资源简介 / 让教学更有效 精品试卷 | 数学学科第四单元观察物体(提升卷)2024-2025学年四年级数学下册常考易错题(北师大版)学校:___________姓名:___________班级:___________考号:___________一、选择题1.在添加一个,从左面看形状和原来一样,下面( )的摆法是错误的。A. B. C.2.淘气用4个正方体搭出一个立体图形,从上面、右面和正面看到的形状如下,这个立体图形是( )。www.21-cn-jy.comA. B. C.3.下面图形中,( )从上面看到的形状和其他三个图形的不相同。A. B. C. D.4.由5个大小相同的小正方体搭成立体图形,从正面看到的形状是,从右面看到的形状是,这个立体图形可能是( )。21教育名师原创作品A. B. C. D.5.丽丽用同样的小正方体搭一个几何体,从上面看到的图形是(每个方形上面的数字表示在这个位置上所用的小正方体的个数),则这个几何体,前面看是( )。A. B. C. D.二、填空题6.认真仔细,我会填。(1)从上面看到的形状是的立体图形有( )。(2)从正面看到的形状是的立体图形有( )。(3)从左面看到的形状是的立体图形有( )。7.请你数一数下面这些立体图形,都是由多少个小正方体组成的。( )个 ( )个 ( )个8.红红用正方体搭了一个立体图形,从正面看到的是,右面是,上面是。哪个是红红搭的?在括号里面画“√”。9.毛毛特别喜欢下象棋,他每次下完象棋会把棋子摞起来。下图是他分别从三个角度观察的一堆棋子,这堆棋子有( )个。10.把2个同样大小的正方体搭成,按下面的要求再添上1个同样大小的正方体。从正面看是,选( );从上面看到的是,选( )从左面看到的是,选( )。11.先把4块搭在一起,从正面、上面、左面观察自己搭成的立体图形,说一说看到的是什么图形;再把4块搭成一个从正面看是,从左面看是,从上面看是的立体图形。分析与解答:(1)我们可以随意搭一个( ),从( )、上面、( )进行观察,将看到的图形说出来或者画出来。(2)结合从正面、左面、上面看到的图形,可知搭成的立体图形是( )。12.如图是在空中看到的射击比赛场景。下面三幅图,分别是①②③哪个位置看到的?( ) ( ) ( )三、判断题13.从正面、上面、左面看到的形状相同。( )14.从上面、左面看到的形状都相同。( )15.一个立体图形,从正面和右面看到的都是,搭成这样的立体图形,最少需要4个小正方体。( )四、作图题16.分别画出从正面、上面,左面看到的立体图形的形状。17.下面是从三个方向看到的立体图形的形状,根据这些形状画出立体图形。五、解答题18.按要求给添加一个同样大的正方体。(1)如果从右面看到的是,那么正方体应添加在它的哪一面呢?(2)如果从前面看到的是,那么正方体应添加在它的哪一面呢?19.笑笑用4个正方体搭出了一个立体图形,从上面、右面和正面看到的形状如下。(1)是下面的哪一个?在合适的图形下面画“√”。(2)搭一搭,看一看,你选对了吗?20.一个立体图形,从正面看到的形状是,从左面看到的形状是。搭这样的立体图形,最少需要几个正方体?最多需要几个正方体?21·世纪*教育网21.用4个同样大的正方体摆一个长方体。从上面看到的是,应该怎样摆?从前面和右面看到的图形相同吗?22.妙想用4个搭出了一个立体图形,从正面和上面看都是3个正方形。(1)以下满足条件的立体图形是( )。(请将序号填在括号里)A. B. C. D.(2)把上题中C立体图形从正面、上面和右面看到的形状画在方格中。23.用4个相同的正方体搭一个立体图形,从上面看是,有( )种搭法。画出其中两种搭法从正面和右面看到的形状。www-2-1-cnjy-com24.(1)从左面看是图A的有_________。(2)从正面看是图B的有_________。(3)还有什么样的立体图形从左面看是图A?还有什么样的立体图形从正面看是图B?想一想,搭一搭。25.如图1是从上面看一些小正方体所搭几何体的平面图形,方格中的数字表示该位置的小正方体的个数。(1)搭成这样的几何体,一共需要( )个小正方体。(2)请你在图2的方格纸中分别画出这个几何体从正面和左面看到的图形。《第四单元观察物体(提升卷)-2024-2025学年四年级数学下册常考易错题(北师大版)》参考答案【来源:21cnj*y.co*m】1.C【分析】从左面看是,画出三个选项从左面看到的形状,然后比较即可。【详解】A.从左面看是;B.从左面看是;C.从左面看是。故答案为:C2.B【分析】根据从不同方向观察立体图形看到的形状不同,分别分析每个选项所看到的各个面的形状,据此解答即可。21cnjy.com【详解】A.从上面看第一层有2个正方形,第二层靠左边有1个正方形;从右面看第一层靠右边有1个正方形,第二层有2个正方形;从正面看第一层靠右边有1个正方形,第二层有两个正方形;【版权所有:21教育】B.从上面看第一层有2个正方形,第二层靠左边有1个正方形;从右面看第一层靠右边有1个正方形,第二层有2个正方形;从正面看第一层靠左边有1个正方形,第二层有2个正方形;C.从上面看第一层靠左边有1个正方形,第二层有2个正方形;从右面看靠右边有1个正方形,第二层有2个正方形;从正面看第一层靠左边有1个正方形,第二层有2个正方形。题目中从上面看第一层有2个正方形,第二层靠左边有1个正方形;从右面看第一层靠右边有1个正方形,第二层有2个正方形;从正面看第一层靠左边有1个正方形,第二层有2个正方形符合选项B。故答案为:B3.A【分析】分析题意可知,本题是要从上面观察各图形,并找出不同,结合三视图的知识分析即可解答。【详解】A.从上面看图为:。B.从上面看图为:。C.从上面看图为:。D.从上面看图为:。综上可知,从上面观察物体,看到的面和其他三个物体看到的面不一样。故答案为:A4.C【分析】分别从正面、右面观察各个图形,再看哪个图形从正面看到的形状是,从右面看到的形状是。【详解】A.,从正面看到的形状是,从右面看到的形状是。B.,从正面看到的形状是,从右面看到的形状是。C.,从正面看到的形状是,从右面看到的形状是。D.,从正面看到的形状是,从右面看到的形状是。故答案为:C【点睛】本题考查了物体三视图的认识,需要学生有较强的空间想象和推理能力。5.C【分析】根据从上面看到的图形,可以确定底层小正方体的个数和摆放方式,根据每个正方形上面的数字可以确定层数和每层个数,据此想象出这个几何体的形状。从前面看有2层,底层有4个小正方体,分3列。第2层有2个,分别在第1列的后面和第2列上。据此解答。【详解】根据分析,可得几何体如下:这个几何体,前面看是。故答案为:C6.(1)③⑤(2)①②(3)⑤【分析】根据对立体图形的观察,第三个和第五个图形从上面看是一个总共有两个小正方形的一行两列的平面图形;第一个和第二个图形从正面看是一个总共有两个小正方形的一行两列的平面图形;第五个图形是一个从左面看是一个两行一列的总共有两个小正方形的平面图形,据此解答。【详解】(1)从上面看到的形状是的立体图形有③⑤;(2)从正面看到的形状是的立体图形有①②;(3)从左面看到的形状是的立体图形有⑤。7. 7 8 37【分析】图1的立体图形中,第一层有1个小正方体,第二层有2个小正方体,第三层有4个小正方形,一共有1+2+4=3+4=7(个)小正方体;第二个图形第一层有3个小正方体,第二层有5个小正方体,一共有3+5=8(个)小正方体;第三个图形第一层有1个小正方体,第二层有2个小正方体,第三层有3个小正方体,第四层有6个小正方体,第五层有11个小正方体,第六层比第五层多3个即11+3=14(个),一共有1+2+3+6+11+14=3+3+6+11+14=6+6+11+14=12+11+14=23+14=37(个)小正方体。【详解】1+2+4=3+4=7(个)11+3=14(个)1+2+3+6+11+14=37(个)7个;8个;37个。8.见详解【分析】,从正面看到的是,右面是,上面是;,从正面看到的是,右面是,上面是;,从正面看到的是,右面是,上面是,据此解答即可。【详解】根据题意经过分析得:9.13【分析】根据从上面看的图形可知,桌子上放着3堆棋子。结合从前面和右面看到的图形可知,这3堆分别有4个、4个、5个,利用加法即可求出这堆棋子有多少个。21世纪教育网版权所有【详解】4+4+5=8+5=13(个)这堆棋子有13个。10. ② ① ③【分析】要想从正面看是,再添上1个同样大小的正方体时只能添在已有的正方体的前面或者后面,满足条件的只有②;21*cnjy*com要想从从上面看到的是,再添上1个同样大小的正方体时只能添在已有的正方体的左边或者右边,满足条件的只有①;21*cnjy*com要想从从从左面看到的是,再添上1个同样大小的正方体时只能添在已有的正方体的上面,满足条件的只有③;【详解】把2个同样大小的正方体搭成,按下面的要求再添上1个同样大小的正方体。从正面看是,选( ② );从上面看到的是,选( ① )从左面看到的是,选( ③ )。11.(1)立体图形;正面;左面;图见详解(2)见详解【分析】(1)把4块搭在一起,如图: 从上面看到4个正方形,从正面看到3个正方形,从左面看到2个正方形。【详解】(1)我们可以随意搭一个(立体图形),从(正面)、(上面)、(左面)进行观察,将看到的图形说出来或者画出来。(立体图形搭法不唯一)(2)结合从正面、左面、上面看到的图形,可知搭成的立体图形是。【点睛】本题考查从不同方向观察物体或几何图形,培养学生的观察能力和空间想象能力。12. ① ③ ②【分析】从①位置看到的图形中,手臂偏左,即看到的图形是。从②位置看到的图形手臂被挡住了,即看到的图形是。从③位置看到的图形中,手臂偏右,即看到的图形是;据此解答即可。【详解】【点睛】本题是考查从不同方向观察物体和几何图形,关键是培养学生的观察能力。13.×【分析】分别画出这个图形从正面、上面、左面看到的图形,然后再判断即可。【详解】从正面看是:;从上面看是:;从左面看是:;从正面、上面、左面看到的形状相同,是错误的;故答案为:×【点睛】熟练掌握物体三视图的画法是解答此题的关键。14.×【分析】分别画出这个图形从上面、左面看到的图形,然后再判断即可。【详解】从上面看是:;从左面看是:;则该物体从上面、左面看到的形状不相同。故答案为:×【点睛】熟练掌握物体三视图的画法是解答此题的关键。15.×【分析】要想这个立体图形从正面看到的是一个正方形,则小正方体摆成两行,每行2个小正方体,共需要4个小正方体。这时从右面看到的是一列共2个正方形,组成一个长方形。要想这个立体图形从右面看到的是一个正方形,还需要在已摆出的4个小正方体后面再摆上2个小正方体,这2个小正方体摆成一列。则至少需要6个小正方体。【详解】由分析得:从正面和右面看到的都是,搭成这样的立体图形,最少需要6个小正方体。题干说法错误。故答案为:×【点睛】本题考查物体三视图的认识,旨在考查学生的空间想象和推理能力。16.见详解【分析】左图由5个相同的小正方体组成。从正面能看到4个相同的正方形,分两层,上层1个,下层3个,右对齐;从上面能看到4个相同的正方形,分两层,上层3个,下层1个,右对齐;从左面能看到3个相同的正方形,分两层,上层1个,下层2个,左对齐。【详解】如图:【点睛】本题是考查作简单图形的三视图,能正确辨认从正面、上面、左面(或右面)观察到的简单几何体的平面图形。2-1-c-n-j-y17.见详解【分析】这个立体图形从正面看的图形是,那么这个立体图形至少有3个小正方体,排成一排。再根据从左面看的图形是,那么这个立体图形有两排小正方体。靠后面一排,有一个小正方体。靠前面一排,有三个正方体。最后根据从上面看的图形是,那么这个立体图形有4个小正方体,排成两排。靠后面一排,有一个小正方体(靠最右边)。靠前面一排,有三个正方体,排成一排。据此解答。【详解】由分析画图如下:18.(1)上面或下面(2)左面或右面【分析】在不同位置观察由小正方形平摆的物体,并判断观察到物体的平面图,在哪一位置观察,就从哪一面数出小正方形的数量并确定摆出的形状,注意视线应垂直于所要观察的平面。从右面看到的是两个正方形竖排在一起,则说明小正方体会有两层;从前面看到的是两个正方形横排在一起,则说明小正方体一层会并排两个。【详解】答:(1)正方体应添加在它的上面或下面。(2)正方体应添加在它的左面或右面。19.(1)见详解(2)选对了;图见详解【分析】(1)通过从正面看到的图形可知,一共分两层,从上往下看,第一层中间有一个正方体,第二层有三个正方体,据此排除;(2)通过从正面看到的图形可知,一共分两层,从上往下看,第一层中间有一个正方体,第二层有三个正方体,通过右面看到的图形可知,一共有两层,从上往下看第一层有一个正方体,第二层的三个正方体排成了一行。据此画图。【详解】(1)(2)答:选对了。20.5个;7个【分析】从正面看到的形状是,说明这个立体图形最少有2层,从左面看到的形状是,说明这个立体图形第1层至少有4个正方体,最多有6个正方体,第二层有且只有1个正方体;据此解答即可。【出处:21教育名师】【详解】4+1=5(个)6+1=7(个)答:最少需要5个正方体,最多需要7个正方体。21.摆法见详解;相同【分析】4个同样大的正方体摆成一个长方体后,从上面观察只能看到一个小正方形,显然这4个小正方体应该摆成一列,这样从前面和右面观察都能看到4个小正方形,它们上下排列。【详解】摆法如图:从前面看是,从右面看是。答:从前面和右面看到的图形相同。22.(1)C(2)见详解【分析】(1)A选项从正面看,共1行3个小正方形;从上面看共有2行,上面1行3个小正方形,下面1行1个小正方形,右对齐,从上面可以看到4个正方形;B选项从正面看共有2行,上面1行1个小正方形,下面1行3个小正方形,从正面可以看到4个正方形,从上面看,共1行3个小正方形;21教育网C选项从正面看共有2行,上面1行1个小正方形,下面1行2个小正方形,右对齐;从上面看共有2行,上面1行2个小正方形,下面1行1个小正方形,左对齐,从正面和上面看都是3个正方形;21·cn·jy·comD选项从正面看共有3行,上面1行1个小正方形,下面1行2个小正方形,中间1行1个小正方形,从正面可以看到4个正方形,从上面看共1行2个小正方形;据此解答即可;(2)从正面看共有2行,上面1行1个小正方形,下面1行2个小正方形,右对齐;从上面看共有2行,上面1行2个小正方形,下面1行1个小正方形,左对齐,从右面看共有2行,上面1行1个小正方形,下面1行2个小正方形,右对齐,据此画图即可。【详解】(1)妙想用4个搭出了一个立体图形,从正面和上面看都是3个正方形。满足条件的立体图形是C。故答案为:C(2)23.3;见详解【分析】从上面看是,说明这个几何体第一层有3个小正方体,第4个小正方体在这3个小正方体其中一个的上面。【详解】这个立体图形有以下几种可能:所以有3种搭法。若选择的是上图中的第一种和第二种搭法,作图如下:若选择的是上图中的第一种和第三种搭法,作图如下:若选择的是上图中的第二种和第三种搭法,作图如下:24.(1)②、③(2)①、④(3)图见详解【分析】(1)(2)观察图①,从正面看是,从左面看是,从右面看是。观察图②,从正面看是,从左面看是,从右面看是。观察图③,从正面看是,从左面看是,从右面看是。观察图④,从正面看是,从左面看是,从右面看是。(3)从左面看是图 A 的立体图形,只要保证从左面看是两个左右排列的小正方形即可,比如可以在②或③的基础上,在其右侧或其他不影响左面视图的位置添加若干小正方体。从正面看是图 B 的立体图形,只要保证从正面看是上面一个小正方形靠左,下面两个小正方形的结构即可,比如可以在①或④的基础上,在其后面或其他不影响正面视图的位置添加若干小正方体。2·1·c·n·j·y【详解】(1)由分析可知,从左面看是图A的有②、③。(2)由分析可知,从正面看是图B的有①、④。(3)如图:从左面看是。(答案不唯一)从正面看是。(答案不唯一)25.(1)8(2)图见详解【分析】(1)根据图1把标注的小正方体个数相加即可求出需要小正方体的个数;(2)根据图中所示各位置小正方体的个数,从正面能看到6个正方形,分三列,各列从左到右分别是3个、1个、2个;从左面能看到6个正方形,分三列,各列从左到右分别是3个、2个、1个。【来源:21·世纪·教育·网】【详解】(1)3+2+1+1+1=8(个)即搭成这样的几何体,一共需要8个小正方体。(2)作图如下:HYPERLINK "http://21世纪教育网(www.21cnjy.com)" 21世教育网(www.1cnjy.com) 展开更多...... 收起↑ 资源预览