三角函数求出BC的长,和在Rt△ABC中,利用三角函数求出即可求出AB的长.【解答】(1)证明 如图,连结OD,∵半圆O与AB相切于点D,∴OD⊥AB,∵∠ACB=90°,∴∠ODB=∠OCB=90°,在Rt△ODB和Rt△OCB中,∴Rt△ODB≌Rt△OCB(HL),∴BD=BC;(2)解 如图,∵∠A=30°,∠ACB=90°,∴∠ABC=60°,∵Rt△ODB≌Rt△OCB,∴,在Rt△OBC中,∵OC=1,∴,在Rt△ABC中,.【点评】本题考查圆的切线性质,全等三角形判定和性质,解直角三角形,熟悉相关图形的性质是解题的关键.11.(2023 衢州)(1)计算:(a+2)(a﹣2).(2)化简:2.【考点】分式的加减法;平方差公式.【分析】(1)根据平方差公式进行计算即可;(2)根据分式的加法法则进行计算即可.【解答】解:(1)(a+2)(a﹣2)=a2﹣22=a2﹣4;(2)2=a.【点评】本题考查了分式的加法和平方差公式,能正确根据平方差公式进行计算是解(1)的关键,能正确根据分式的加法法则进行计算是解(2)的关键.12.(2023 衢州)小红在解方程时,第一步出现了错误:解:2×7x=(4x﹣1)+1,…(1)请在相应的方框内用横线划出小红的错误处.(2)写出你的解答过程.【考点】解一元一次方程.【分析】(1)根据等式的性质,解一元一次方程的步骤即可判断;(2)首先去分母、然后去括号、移项、合并同类项、系数化为1即可求解.【解答】解:(1)如图:(2)去分母:2×7x=(4x﹣1)+6,去括号:14x=4x﹣1+6,移项:14x﹣4x=﹣1+6,合并同类项:10x=5,系数化1:x.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.13.(2023 衢州)已知:如图,在△ABC和△DEF中,B,E,C,F在同一条直线上.下面四个条件:①AB=DE;②AC=DF;③BE=CF;④∠ABC=∠DEF.(1)请选择其中的三个条件,使得△ABC≌△DEF(写出一种情况即可).(2)在(1)的条件下,求证:△ABC≌△DEF.【考点】全等三角形的判定.【分析】(1)根据两三角形全等的判定定理,选择合适的条件即可.(2)根据(1)中所选条件,进行证明即可.【解答】解:(1)由题知,选择的三个条件是:①②③;或者选择的三个条件是:①③④.证明:(2)当选择①②③时,∵BE=CF,∴BE+EC=CF+EC,即BC=EF.在△ABC和△DEF中,,∴△ABC≌△DEF(SSS).当选择①③④时,∵BE=CF,∴BE+EC=CF+EC,即BC=EF.在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).【点评】本题考查全等三角形的证明,熟知全等三角形的判定定理是解题的关键.14.(2023 衢州)【数据的收集与整理】根据国家统计局统一部署,衢州市统计局对2022年我市人口变动情况进行了抽样调查,抽样比例为5‰.根据抽样结果推算,我市2022年的出生率为5.5‰,死亡率为8‰,人口自然增长率为﹣2.5‰,常住人口数为a人(‰表示千分号).(数据来源:衢州市统计局)【数据分析】(1)请根据信息推测人口自然增长率与出生率、死亡率的关系.(2)已知本次调查的样本容量为11450,请推算a的值.(3)将我市及全国近五年的人口自然增长率情况绘制成如图统计图.根据统计图分析:①对图中信息作出评判(写出两条).②为扭转目前人口自然增长率的趋势,请给出一条合理化建议.【考点】扇形统计图;总体、个体、样本、样本容量.【分析】(1)根据自然增长率与出生率、死亡率的数值即可推测它们之间的关系;(2)根据样本容量=总体×抽样比例求出a的值即可;(3)①根据统计图进行解答,合理即可;②根据目前人口自然增长率的趋势,提出建议改善现状,合理即可.【解答】解:(1)根据题意可知,人口自然增长率=出生率﹣死亡率.(2)5‰a=11450,解得a=2290000.(3)①近5年来,我市及全国人口自然增长率逐年下降;自2021年起,我市人口呈现负增长(答案不唯一,合理即可);②建议国家加大政策优惠力度和补贴力度,降低生育成本,鼓励人们多生育(答案不唯一,合理即可).【点评】本题考查总体、个体、样本、样本容量,理解并掌握它们的概念是本题的关键.15.(2023 衢州)如图,在Rt△ABC中,∠ACB=90°,O为AC边上一点,连结OB.以OC为半径的半圆与AB边相切于点D,交AC边于点E.(1)求证:BC=BD.(2)若OB=OA,AE=2.①求半圆O的半径.②求图中阴影部分的面积.【考点】圆的综合题.【分析】(1)连结OD.由切线的性质得出∠ODB=90°,证明Rt△ODB≌Rt△OCB(HL),由全等三角形的性质得出BC=BD.(2)①证出∠OBD=∠OBC=∠A=30°,由直角三角形的性质得出答案;②由勾股定理求出AD=2,∠AOD=60°,由三角形面积公式和扇形的面积公式可得出答案.【解答】(1)证明:如图,连结OD.∵BD是圆O的切线,D为切点,∴∠ODB=90°,∵∠ACB=90°,OC=OD,OB=OB,∴Rt△ODB≌Rt△OCB(HL),∴BC=BD.(2)解:①∵OB=OA,∴∠OBD=∠A,∵Rt△ODB≌Rt△OCB,∴∠OBD=∠OBC,∴∠OBD=∠OBC=∠A,∵∠OBD+∠OBC+∠A=90°,∴∠OBD=∠OBC=∠A=30°,在Rt△ODA 中,sin∠A,∴ODOA.∵OD=OE,∴OEOA,∴OE=AE=2,∴半圆O的半径为2.②在Rt△ODA中,OD=2,OA=4,∴AD2,∴S△OAD2,∵∠A=30°,∴∠AOD=60°,∴S阴影部分=S△ODA﹣S扇形ODE=22.【点评】此题考查了切线的性质,扇形的面积,锐角三角函数定义,全等三角形的判定与性质,勾股定理,熟练掌握切线的性质是解本题的关键.16.(2023 温州)计算:(1)|﹣1|()﹣2﹣(﹣4);(2).【考点】分式的加减法;负整数指数幂;实数的运算.【分析】(1)直接利用立方根的性质以及负整数指数幂的性质、绝对值的性质分别化简,进而得出答案;(2)直接利用分式的加减运算法则计算,再利用分式的性质化简得出答案.【解答】解:(1)原式=1﹣2+9+4=12;(2)原式=a﹣1.【点评】此题主要考查了实数的运算以及分式的加减运算,正确掌握相关运算法则是解题关键.17.(2023 温州)如图,在2×4的方格纸ABCD中,每个小方格的边长为1.已知格点P,请按要求画格点三角形(顶点均在格点上).(1)在图1中画一个等腰三角形PEF,使底边长为,点E在BC上,点F在AD上,再画出该三角形绕矩形ABCD的中心旋转180°后的图形;(2)在图2中画一个Rt△PQR,使∠P=45°,点Q在BC上,点R在AD上,再画出该三角形向右平移1个单位后的图形.【考点】作图﹣旋转变换;等腰三角形的判定与性质;直角三角形的性质;勾股定理;作图﹣平移变换.【分析】(1)根据题意作出图形即可;(2)作等腰直角三角形PQR,可得结论.【解答】解:(1)图形如图1所示(答案不唯一);(2)图形如图2所示(答案不唯一).【点评】本题考查作图﹣旋转变换,平移变换等知识,解题的关键是掌握在旋转变换,平移变换的性质,属于中考常考题型.18.(2023 温州)某公司有A,B,C三种型号电动汽车出租,每辆车每天费用分别为300元、380元、500元.阳阳打算从该公司租一辆汽车外出旅游一天,往返行程为210km,为了选择合适的型号,通过网络调查,获得三种型号汽车充满电后的里程数据如图所示.型号 平均里程(km) 中位数(km) 众数(km)B 216 215 220C 227.5 227.5 225(1)阳阳已经对B,C型号汽车数据统计如表,请继续求出A型号汽车的平均里程、中位数和众数;(2)为了尽可能避免行程中充电耽误时间,又能经济实惠地用车,请你从相关统计量和符合行程要求的百分比等进行分析,给出合理的用车型号建议.【考点】众数;算术平均数;中位数.【分析】(1)根据平均数、中位数、众数的定义即可求解;(2)根据平均数、中位数、众数的意义,结合往返行程为210km,三种型号电动汽车出租的每辆车每天的费用即可作出判断.【解答】解:(1)A型号汽车的平均里程为:200(km),20个数据按从小到大的顺序排列,第10,11个数据均为200km,所以中位数为200km;205km出现了六次,次数最多,所以众数为205km;(2)选择B型号汽车.理由如下:A型号汽车的平均里程、中位数和众数均低于210km,且只有10%的车辆能达到行程要求,故不建议选择;B,C型号汽车的平均里程、中位数和众数都超过210km,其中B型号汽车有90%符合行程要求,很大程度上可以避免行程中充电耽误时间,且B型号汽车比C型号汽车更经济实惠,故建议选择B型号汽车.【点评】本题考查的是折线统计图,平均数、众数和中位数的定义.平均数是指在一组数据中所有数据之和再除以数据的个数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;一组数据中出现次数最多的数据叫做众数.掌握定义是解题的关键.19.(2023 温州)如图,在直角坐标系中,点A(2,m)在直线y=2x上,过点A的直线交y轴于点B(0,3).(1)求m的值和直线AB的函数表达式;(2)若点P(t,y1)在线段AB上,点Q(t﹣1,y2)在直线y=2x上,求y1﹣y2的最大值.【考点】待定系数法求一次函数解析式;一次函数的性质;一次函数图象上点的坐标特征.【分析】(1)将A点代入直线解析式,求出m.利用待定系数法解出AB直线函数解析式;(2)分别用t表示出y1和y2,列出y1﹣y2,的函数解析式,找出y随t的变化,利用t的最值求出答案.【解答】解:(1)把点A(2,m)代入y=2x中,得m;设直线AB的函数表达式为:y=kx+b,把A(2,),B(0,3)代入得:,解得,∴直线AB的函数表达式为yx+3.(2)∵点P(t,y1)在线段AB上,∴y1t+3(0≤t≤2),∵点Q(t﹣1,y2)在直线y=2x上,∴y2=2(t﹣1)2t,∴y1﹣y2t+3﹣(2t)t,∵0,∴y1﹣y2随t的增大而减小,∴当t=0,y1﹣y2的最大值为.【点评】本题以一次函数为背景考查了一次函数图象的性质,考查学生对待定系数法的运用能力,题目难度不大,解决问题的关键是求出y1﹣y2的表达式,利用t的最值求出答案.20.(2023 温州)如图,已知矩形ABCD,点E在CB延长线上,点F在BC延长线上,过点F作FH⊥EF交ED的延长线于点H,连结AF交EH于点G,GE=GH.(1)求证:BE=CF;(2)当,AD=4时,求EF的长.【考点】矩形的性质;全等三角形的判定与性质.【分析】(1)根据直角三角形斜边上的中线等于斜边的一半得到GE=GF,再根据等边对等角得出∠E=∠GFE,根据矩形的性质得出AB=DC,∠ABC=∠DCB=90°,于是可证△ABF和△DCE全等,得到BF=CE,从而问题得证;(2)先证△ECD∽△EFH,得出比例式,再结合已知即可求出EF的长.【解答】(1)证明:∵FH⊥EF,∴∠HFE=90°,∵GE=GH,∴,∴∠E=∠GFE,∵四边形ABCD是矩形,∴AB=DC,∠ABC=∠DCB=90°,∴△ABF≌△DCE(AAS),∴BF=CE,∴BF﹣BC=CE﹣BC,即BE=CF;(2)解:∵四边形ABCD是矩形,∴DC⊥BC,即DC⊥EF,AB=CD,BC=AD=4,∵FH⊥EF,∴CD∥FH,∴△ECD∽△EFH,∴,∴,∵,∴,设BE=CF=x,∴EC=x+4,EF=2x+4,∴,解得x=1,∴EF=6.【点评】本题考查了矩形的性质,三角形全等的判定与性质,相似三角形的判定与性质,熟练掌握这些图形的性质是解题的关键.21.(2023 绍兴)(1)计算:;(2)解不等式:3x﹣2>x+4.【考点】解一元一次不等式;实数的运算;零指数幂.【分析】(1)先算零指数幂,二次根式的化简,绝对值,再算加减即可;(2)利用解一元一次不等式的方法进行求解即可.【解答】解:(1)=1;(2)3x﹣2>x+4,移项得:3x﹣x>4+2,即:2x>6,系数化为1,得:x>3,∴原不等式的解集是:x>3.【点评】本题主要考查解一元一次不等式,实数的运算,解答的关键是对相应的知识的掌握.22.(2023 绍兴)某校兴趣小组通过调查,形成了如表调查报告(不完整).调查目的 1.了解本校初中生最喜爱的球类运动项目2.给学校提出更合理地配置体育运动器材和场地的建议调查方式 随机抽样调查 调查对象 部分初中生调查内容 调查你最喜爱的一个球类运动项目(必选)A.篮球 B.乒乓球 C.足球 D.排球 E.羽毛球调查结果建议 …结合调查信息,回答下列问题:(1)本次调查共抽查了多少名学生?(2)估计该校900名初中生中最喜爱篮球项目的人数.(3)假如你是小组成员,请向该校提一条合理建议.【考点】用样本估计总体;全面调查与抽样调查.【分析】(1)根据乒乓球的人数和所占的百分比即可得出答案;(2)用900乘样本中最喜爱篮球项目的人数所占比例即可;(3)根据最喜爱的球类运动项目所占百分比解答即可(答案不唯一).【解答】解:(1)30÷30%=100(名),答:本次调查共抽查了100名学生.(2)被抽查的100人中最喜爱羽毛球的人数为:100×5%=5(名),∴被抽查的100人中最喜爱篮球的人数为:100﹣30﹣10﹣15﹣5=40(名),360(名),答:估计该校900名初中生中最喜爱篮球项目的人数为360名.(3)答案不唯一,如:因为喜欢篮球的学生较多,建议学校多配置篮球器材、增加篮球场地等.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.23.(2023 绍兴)图1是某款篮球架,图2是其示意图,立柱OA垂直地面OB,支架CD与OA交于点A,支架CG⊥CD交OA于点G,支架DE平行地面OB,篮筐EF与支架DE在同一直线上,OA=2.5米,AD=0.8米.∠AGC=32°.(1)求∠GAC的度数;(2)某运动员准备给篮筐挂上篮网,如果他站在凳子上,最高可以把篮网挂到离地面3米处,那么他能挂上篮网吗?请通过计算说明理由.(参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62)【考点】解直角三角形的应用.【分析】(1)根据垂直定义可得∠ACG=90°,然后利用直角三角形的两个锐角互余进行计算,即可解答;(2)延长OA,ED交于点M,根据垂直定义可得∠AOB=90°,从而利用平行线的性质可得∠DMA=∠AOB=90°,再根据对顶角相等可得∠DAM=∠GAC=58°,从而利用直角三角形的两个锐角互余可得∠ADM=32°,然后在Rt△ADM中,利用锐角三角函数的定义求出AM的长,从而利用线段的和差关系求出MO的长,比较即可解答.【解答】解:(1)∵CG⊥CD,∴∠ACG=90°,∵∠AGC=32°,∴∠GAC=90°﹣∠AGC=90°﹣32°=58°,∴∠GAC的度数为58°;(2)该运动员能挂上篮网,理由如下:延长OA,ED交于点M,∵OA⊥OB,∴∠AOB=90°,∵DE∥OB,∴∠DMA=∠AOB=90°,∵∠GAC=58°,∴∠DAM=∠GAC=58°,∴∠ADM=90°﹣∠DAM=32°,在Rt△ADM中,AD=0.8米,∴AM=AD sin32°≈0.8×0.53=0.42(米),∴OM=OA+AM=2.5+0.424=2.924(米),∵2.924米<3米,∴该运动员能挂上篮网.【点评】本题考查了解直角三角形的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.24.(2023 绍兴)一条笔直的路上依次有M,P,N三地,其中M,N两地相距1000米.甲、乙两机器人分别从M,N两地同时出发,去目的地N,M,匀速而行.图中OA,BC分别表示甲、乙机器人离M地的距离y(米)与行走时间x(分钟)的函数关系图象.(1)求OA所在直线的表达式;(2)出发后甲机器人行走多少时间,与乙机器人相遇?(3)甲机器人到P地后,再经过1分钟乙机器人也到P地,求P,M两地间的距离.【考点】待定系数法求一次函数解析式.【分析】(1)利用待定系数法,将(5,1000)代入解析式中,求出答案;(2)俩机器人相向而行,同时出发,相遇时两人路程应为MN的长度,列出方程即可;(3)设甲到P地时间为t分钟,乙到P地时间为(t+1)分钟,分别求出两人到P地时,与M的距离,列出方程,解出答案.【解答】解:(1)由图象可知,OA所在直线为正比例函数,∴设y=kx,∵A(5,1000),1000=5k,k=200,∴OA所在直线的表达式为y=200x.(2)由图可知甲机器人速度为:1000÷5=200(米/分钟),乙机器人速度为:1000÷10=100(米/分钟),两人相遇时:(分钟),答:出发后甲机器人行走分钟,与乙机器人相遇.(3)设甲机器人行走t分钟时到P地,P地与M地距离为200t,则乙机器人(t+1)分钟后到P地,P地与M地距离1000﹣100(t+1),由200t=1000﹣100(t+1),解得t=3,∴200t=600,答:P,M两地间的距离为600米.【点评】本题以一次函数综合运用为背景,考查了学生在函数中数形结合的能力,此类题目的关键是弄懂题意,求出每个人的速度,明确相向而行时相遇时两人的路程和等于总路程,进而求解.25.(2023 绍兴)如图,AB是⊙O的直径,C是⊙O上一点,过点C作⊙O的切线CD,交AB的延长线于点D,过点A作AE⊥CD于点E.(1)若∠EAC=25°,求∠ACD的度数;(2)若OB=2,BD=1,求CE的长.【考点】切线的性质;圆周角定理.【分析】(1)由垂直的定义得到∠AEC=90°,由三角形外角的性质即可求出∠ACD的度数;(2)由勾股定理求出CD的长,由平行线分线段成比例定理得到,代入有关数据,即可求出CE的长.【解答】解:(1)∵AE⊥CD于点E,∴∠AEC=90°∴∠ACD=∠AEC+∠EAC=90°+25°=115°;(2)∵CD是⊙O的切线,∴半径OC⊥DE,∴∠OCD=90°,∵OC=OB=2,BD=1,∴OD=OB+BD=3,∴CD.∵∠OCD=∠AEC=90°,∴OC∥AE,∴,∴,∴CE.【点评】本题考查切线的性质,垂线,平行线分线段成比例,勾股定理,三角形外角的性质,关键是由三角形外角的性质求出∠ACD的度数,由勾股定理求出CD的长,由平行线分线段成比例定理即可求出CE的长.21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)HYPERLINK "http://21世纪教育网(www.21cnjy.com)" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台中考数学基础解答题整理一.解答题(共25小题)1.(2024 浙江)计算:.2.(2024 浙江)解方程组:.3.(2024 浙江)如图,在△ABC中,AD⊥BC,AE是BC边上的中线,AB=10,AD=6,tan∠ACB=1.(1)求BC的长;(2)求sin∠DAE的值.4.(2024 浙江)某校开展科学活动.为了解学生对活动项目的喜爱情况,随机抽取部分学生进行问卷调查.调查问卷和统计结果描述如下:科学活动喜爱项目调查问卷以下问题均为单选题,请根据实际情况填写.问题1:在以下四类科学“嘉年华”项目中,你最喜爱的是 (A)科普讲座(B)科幻电影(C)AI应用(D)科学魔术如果问题1选择C.请继续回答问题2.问题2:你更关注的AI应用是 (E)辅助学习(F)虚拟体验(G)智能生活(H)其他根据以上信息.解答下列问题:(1)本次调查中最喜爱“AI应用”的学生中更关注“辅助学习”有多少人?(2)若该学校共有1200名学生,根据统计信息,估计该校最喜爱“科普讲座”的学生人数.5.(2024 浙江)尺规作图问题:如图1,点E是 ABCD边AD上一点(不包含A,D),连接CE.用尺规作AF∥CE,F是边BC上一点.小明:如图2.以C为圆心,AE长为半径作弧,交BC于点F,连接AF,则AF∥CE.小丽:以点A为圆心,CE长为半径作弧,交BC于点F,连接AF,则AF∥CE.小明:小丽,你的作法有问题.小丽:哦…我明白了!(1)证明AF∥CE;(2)指出小丽作法中存在的问题.6.(2023 湖州)计算:.7.(2023 湖州)解一元一次不等式组.8.(2023 湖州)如图,在△ABC中,AB=AC,AD⊥BC于点D,点E为AB的中点,连结DE.已知BC=10,AD=12,求BD,DE的长.9.(2023 湖州)4月23日是世界读书日.为了解学生的阅读喜好,丰富学校图书资源,某校将课外书籍设置了四类:文学类、科技类、艺术类、其他类,随机抽查了部分学生,要求每名学生从中选择自己最喜欢的一类,将抽查结果绘制成如图统计图(不完整).请根据图中信息解答下列问题:(1)求被抽查的学生人数,并求出扇形统计图中m的值.(2)请将条形统计图补充完整.(温馨提示:请画在答题卷相对应的图上)(3)若该校共有1200名学生,根据抽查结果,试估计全校最喜欢“文学类”书籍的学生人数.10.(2023 湖州)如图,在Rt△ABC中,∠ACB=90°,点O在边AC上,以点O为圆心,OC为半径的半圆与斜边AB相切于点D,交OA于点E,连结OB.(1)求证:BD=BC.(2)已知OC=1,∠A=30°,求AB的长.11.(2023 衢州)(1)计算:(a+2)(a﹣2).(2)化简:2.12.(2023 衢州)小红在解方程时,第一步出现了错误:解:2×7x=(4x﹣1)+1,…(1)请在相应的方框内用横线划出小红的错误处.(2)写出你的解答过程.13.(2023 衢州)已知:如图,在△ABC和△DEF中,B,E,C,F在同一条直线上.下面四个条件:①AB=DE;②AC=DF;③BE=CF;④∠ABC=∠DEF.(1)请选择其中的三个条件,使得△ABC≌△DEF(写出一种情况即可).(2)在(1)的条件下,求证:△ABC≌△DEF.14.(2023 衢州)【数据的收集与整理】根据国家统计局统一部署,衢州市统计局对2022年我市人口变动情况进行了抽样调查,抽样比例为5‰.根据抽样结果推算,我市2022年的出生率为5.5‰,死亡率为8‰,人口自然增长率为﹣2.5‰,常住人口数为a人(‰表示千分号).(数据来源:衢州市统计局)【数据分析】(1)请根据信息推测人口自然增长率与出生率、死亡率的关系.(2)已知本次调查的样本容量为11450,请推算a的值.(3)将我市及全国近五年的人口自然增长率情况绘制成如图统计图.根据统计图分析:①对图中信息作出评判(写出两条).②为扭转目前人口自然增长率的趋势,请给出一条合理化建议.15.(2023 衢州)如图,在Rt△ABC中,∠ACB=90°,O为AC边上一点,连结OB.以OC为半径的半圆与AB边相切于点D,交AC边于点E.(1)求证:BC=BD.(2)若OB=OA,AE=2.①求半圆O的半径.②求图中阴影部分的面积.16.(2023 温州)计算:(1)|﹣1|()﹣2﹣(﹣4);(2).17.(2023 温州)如图,在2×4的方格纸ABCD中,每个小方格的边长为1.已知格点P,请按要求画格点三角形(顶点均在格点上).(1)在图1中画一个等腰三角形PEF,使底边长为,点E在BC上,点F在AD上,再画出该三角形绕矩形ABCD的中心旋转180°后的图形;(2)在图2中画一个Rt△PQR,使∠P=45°,点Q在BC上,点R在AD上,再画出该三角形向右平移1个单位后的图形.18.(2023 温州)某公司有A,B,C三种型号电动汽车出租,每辆车每天费用分别为300元、380元、500元.阳阳打算从该公司租一辆汽车外出旅游一天,往返行程为210km,为了选择合适的型号,通过网络调查,获得三种型号汽车充满电后的里程数据如图所示.型号 平均里程(km) 中位数(km) 众数(km)B 216 215 220C 227.5 227.5 225(1)阳阳已经对B,C型号汽车数据统计如表,请继续求出A型号汽车的平均里程、中位数和众数;(2)为了尽可能避免行程中充电耽误时间,又能经济实惠地用车,请你从相关统计量和符合行程要求的百分比等进行分析,给出合理的用车型号建议.19.(2023 温州)如图,在直角坐标系中,点A(2,m)在直线y=2x上,过点A的直线交y轴于点B(0,3).(1)求m的值和直线AB的函数表达式;(2)若点P(t,y1)在线段AB上,点Q(t﹣1,y2)在直线y=2x上,求y1﹣y2的最大值.20.(2023 温州)如图,已知矩形ABCD,点E在CB延长线上,点F在BC延长线上,过点F作FH⊥EF交ED的延长线于点H,连结AF交EH于点G,GE=GH.(1)求证:BE=CF;(2)当,AD=4时,求EF的长.21.(2023 绍兴)(1)计算:;(2)解不等式:3x﹣2>x+4.22.(2023 绍兴)某校兴趣小组通过调查,形成了如表调查报告(不完整).调查目的 1.了解本校初中生最喜爱的球类运动项目2.给学校提出更合理地配置体育运动器材和场地的建议调查方式 随机抽样调查 调查对象 部分初中生调查内容 调查你最喜爱的一个球类运动项目(必选)A.篮球 B.乒乓球 C.足球 D.排球 E.羽毛球调查结果建议 …结合调查信息,回答下列问题:(1)本次调查共抽查了多少名学生?(2)估计该校900名初中生中最喜爱篮球项目的人数.(3)假如你是小组成员,请向该校提一条合理建议.23.(2023 绍兴)图1是某款篮球架,图2是其示意图,立柱OA垂直地面OB,支架CD与OA交于点A,支架CG⊥CD交OA于点G,支架DE平行地面OB,篮筐EF与支架DE在同一直线上,OA=2.5米,AD=0.8米.∠AGC=32°.(1)求∠GAC的度数;(2)某运动员准备给篮筐挂上篮网,如果他站在凳子上,最高可以把篮网挂到离地面3米处,那么他能挂上篮网吗?请通过计算说明理由.(参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62)24.(2023 绍兴)一条笔直的路上依次有M,P,N三地,其中M,N两地相距1000米.甲、乙两机器人分别从M,N两地同时出发,去目的地N,M,匀速而行.图中OA,BC分别表示甲、乙机器人离M地的距离y(米)与行走时间x(分钟)的函数关系图象.(1)求OA所在直线的表达式;(2)出发后甲机器人行走多少时间,与乙机器人相遇?(3)甲机器人到P地后,再经过1分钟乙机器人也到P地,求P,M两地间的距离.25.(2023 绍兴)如图,AB是⊙O的直径,C是⊙O上一点,过点C作⊙O的切线CD,交AB的延长线于点D,过点A作AE⊥CD于点E.(1)若∠EAC=25°,求∠ACD的度数;(2)若OB=2,BD=1,求CE的长.21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)HYPERLINK "http://21世纪教育网(www.21cnjy.com)" 21世纪教育网(www.21cnjy.com) 展开更多...... 收起↑ 资源列表 中考数学基础解答题整理(学生版).doc 中考数学基础解答题整理(教师版).doc