资源简介 人教A版高中数学选择性必修三-6.2.1排列-导学案学习目标 1.理解并掌握排列的概念.2.能应用排列知识解决简单的实际问题.一、排列概念的理解问题 从甲、乙、丙3名同学中选出2名参加一项活动,其中1名同学参加上午的活动,另1名同学参加下午的活动,有多少种不同的选法?知识梳理1.排列:一般地,从n个不同元素中取出m(m≤n)个元素,并按照____________排成一列,叫做从n个不同元素中取出m个元素的一个排列.2.根据排列的定义,两个排列相同的充要条件:(1)两个排列的元素___________;(2)元素的排列________也相同.例1 判断下列问题是否为排列问题:(1)北京、上海、天津三个民航站之间的直达航线的飞机票的价格(假设来回的票价相同);(2)选2个小组分别去植树和种菜;(3)选2个小组去种菜;(4)选10人组成一个学习小组;(5)选3个人分别担任班长、学习委员、生活委员;(6)某班40名学生在假期相互通信.反思感悟 判断一个问题是否为排列问题,主要从“取”与“排”两方面考虑(1)“取”,检验取出的m个元素是否重复;(2)“排”,检验取出的m个元素是否有顺序性,其关键方法是,交换两个位置看其结果是否有变化,有变化就是有顺序,无变化就是无顺序.跟踪训练1 下列问题是排列问题的是( )A.从8名同学中选取2名去参加知识竞赛,共有多少种不同的选取方法?B.10个人互相通信一次,共写了多少封信?C.平面上有5个点,任意三点不共线,这5个点最多可确定多少条直线?D.从1,2,3,4四个数字中,任选两个相乘,其结果共有多少种?二、画树状图写排列例2 四个人A,B,C,D坐成一排照相有多少种坐法?并写出所有坐法.反思感悟 利用“树状图”法解决简单排列问题的适用范围及策略(1)适用范围:“树状图”在解决排列元素个数不多的问题时,是一种比较有效的表示方式.(2)策略:在操作中先将元素按一定顺序排出,然后以先安排哪个元素为分类标准进行分类,再安排第二个元素,并按此元素分类,依次进行,直到完成一个排列,这样能做到不重不漏,然后再按树状图写出排列.跟踪训练2 写出从4个元素a,b,c,d中任取3个元素的所有排列.三、简单的排列问题例3 用具体数字表示下列问题.(1)从100个两两互质的数中取出2个数,其商的个数;(2)由0,1,2,3组成的能被5整除且没有重复数字的四位数的个数;(3)有4名大学生可以到5家单位实习,若每家单位至多招1名实习生,每名大学生至多到1家单位实习,且这4名大学生全部被分配完毕,其分配方案的个数.反思感悟 要想正确地表示排列问题的排列个数,应弄清这件事中谁是分步的主体,分清m个元素和n(m≤n)个不同的位置各是什么.跟踪训练3 (1)沪宁高铁线上有六个大站:上海、苏州、无锡、常州、镇江、南京,铁路部门应为沪宁线上的六个大站(这六个大站之间)准备不同的火车票的种数为( )A.15 B.30 C.12 D.36(2)12名选手参加校园歌手大赛,比赛设一等奖、二等奖、三等奖各一名,每人最多获得一种奖项,共有______种不同的获奖情况.1.知识清单:(1)排列的定义:顺序性.(2)“树状图”法列举排列.(3)排列的简单应用.2.方法归纳:数形结合.3.常见误区:排列的定义不明确.1.从甲、乙、丙三人中选两人站成一排的所有站法为( )A.甲乙、乙甲、甲丙、丙甲B.甲乙丙、乙丙甲C.甲乙、甲丙、乙甲、乙丙、丙甲、丙乙D.甲乙、甲丙、乙丙2.3个学生在4本不同的参考书中各挑选1本,不同的选法种数为( )A.3 B.24 C.34 D.433.(多选)下列问题中是排列问题的是( )A.从甲、乙、丙三名同学中选出两名分别参加数学、物理兴趣小组B.从甲、乙、丙三名同学中选出两人参加一项活动C.从a,b,c,d中选出3个字母D.从1,2,3,4,5这五个数字中取出2个数字组成一个两位数4.从1,2,3,4这4个数字中选出3个数字构成无重复数字的三位数有________个.参考答案与详细解析问题 知识梳理1.一定的顺序2.(1)完全相同 (2)顺序例1 解 (1)票价只有三种,虽然机票是不同的,但票价是一样的,不存在顺序问题,所以不是排列问题.(2)植树和种菜是不同的,存在顺序问题,属于排列问题.(3)(4)不存在顺序问题,不属于排列问题.(5)每个人的职务不同,例如甲当班长或当学习委员是不同的,存在顺序问题,属于排列问题.(6)A给B写信与B给A写信是不同的,所以存在着顺序问题,属于排列问题.所以在上述问题中,(2)(5)(6)是排列问题,(1)(3)(4)不是排列问题.跟踪训练1 B [对于A,8名同学中选取2名,不涉及顺序问题,不是排列问题,A错误;对于B,10个人互相通信,涉及到顺序问题,是排列问题,B正确;对于C,5个点中任取3点,不涉及顺序问题,不是排列问题,C错误;对于D,4个数字中任取2个,根据乘法交换律知,结果不涉及顺序,不是排列问题,D错误.]例2 解 按照A→B→C→D的顺序安排位置,A有4种坐法,B有3种坐法,C有2种坐法,D有1种坐法,由分步乘法计数原理得,有4×3×2×1=24(种)坐法.画出树状图.由“树状图”可知,所有坐法为ABCD,ABDC,ACBD,ACDB,ADBC,ADCB,BACD,BADC,BCAD,BCDA,BDAC,BDCA,CABD,CADB,CBAD,CBDA,CDAB,CDBA,DACB,DABC,DBAC,DBCA,DCAB,DCBA.跟踪训练2 解 由题意作树状图,如图.故所有的排列为abc,abd,acb,acd,adb,adc,bac,bad,bca,bcd,bda,bdc,cab,cad,cba,cbd,cda,cdb,dab,dac,dba,dbc,dca,dcb,共有24个.例3 解 (1)从100个两两互质的数中取出2个数,分别作为商的分子和分母,其商共有100×99=9 900(个).(2)因为组成的没有重复数字的四位数能被5整除,所以这个四位数的个位数字一定是“0”,故确定此四位数,只需确定千位数字、百位数字、十位数字即可,共有3×2×1=6(个).(3)可以理解为从5家单位中选出4家单位,分别把4名大学生安排到4家单位,共有5×4×3×2=120(个)分配方案.跟踪训练3 (1)B [对于两个大站A和B,从A到B的火车票与从B到A的火车票不同,因为每张车票对应一个起点站和一个终点站,因此,每张火车票对应从6个不同元素(大站)中取出2个不同元素(起点站和终点站)的一种排列,故不同的火车票有6×5=30(种).](2)1 320解析 共有12×11×10=1 320(种)不同的获奖情况.随堂演练1.C [从三人中选出两人,而且要考虑这两人的顺序,所以有如下6种站法:甲乙、甲丙、乙甲、乙丙、丙甲、丙乙.]2.B [3个学生在4本不同的参考书中各挑选一本,相当于从4个不同元素中选3个的排列,其选法种数为4×3×2=24.]3.AD [由排列的定义知AD是排列问题.]4.24 展开更多...... 收起↑ 资源预览