资源简介 【中考真题汇编】江苏13大市三年(2022-2024)中考真题分类汇编专题01 二次函数综合压轴题(3年中考,10大题型)题型一 线段周长问题 1题型二 面积问题 5题型三 角度问题 8题型四 特殊三角形问题 10题型五 特殊四边形问题 11题型六 二次函数与圆综合 13题型七 二次函数中的平移、旋转、翻折问题 15题型八 交点/公共点问题 18题型九 函数的综合问题 19题型十 二次函数解决实际问题 21题型一 线段周长问题1.(2024·江苏镇江·中考真题)如图,在平面直角坐标系中,O为坐标原点,二次函数的图像与x轴交于A、B两点(点A在点B的左侧),顶点为C.(1)求A、B、C三点的坐标;(2)一个二次函数的图像经过B、C、三点,其中,该函数图像与x轴交于另一点D,点D在线段上(与点O、B不重合).①若D点的坐标为,则_________;②求t的取值范围:③求的最大值.2.(2022·江苏淮安·中考真题)如图(1),二次函数的图像与轴交于、两点,与轴交于点,点的坐标为,点的坐标为,直线经过、两点. (1)求该二次函数的表达式及其图像的顶点坐标;(2)点为直线上的一点,过点作轴的垂线与该二次函数的图像相交于点,再过点作轴的垂线与该二次函数的图像相交于另一点,当时,求点的横坐标;(3)如图(2),点关于轴的对称点为点,点为线段上的一个动点,连接,点为线段上一点,且,连接,当的值最小时,直接写出的长.3.(2024·江苏连云港·中考真题)在平面直角坐标系中,已知抛物线(a、b为常数,). (1)若抛物线与轴交于、两点,求抛物线对应的函数表达式;(2)如图,当时,过点、分别作轴的平行线,交抛物线于点M、N,连接.求证:平分;(3)当,时,过直线上一点作轴的平行线,交抛物线于点.若的最大值为4,求的值.4.(2024·江苏苏州·中考真题)如图①,二次函数的图象与开口向下的二次函数图象均过点,.(1)求图象对应的函数表达式;(2)若图象过点,点P位于第一象限,且在图象上,直线l过点P且与x轴平行,与图象的另一个交点为Q(Q在P左侧),直线l与图象的交点为M,N(N在M左侧).当时,求点P的坐标;(3)如图②,D,E分别为二次函数图象,的顶点,连接,过点A作.交图象于点F,连接EF,当时,求图象对应的函数表达式.5.(2024·江苏常州·中考真题)在平面直角坐标系中,二次函数的图像与x轴相交于点A、B,与y轴相交于点C.(1)________;(2)如图,已知点A的坐标是.①当,且时,y的最大值和最小值分别是s、t,,求m的值;②连接,P是该二次函数的图像上位于y轴右侧的一点(点B除外),过点P作轴,垂足为D.作,射线交y轴于点Q,连接.若,求点P的横坐标.题型二 面积问题6.(2024·江苏徐州·中考真题)如图,A、B为一次函数的图像与二次函数的图像的公共点,点A、B的横坐标分别为0、4.P为二次函数的图像上的动点,且位于直线的下方,连接、.(1)求b、c的值;(2)求的面积的最大值.7.(2024·江苏扬州·中考真题)如图,已知二次函数的图像与轴交于,两点.(1)求的值;(2)若点在该二次函数的图像上,且的面积为,求点的坐标.8.(2022·江苏连云港·中考真题)已知二次函数,其中.(1)当该函数的图像经过原点,求此时函数图像的顶点的坐标;(2)求证:二次函数的顶点在第三象限;(3)如图,在(1)的条件下,若平移该二次函数的图像,使其顶点在直线上运动,平移后所得函数的图像与轴的负半轴的交点为,求面积的最大值.9.(2022·江苏泰州·中考真题)如图,二次函数的图像与轴相交于点,与反比例函数的图像相交于点B(3,1).(1)求这两个函数的表达式;(2)当随的增大而增大且时,直接写出的取值范围;(3)平行于轴的直线l与函数的图像相交于点C、D(点C在点D的左边),与函数的图像相交于点E.若△ACE与△BDE的面积相等,求点E的坐标.10.(2023·江苏徐州·中考真题)如图,正方形纸片的边长为4,将它剪去4个全等的直角三角形,得到四边形.设的长为,四边形的面积为. (1)求关于的函数表达式;(2)当取何值时,四边形的面积为10?(3)四边形的面积是否存在最小值?若存在,求出最小值;若不存在,请说明理由.11.(2023·江苏徐州·中考真题)如图,在平面直角坐标系中,二次函数的图象与轴分别交于点,顶点为.连接,将线段绕点按顺时针方向旋转得到线段,连接.点分别在线段上,连接与交于点. (1)求点的坐标;(2)随着点在线段上运动.①的大小是否发生变化?请说明理由;②线段的长度是否存在最大值?若存在,求出最大值;若不存在,请说明理由;(3)当线段的中点在该二次函数的图象的对称轴上时,的面积为 .题型三 角度问题12.(2022·江苏苏州·中考真题)如图,在二次函数(m是常数,且)的图像与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D.其对称轴与线段BC交于点E,与x轴交于点F.连接AC,BD.(1)求A,B,C三点的坐标(用数字或含m的式子表示),并求的度数;(2)若,求m的值;(3)若在第四象限内二次函数(m是常数,且)的图像上,始终存在一点P,使得,请结合函数的图像,直接写出m的取值范围.13.(2022·江苏常州·中考真题)已知二次函数的自变量的部分取值和对应函数值如下表:… 0 1 2 3 …… 4 3 0 …(1)求二次函数的表达式;(2)将二次函数的图像向右平移个单位,得到二次函数的图像,使得当时,随增大而增大;当时,随增大而减小,请写出一个符合条件的二次函数的表达式______,实数的取值范围是_______;(3)、、是二次函数的图像上互不重合的三点.已知点、的横坐标分别是、,点与点关于该函数图像的对称轴对称,求的度数.14.(2023·江苏无锡·中考真题)已知二次函数的图像与轴交于点,且经过点和点.(1)请直接写出,的值;(2)直线交轴于点,点是二次函数图像上位于直线下方的动点,过点作直线的垂线,垂足为.①求的最大值;②若中有一个内角是的两倍,求点的横坐标.15.(2022·江苏无锡·中考真题)已知二次函数图像的对称轴与x轴交于点A(1,0),图像与y轴交于点B(0,3),C、D为该二次函数图像上的两个动点(点C在点D的左侧),且.(1)求该二次函数的表达式;(2)若点C与点B重合,求tan∠CDA的值;(3)点C是否存在其他的位置,使得tan∠CDA的值与(2)中所求的值相等?若存在,请求出点C的坐标;若不存在,请说明理由.题型四 特殊三角形问题16.(2023·江苏·中考真题)如图,二次函数的图像与x轴相交于点,其顶点是C. (1)_______;(2)D是第三象限抛物线上的一点,连接OD,;将原抛物线向左平移,使得平移后的抛物线经过点D,过点作x轴的垂线l.已知在l的左侧,平移前后的两条抛物线都下降,求k的取值范围;(3)将原抛物线平移,平移后的抛物线与原抛物线的对称轴相交于点Q,且其顶点P落在原抛物线上,连接PC、QC、PQ.已知是直角三角形,求点P的坐标.17.(2023·江苏连云港·中考真题)如图,在平面直角坐标系中,抛物线的顶点为.直线过点,且平行于轴,与抛物线交于两点(在的右侧).将抛物线沿直线翻折得到抛物线,抛物线交轴于点,顶点为. (1)当时,求点的坐标;(2)连接,若为直角三角形,求此时所对应的函数表达式;(3)在(2)的条件下,若的面积为两点分别在边上运动,且,以为一边作正方形,连接,写出长度的最小值,并简要说明理由.题型五 特殊四边形问题18.(2023·江苏扬州·中考真题)在平面直角坐标系中,已知点A在y轴正半轴上. (1)如果四个点中恰有三个点在二次函数(a为常数,且)的图象上.①________;②如图1,已知菱形的顶点B、C、D在该二次函数的图象上,且轴,求菱形的边长;③如图2,已知正方形的顶点B、D在该二次函数的图象上,点B、D在y轴的同侧,且点B在点D的左侧,设点B、D的横坐标分别为m、n,试探究是否为定值.如果是,求出这个值;如果不是,请说明理由.(2)已知正方形的顶点B、D在二次函数(a为常数,且)的图象上,点B在点D的左侧,设点B、D的横坐标分别为m、n,直接写出m、n满足的等量关系式.19.(2024·江苏无锡·中考真题)已知二次函数的图象经过点和点.(1)求这个二次函数的表达式;(2)若点,都在该二次函数的图象上,试比较和的大小,并说明理由;(3)点在直线上,点在该二次函数图象上.问:在轴上是否存在点,使得以,,,为顶点的四边形是正方形?若存在,请直接写出所有满足条件的点的坐标;若不存在,请说明理由.题型六 二次函数与圆综合20.(2023·江苏苏州·中考真题)如图,二次函数的图像与轴分别交于点(点A在点的左侧),直线是对称轴.点在函数图像上,其横坐标大于4,连接,过点作,垂足为,以点为圆心,作半径为的圆,与相切,切点为. (1)求点的坐标;(2)若以的切线长为边长的正方形的面积与的面积相等,且不经过点,求长的取值范围.21.(2022·江苏盐城·中考真题)【发现问题】小明在练习簿的横线上取点为圆心,相邻横线的间距为半径画圆,然后半径依次增加一个间距画同心圆,描出了同心圆与横线的一些交点,如图1所示,他发现这些点的位置有一定的规律.【提出问题】小明通过观察,提出猜想:按此步骤继续画圆描点,所描的点都在某二次函数图像上.(1)【分析问题】小明利用已学知识和经验,以圆心为原点,过点的横线所在直线为轴,过点且垂直于横线的直线为轴,相邻横线的间距为一个单位长度,建立平面直角坐标系,如图2所示.当所描的点在半径为5的同心圆上时,其坐标为___________.(2)【解决问题】请帮助小明验证他的猜想是否成立.(3)【深度思考】小明继续思考:设点,为正整数,以为直径画,是否存在所描的点在上.若存在,求的值;若不存在,说明理由.题型七 二次函数中的平移、旋转、翻折问题22.(2022·江苏镇江·中考真题)一次函数的图像与轴交于点,二次函数的图像经过点、原点和一次函数图像上的点.(1)求这个二次函数的表达式;(2)如图1,一次函数与二次函数的图像交于点、(),过点作直线轴于点,过点作直线轴,过点作于点.①_________,_________(分别用含的代数式表示);②证明:;(3)如图2,二次函数的图像是由二次函数的图像平移后得到的,且与一次函数的图像交于点、(点在点的左侧),过点作直线轴,过点作直线轴,设平移后点、的对应点分别为、,过点作于点,过点作于点.①与相等吗?请说明你的理由;②若,求的值.23.(2024·江苏宿迁·中考真题)如图①,已知抛物线与x轴交于两点,将抛物线向右平移两个单位长度,得到抛物线,点P是抛物线在第四象限内一点,连接并延长,交抛物线于点Q.(1)求抛物线的表达式;(2)设点P的横坐标为,点Q的横坐标为,求的值;(3)如图②,若抛物线与抛物线交于点C,过点C作直线,分别交抛物线和于点M、N(M、N均不与点C重合),设点M的横坐标为m,点N的横坐标为n,试判断是否为定值.若是,直接写出这个定值;若不是,请说明理由.24.(2022·江苏宿迁·中考真题)如图,二次函数与轴交于 (0,0), (4,0)两点,顶点为,连接、,若点是线段上一动点,连接,将沿折叠后,点落在点的位置,线段与轴交于点,且点与、点不重合.(1)求二次函数的表达式;(2)①求证:;②求;(3)当时,求直线与二次函数的交点横坐标.25.(2023·江苏镇江·中考真题)已知,在平面直角坐标系中,点A的坐标为,点B的坐标为,点C与点B关于原点对称,直线分别与y轴交于点E,F,点F在点E的上方,. (1)分别求点E,F的纵坐标(用含m,n的代数式表示),并写出m的取值范围.(2)求点B的横坐标m,纵坐标n之间的数量关系.(用含m的代数式表示n)(3)将线段绕点顺时针旋转,E,F的对应点分别是,.当线段与点B所在的某个函数图象有公共点时,求m的取值范围.题型八 交点/公共点问题26.(2023·江苏南京·中考真题)已知二次函数(a为常数,.(1)若,求证:该函数的图象与x轴有两个公共点.(2)若,求证:当时,.(3)若该函数的图象与轴有两个公共点,,且,则的取值范围是.27.(2023·江苏盐城·中考真题)定义:若一次函数的图象与二次函数的图象有两个交点,并且都在坐标轴上,则称二次函数为一次函数的轴点函数.【初步理解】(1)现有以下两个函数:①;②,其中,_________为函数的轴点函数.(填序号)【尝试应用】(2)函数(为常数,)的图象与轴交于点,其轴点函数与轴的另一交点为点.若,求的值.【拓展延伸】(3)如图,函数(为常数,)的图象与轴、轴分别交于,两点,在轴的正半轴上取一点,使得.以线段的长度为长、线段的长度为宽,在轴的上方作矩形.若函数(为常数,)的轴点函数的顶点在矩形的边上,求的值. 28.(2023·江苏·中考真题)已知二次函数(为常数).(1)该函数图像与轴交于两点,若点坐标为,①则的值是_________,点的坐标是_________;②当时,借助图像,求自变量的取值范围;(2)对于一切实数,若函数值总成立,求的取值范围(用含的式子表示);(3)当时(其中为实数,),自变量的取值范围是,求和的值以及的取值范围.题型九 函数的综合问题29.(2024·江苏南通·中考真题)已知函数(a,b为常数).设自变量x取时,y取得最小值.(1)若,,求的值;(2)在平面直角坐标系中,点在双曲线上,且.求点P到y轴的距离;(3)当,且时,分析并确定整数a的个数.30.(2023·江苏宿迁·中考真题)规定:若函数的图像与函数的图像有三个不同的公共点,则称这两个函数互为“兄弟函数”,其公共点称为“兄弟点”.(1)下列三个函数①;②;③,其中与二次函数互为“兄弟函数”的是________(填写序号);(2)若函数与互为“兄弟函数”,是其中一个“兄弟点”的横坐标.①求实数a的值;②直接写出另外两个“兄弟点”的横坐标是________、________;(3)若函数(m为常数)与互为“兄弟函数”,三个“兄弟点”的横坐标分别为、、,且,求的取值范围.31.(2022·江苏南通·中考真题)定义:函数图像上到两坐标轴的距离都不大于的点叫做这个函数图像的“n阶方点”.例如,点是函数图像的“阶方点”;点是函数图像的“2阶方点”.(1)在①;②;③三点中,是反比例函数图像的“1阶方点”的有___________(填序号);(2)若y关于x的一次函数图像的“2阶方点”有且只有一个,求a的值;(3)若y关于x的二次函数图像的“n阶方点”一定存在,请直接写出n的取值范围.题型十 二次函数解决实际问题32.(2024·江苏盐城·中考真题)请根据以下素材,完成探究任务.制定加工方案生产背景 背景1 ◆某民族服装厂安排70名工人加工一批夏季服装,有“风”“雅”“正”三种样式. ◆因工艺需要,每位工人每天可加工且只能加工“风”服装2件,或“雅”服装1件,或“正”服装1件. ◆要求全厂每天加工“雅”服装至少10件,“正”服装总件数和“风”服装相等.背景2 每天加工的服装都能销售出去,扣除各种成本,服装厂的获利情况为: ①“风”服装:24元/件; ②“正”服装:48元/件; ③“雅”服装:当每天加工10件时,每件获利100元;如果每天多加工1件,那么平均每件获利将减少2元.信息整理 现安排x名工人加工“雅”服装,y名工人加工“风”服装,列表如下: 服装种类加工人数(人)每人每天加工量(件)平均每件获利(元)风y224雅x1正148探究任务 任务1 探寻变量关系 求x、y之间的数量关系.任务2 建立数学模型 设该工厂每天的总利润为w元,求w关于x的函数表达式.任务3 拟定加工方案 制定使每天总利润最大的加工方案.33.(2022·江苏扬州·中考真题)如图是一块铁皮余料,将其放置在平面直角坐标系中,底部边缘在轴上,且dm,外轮廓线是抛物线的一部分,对称轴为轴,高度dm.现计划将此余料进行切割:(1)若切割成正方形,要求一边在底部边缘上且面积最大,求此正方形的面积;(2)若切割成矩形,要求一边在底部边缘上且周长最大,求此矩形的周长;(3)若切割成圆,判断能否切得半径为dm的圆,请说明理由.试卷第8页,共22页第22页(共22页)【中考真题汇编】江苏13大市三年(2022-2024)中考真题分类汇编专题01 二次函数综合压轴题(3年中考,10大题型)题型一 线段周长问题 1题型二 面积问题 18题型三 角度问题 28题型四 特殊三角形问题 42题型五 特殊四边形问题 48题型六 二次函数与圆综合 57题型七 二次函数中的平移、旋转、翻折问题 62题型八 交点/公共点问题 74题型九 函数的综合问题 81题型十 二次函数解决实际问题 87题型一 线段周长问题1.(2024·江苏镇江·中考真题)如图,在平面直角坐标系中,O为坐标原点,二次函数的图像与x轴交于A、B两点(点A在点B的左侧),顶点为C.(1)求A、B、C三点的坐标;(2)一个二次函数的图像经过B、C、三点,其中,该函数图像与x轴交于另一点D,点D在线段上(与点O、B不重合).①若D点的坐标为,则_________;②求t的取值范围:③求的最大值.【答案】(1),,(2)①6;②且;③4【详解】(1)解:二次函数的图象的顶点为,;令,解得或,,;(2)解:①由题知,该函数过点,,,函数的解析式为:,函数的对称轴为直线,,,点,关于对称轴对称,,,故答案为:6;②设二次函数的解析式为:,将,,两点代入,得,,,,二次函数图象的对称轴与轴的交点坐标为,,,两点关于对称轴对称,点,,点在线段上,且与端点不重合,,即,时,过点,,三点的二次函数不存在,且;③,,.,且,时,有最大值,最大值为4.2.(2022·江苏淮安·中考真题)如图(1),二次函数的图像与轴交于、两点,与轴交于点,点的坐标为,点的坐标为,直线经过、两点. (1)求该二次函数的表达式及其图像的顶点坐标;(2)点为直线上的一点,过点作轴的垂线与该二次函数的图像相交于点,再过点作轴的垂线与该二次函数的图像相交于另一点,当时,求点的横坐标;(3)如图(2),点关于轴的对称点为点,点为线段上的一个动点,连接,点为线段上一点,且,连接,当的值最小时,直接写出的长.【答案】(1),顶点坐标(2)点横坐标为或或或(3)【详解】(1)解:将点,代入∴解得∴∵,∴顶点坐标;(2)解:设直线的解析式为,∴解得∴,设,则,,∴,,∵,∴,∴或,当时, 整理得,解得,,当时,整理得,解得,,∴点横坐标为或或或;(3)解:∵,点与点关于轴对称,∴,令,则,解得或,∴,∴,∵,∴点在平行于的线段上,设此线段与轴的交点为,∴,∴,∴,∴,∴,∵,∴,作点关于的对称点,连接与交于点,∵,∴,∴,∵,,∴,∵,∴,∴,∴,设直线的解析式为,∴,解得,∴,同理可求直线的解析式为,联立方程组,解得,∴,∵,∴.3.(2024·江苏连云港·中考真题)在平面直角坐标系中,已知抛物线(a、b为常数,). (1)若抛物线与轴交于、两点,求抛物线对应的函数表达式;(2)如图,当时,过点、分别作轴的平行线,交抛物线于点M、N,连接.求证:平分;(3)当,时,过直线上一点作轴的平行线,交抛物线于点.若的最大值为4,求的值.【答案】(1)(2)见解析(3)【详解】(1)解:分别将,代入,得,解得.函数表达式为;(2)解:连接, ,.当时,,即点,当时,,即点.,,,,,在中,.,,.,..平分.(3)解:设,则,.当时,.令,解得,.,,点在的上方(如图1). 设,故,其对称轴为,且.①当时,即.由图2可知: 当时,取得最大值.解得或(舍去).②当时,得,由图3可知: 当时,取得最大值.解得(舍去).综上所述,的值为.4.(2024·江苏苏州·中考真题)如图①,二次函数的图象与开口向下的二次函数图象均过点,.(1)求图象对应的函数表达式;(2)若图象过点,点P位于第一象限,且在图象上,直线l过点P且与x轴平行,与图象的另一个交点为Q(Q在P左侧),直线l与图象的交点为M,N(N在M左侧).当时,求点P的坐标;(3)如图②,D,E分别为二次函数图象,的顶点,连接,过点A作.交图象于点F,连接EF,当时,求图象对应的函数表达式.【答案】(1)(2)点P的坐标为(3)【详解】(1)解:(1)将,代入,得,,解得:对应的函数表达式为:;(2)解:设对应的函数表达式为,将点代入得:,解得:.对应的函数表达式为:,其对称轴为直线.又图象的对称轴也为直线,作直线,交直线l于点H(如答图①)由二次函数的对称性得,,∴.又,而.设,则点P的横坐标为,点M的横坐标为.将代入,得,将代入,得.,,即,解得,(舍去).点P的坐标为;(3)解:连接,交x轴于点G,过点F作于点I,过点F作轴于点J.(如答图②),轴,轴,四边形为矩形,,.设对应的函数表达式为,点D,E分别为二次函数图象,的顶点,将分别代入,得,∴,,,,.在中,.,.又,..设,则,.,.,.,.又,,①点F在上,,即.,②由①,②可得.解得(舍去),,.的函数表达式为.5.(2024·江苏常州·中考真题)在平面直角坐标系中,二次函数的图像与x轴相交于点A、B,与y轴相交于点C.(1)________;(2)如图,已知点A的坐标是.①当,且时,y的最大值和最小值分别是s、t,,求m的值;②连接,P是该二次函数的图像上位于y轴右侧的一点(点B除外),过点P作轴,垂足为D.作,射线交y轴于点Q,连接.若,求点P的横坐标.【答案】(1)3(2)①;②1或或【详解】(1)解:当时,,即;(2)解:①将点A代入得,,解得:,∴解析式为:,而,∴对称轴为直线:,当,且时,∴y随着x的增大而减小,∴当,,当时,,由得,,解得:或(舍)∴;②在中,,由题意得,,,∴四边形为平行四边形或等腰梯形,当点P在x轴上方,四边形为平行四边形时,则,∵轴,∴,∵,∴,∵,∴设,则,∴,∴,∴,将点代入,得:,解得:或(舍),∴;当四边形为等腰梯形时,则,过点P作轴于点E,∵轴,∴,∴,∴,∴,∴,∵,∴,∴设,则,∴,∴,即;当点P在x轴下方抛物线上时,此时四边形为平行四边形,则,∵∴,设,∴,∴,∴,∴,∴,将点P代入,得:,解得:或,而当时,,故舍,∴,综上:点P的横坐标为1或或.题型二 面积问题6.(2024·江苏徐州·中考真题)如图,A、B为一次函数的图像与二次函数的图像的公共点,点A、B的横坐标分别为0、4.P为二次函数的图像上的动点,且位于直线的下方,连接、.(1)求b、c的值;(2)求的面积的最大值.【答案】(1)(2)最大值为8【详解】(1)解:当时,;当时,,则,,则,解得:;(2)解:由(1)可得:,设,作交于E,则,则,∴,当时,最大值为8.7.(2024·江苏扬州·中考真题)如图,已知二次函数的图像与轴交于,两点.(1)求的值;(2)若点在该二次函数的图像上,且的面积为,求点的坐标.【答案】(1)(2)【详解】(1)解:二次函数的图像与轴交于,两点,∴,解得,,∴;(2)解:由(1)可知二次函数解析式为:,,,∴,设,∴,∴,∴,∴当时,,无解,不符合题意,舍去;当时,,;∴.8.(2022·江苏连云港·中考真题)已知二次函数,其中.(1)当该函数的图像经过原点,求此时函数图像的顶点的坐标;(2)求证:二次函数的顶点在第三象限;(3)如图,在(1)的条件下,若平移该二次函数的图像,使其顶点在直线上运动,平移后所得函数的图像与轴的负半轴的交点为,求面积的最大值.【答案】(1)(2)见解析(3)最大值为【详解】(1)解:将代入,解得.由,则符合题意,∴,∴.(2)解:由抛物线顶点坐标公式得顶点坐标为.∵,∴,∴,∴.∵,∴二次函数的顶点在第三象限.(3)解:设平移后图像对应的二次函数表达式为,则其顶点坐标为当时,,∴.将代入,解得.∵在轴的负半轴上,∴.∴.过点作,垂足为,∵,∴.在中,,∴当时,此时,面积有最大值,最大值为.9.(2022·江苏泰州·中考真题)如图,二次函数的图像与轴相交于点,与反比例函数的图像相交于点B(3,1).(1)求这两个函数的表达式;(2)当随的增大而增大且时,直接写出的取值范围;(3)平行于轴的直线l与函数的图像相交于点C、D(点C在点D的左边),与函数的图像相交于点E.若△ACE与△BDE的面积相等,求点E的坐标.【答案】(1);(2)(3)【详解】(1)解:二次函数的图像与轴相交于点,与反比例函数的图像相交于点,,,解得,,二次函数的解析式为,反比例函数的解析式为;(2)解:二次函数的解析式为,对称轴为直线,由图像知,当随的增大而增大且时,;(3)解:由题意作图如下:当时,,,,的边上的高与的边上的高相等,与的面积相等,,即点是二次函数的对称轴与反比例函数的交点,当时,, .10.(2023·江苏徐州·中考真题)如图,正方形纸片的边长为4,将它剪去4个全等的直角三角形,得到四边形.设的长为,四边形的面积为. (1)求关于的函数表达式;(2)当取何值时,四边形的面积为10?(3)四边形的面积是否存在最小值?若存在,求出最小值;若不存在,请说明理由.【答案】(1)(2)当取1或3时,四边形的面积为10;(3)存在,最小值为8.【详解】(1)解:在正方形纸片上剪去4个全等的直角三角形,,,四边形为正方形,在中,,,正方形的面积;不能为负,,故关于的函数表达式为(2)解:令,得,整理,得,解得,故当取1或3时,四边形的面积为10;(3)解:存在.正方形的面积;当时,y有最小值8,即四边形的面积最小为8.11.(2023·江苏徐州·中考真题)如图,在平面直角坐标系中,二次函数的图象与轴分别交于点,顶点为.连接,将线段绕点按顺时针方向旋转得到线段,连接.点分别在线段上,连接与交于点. (1)求点的坐标;(2)随着点在线段上运动.①的大小是否发生变化?请说明理由;②线段的长度是否存在最大值?若存在,求出最大值;若不存在,请说明理由;(3)当线段的中点在该二次函数的图象的对称轴上时,的面积为 .【答案】(1),;(2)①的大小不变,理由见解析;②线段的长度存在最大值为;(3)【详解】(1)解:∵,∴顶点为,令,,解得或,∴;(2)解:①的大小不变,理由如下:在上取点,使得,连接, ∵,∴抛物线对称轴为,即,∵将线段绕点按顺时针方向旋转得到线段,∴,,∴是等边三角形,∴,,∵,,,,∴,,,∴, ∴是等边三角形,,∴,∵,,∴是等边三角形,∴,,∴,,∵,∴,∵,∴,∴, ∴,∴,又,∴是等边三角形,∴,即的大小不变;②,∵,∴当最小时,的长最大,即当时,的长最大,∵是等边三角形,∴∴,∴, ∴,∴,∴,即线段的长度存在最大值为;(3)解:设的中点为点,连接,过点作于点, ∵,∴四边形是菱形,∴,∵,,∴,∴,,∵的中点为点,∴, ∴,∴,∵,∴,,∵的中点为点,是等边三角形,∴,∴,∴,∴,∴,∴即,∴, ∴,∴,∴,故答案为.题型三 角度问题12.(2022·江苏苏州·中考真题)如图,在二次函数(m是常数,且)的图像与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D.其对称轴与线段BC交于点E,与x轴交于点F.连接AC,BD.(1)求A,B,C三点的坐标(用数字或含m的式子表示),并求的度数;(2)若,求m的值;(3)若在第四象限内二次函数(m是常数,且)的图像上,始终存在一点P,使得,请结合函数的图像,直接写出m的取值范围.【答案】(1)A(-1,0);B(2m+1,0);C(0,2m+1);(2)(3)【详解】(1)当时,.解方程,得,.∵点A在点B的左侧,且,∴,.当时,.∴.∴.∵,∴.(2)方法一:如图1,连接AE.∵,∴,.∴,,.∵点A,点B关于对称轴对称,∴.∴.∴.∵,,∴,即.∵,∴.∴.∵,∴解方程,得.方法二:如图2,过点D作交BC于点H.由方法一,得,.∴.∵,∴,.∴.∵,,∴.∴.∴,即.∵,∴解方程,得.(3).设PC与x轴交于点Q,当P在第四象限时,点Q总在点B的左侧,此时,即.∵,∴.,,∴.解得,又,∴.13.(2022·江苏常州·中考真题)已知二次函数的自变量的部分取值和对应函数值如下表:… 0 1 2 3 …… 4 3 0 …(1)求二次函数的表达式;(2)将二次函数的图像向右平移个单位,得到二次函数的图像,使得当时,随增大而增大;当时,随增大而减小,请写出一个符合条件的二次函数的表达式______,实数的取值范围是_______;(3)、、是二次函数的图像上互不重合的三点.已知点、的横坐标分别是、,点与点关于该函数图像的对称轴对称,求的度数.【答案】(1)(2)(答案不唯一),(3)∠ACB=45°或135°【详解】(1)解:由题意得:,解得,∴二次函数解析式为;(2)解:∵原二次函数解析式为由题意得平移后的二次函数解析式为,∴平移后的二次函数对称轴为直线,∵二次函数的图像,使得当时,随增大而增大;当时,随增大而减小,且二次函数的开口向下,∴,∴,∴符合题意的二次函数解析式可以为;故答案为:(答案不唯一),;(3)解:∵二次函数解析式为,∴二次函数的对称轴为直线,∵A、C关于对称轴对称,点A的横坐标为m,∴C的横坐标为,∴点A的坐标为(m,),点C的坐标为(,),∵点B的横坐标为m+1,∴点B的坐标为(m+1,),∴,,如图1所示,当A、B同时在对称轴左侧时,过点B作BE⊥x轴于E,交AC于D,连接BC,∵A、C关于对称轴对称,∴轴,∴,∵,,∴,∴△BDC是等腰直角三角形,∴∠ACB=45°,同理当AB同时在对称轴右侧时,也可求得∠ACB=45°,如图2所示,当A在对称轴左侧,B在对称轴右侧时,过点B作直线BD垂直于直线AC交直线AC于D,同理可证△BDC为等腰直角三角形,∴∠BCD=45°,∴∠ACB=135°,同理当A在对称轴右侧,B在对称轴左侧也可求得∠ACB=135°,综上所述,∠ACB=45°或135°14.(2023·江苏无锡·中考真题)已知二次函数的图像与轴交于点,且经过点和点.(1)请直接写出,的值;(2)直线交轴于点,点是二次函数图像上位于直线下方的动点,过点作直线的垂线,垂足为.①求的最大值;②若中有一个内角是的两倍,求点的横坐标.【答案】(1),(2)①;②2或【详解】(1)∵二次函数的图像与轴交于点,且经过点和点∴解得:∴,,;(2)①如图1,过点作轴平行线分别交、于、.∵,当时,,∴,∴,,∴,∴.∵,,∴,∴,∴,∴.∵设直线的解析式为∴解得:直线解析式为.设,,,当时,取得最大值为,的最大值为.②如图2,已知,令,则,在上取点,使得,∴,设,则,则,解得,∴,即.如图3构造,且轴,相似比为,又∵,设,则.分类讨论:ⅰ当时,则,∴与的相似比为,∴,,∴,代入抛物线求得,(舍).∴点横坐标为.ⅱ当时,则,∴相似比为,∴,,∴,代入抛物线求得,(舍).∴点横坐标为.综上所示,点的横坐标为2或.15.(2022·江苏无锡·中考真题)已知二次函数图像的对称轴与x轴交于点A(1,0),图像与y轴交于点B(0,3),C、D为该二次函数图像上的两个动点(点C在点D的左侧),且.(1)求该二次函数的表达式;(2)若点C与点B重合,求tan∠CDA的值;(3)点C是否存在其他的位置,使得tan∠CDA的值与(2)中所求的值相等?若存在,请求出点C的坐标;若不存在,请说明理由.【答案】(1)(2)1(3),,【详解】(1)解:∵二次函数与y轴交于点,∴,即,∵,即二次函数对称轴为,∴,∴,∴二次函数的表达式为.(2)解:如图,过点D作x轴的垂线,垂足为E,连接BD,∵,∴,∵,∴,∵,∴,∴,即,∵,,∴,,设:,点D在第一象限,∴,,,∴,解得:(舍),(舍),当时,,∴,,∴,∵在中,∴(3)解:存在,如图,(2)图中关于对称轴对称时,,∵点D的坐标为,∴此时,点C的坐标为,如图,当点C、D关于对称轴对称时,此时AC与AD长度相等,即,当点C在x轴上方时,过点C作CE垂直于x轴,垂足为E,∵,点C、D关于对称轴对称,∴,∴为等腰直角三角形,∴,设点C的坐标为,∴,,∴解得:,(舍),此时,点C的坐标为,当点C在x轴下方时,过点C作CF垂直于x轴,垂足为F,∵,点C、D关于对称轴对称,∴,∴为等腰直角三角形,∴,设点C的坐标为,∴,,∴解得:(舍),,此时,点C的坐标为,综上:点C的坐标为,,.题型四 特殊三角形问题16.(2023·江苏·中考真题)如图,二次函数的图像与x轴相交于点,其顶点是C. (1)_______;(2)D是第三象限抛物线上的一点,连接OD,;将原抛物线向左平移,使得平移后的抛物线经过点D,过点作x轴的垂线l.已知在l的左侧,平移前后的两条抛物线都下降,求k的取值范围;(3)将原抛物线平移,平移后的抛物线与原抛物线的对称轴相交于点Q,且其顶点P落在原抛物线上,连接PC、QC、PQ.已知是直角三角形,求点P的坐标.【答案】(1);(2);(3)或.【详解】(1)解:把代入得,,解得,故答案为;(2)解:过点D作DM⊥OA于点M, ∵,∴二次函数的解析式为设,∵D是第三象限抛物线上的一点,连接OD,,∴,解得m=或m=8(舍去),当m=时,,∴,∵,∴设将原抛物线向左平移后的抛物线为,把代入得,解得a=3或a=(舍去),∴平移后得抛物线为∵过点作x轴的垂线l.已知在l的左侧,平移前后的两条抛物线都下降,在的对称轴x=的左侧,y随x的增大而减小,此时原抛物线也是y随x的增大而减小,∴;(3)解:由,设平移后的抛物线为,则顶点为,∵顶点为在上,∴,∴平移后的抛物线为,顶点为,∵原抛物线,∴原抛物线的顶点,对称轴为x=1,∵平移后的抛物线与原抛物线的对称轴相交于点Q,∴,∵点Q、C在直线x=1上,平移后的抛物线顶点P在原抛物线顶点C的上方,两抛物线的交点Q在顶点P的上方,∴∠PCQ与∠CQP都是锐角,∵是直角三角形,∴∠CPQ=90°,∴,∴化简得,∴p=1(舍去),或p=3或p=,当p=3时,,当p=时,,∴点P坐标为或.17.(2023·江苏连云港·中考真题)如图,在平面直角坐标系中,抛物线的顶点为.直线过点,且平行于轴,与抛物线交于两点(在的右侧).将抛物线沿直线翻折得到抛物线,抛物线交轴于点,顶点为. (1)当时,求点的坐标;(2)连接,若为直角三角形,求此时所对应的函数表达式;(3)在(2)的条件下,若的面积为两点分别在边上运动,且,以为一边作正方形,连接,写出长度的最小值,并简要说明理由.【答案】(1)(2)或(3),见解析【详解】(1)∵,∴抛物线的顶点坐标.∵,点和点关于直线对称.∴.(2)由题意得,的顶点与的顶点关于直线对称,∴,抛物线.∴当时,可得.①当时,如图1,过作轴,垂足为.∵,∴.∵∴.∴.∵,∴.∵直线轴,∴.∴.∵,∴.∴.又∵点在图像上,∴.解得或.∵当时,可得,此时重合,舍去.当时,符合题意.将代入,得. ②当时,如图2,过作,交的延长线于点.同理可得.∵,∴.∵,∴.∴.又∵点在图像上,∴.解得或.∵,∴.此时符合题意.将代入,得.③当时,此情况不存在.综上,所对应的函数表达式为或.(3)如图3,由(2)知,当时,,此时则,,则的面积为1,不合题意舍去.当时,,则,∴,此时的面积为3,符合题意∴.依题意,四边形是正方形,∴.取的中点,在中可求得.在中可求得.∴当三点共线时,取最小值,最小值为.题型五 特殊四边形问题18.(2023·江苏扬州·中考真题)在平面直角坐标系中,已知点A在y轴正半轴上. (1)如果四个点中恰有三个点在二次函数(a为常数,且)的图象上.①________;②如图1,已知菱形的顶点B、C、D在该二次函数的图象上,且轴,求菱形的边长;③如图2,已知正方形的顶点B、D在该二次函数的图象上,点B、D在y轴的同侧,且点B在点D的左侧,设点B、D的横坐标分别为m、n,试探究是否为定值.如果是,求出这个值;如果不是,请说明理由.(2)已知正方形的顶点B、D在二次函数(a为常数,且)的图象上,点B在点D的左侧,设点B、D的横坐标分别为m、n,直接写出m、n满足的等量关系式.【答案】(1)①1;②;③是,值为1(2)或【详解】(1)①解:当,,∴不在二次函数图象上,将代入,解得,故答案为:1;②解:由①知,二次函数解析式为,设菱形的边长为,则,,由菱形的性质得,,,∴轴,∴,∵,∴,解得(舍去),(舍去),,∴菱形的边长为;③解:如图2,连接、交点为,过作轴于,过作于, 由正方形的性质可知,为、的中点,,,∴,∴,∵,,,∴,∴,,由题意知,,,,则,,设,则,,∴,,,,∴,,∴,∵点B、D在y轴的同侧,且点B在点D的左侧,∴,∴,∴是定值,值为1;(2)解:由题意知,分①当在轴右侧时,②当在轴左侧时,③当在轴左侧,在轴右侧时,三种情况求解;①当在轴右侧时,∵,同理(1)③,,,由题意知,,,,则,,设,则,,∴,,,,∴,,∴,化简得,∵∴;②当在轴左侧时,同理可求;③当在轴左侧,在轴右侧时,且不垂直于轴时,同理可求,当在轴左侧,在轴右侧时,且垂直于轴时,由正方形、二次函数的性质可得,;综上所述,或.19.(2024·江苏无锡·中考真题)已知二次函数的图象经过点和点.(1)求这个二次函数的表达式;(2)若点,都在该二次函数的图象上,试比较和的大小,并说明理由;(3)点在直线上,点在该二次函数图象上.问:在轴上是否存在点,使得以,,,为顶点的四边形是正方形?若存在,请直接写出所有满足条件的点的坐标;若不存在,请说明理由.【答案】(1)(2)时,;时,;时,(3)存在,或或或或或【详解】(1)解:把,代入得:,解得:,∴这个二次函数的表达式为;(2)解:∵,都在该二次函数的图象上,∴,,∴,当时,即时,;当时,即时,;当时,即时,;(3)解:设直线的函数解析式为,把,代入得:,解得:,∴直线的函数解析式为,当为正方形的边时,①∵,∴,过点M作y轴的垂线,垂足为点G,过点P作的垂线,垂足为点H,∵轴,∴,∴,则,设,则,∴,∴点N的纵坐标为,即,∵以,,,为顶点的四边形是正方形,∴,∴,∵,∴,∵,,,∴,∴,∴,把代入得:,解得:,(舍去),∴;②如图:构造,和①同理可得:,,设,则,∴,,,把代入得:,解得:(舍去),∴;③如图:构造,和①同理可得:,,设,则,∴,,,把代入得:,解得:(舍去),∴;④如图:构造,和①同理可得:,,设,则,∴,,,把代入得:,解得:,(舍去),∴;当为正方形对角线时,⑤如图:构造矩形,过点P作于点K,易得,∴,设,则,和①同理可得:,∴,∴四边形为正方形,∴,∴,则,∴,设,则,∴,,,把代入得:,解得:(舍去),∴;⑥如图:构造,同理可得:,设,则,∴,,,把代入得:,解得:(舍去),∴;综上:或或或或或.题型六 二次函数与圆综合20.(2023·江苏苏州·中考真题)如图,二次函数的图像与轴分别交于点(点A在点的左侧),直线是对称轴.点在函数图像上,其横坐标大于4,连接,过点作,垂足为,以点为圆心,作半径为的圆,与相切,切点为. (1)求点的坐标;(2)若以的切线长为边长的正方形的面积与的面积相等,且不经过点,求长的取值范围.【答案】(1)(2)或或【详解】(1)解:令,则有:,解得:或,∴.(2)解:∵抛物线过∴抛物线的对称轴为,设,∵,∴,如图:连接,则,∴,∴切线为边长的正方形的面积为,过点P作轴,垂足为H,则:,∴∵,∴, 假设过点,则有以下两种情况:①如图1:当点M在点N的上方,即 ∴,解得:或,∵∴;②如图2:当点M在点N的下方,即 ∴,解得:,∵∴;综上,或.∴当不经过点时,或或.21.(2022·江苏盐城·中考真题)【发现问题】小明在练习簿的横线上取点为圆心,相邻横线的间距为半径画圆,然后半径依次增加一个间距画同心圆,描出了同心圆与横线的一些交点,如图1所示,他发现这些点的位置有一定的规律.【提出问题】小明通过观察,提出猜想:按此步骤继续画圆描点,所描的点都在某二次函数图像上.(1)【分析问题】小明利用已学知识和经验,以圆心为原点,过点的横线所在直线为轴,过点且垂直于横线的直线为轴,相邻横线的间距为一个单位长度,建立平面直角坐标系,如图2所示.当所描的点在半径为5的同心圆上时,其坐标为___________.(2)【解决问题】请帮助小明验证他的猜想是否成立.(3)【深度思考】小明继续思考:设点,为正整数,以为直径画,是否存在所描的点在上.若存在,求的值;若不存在,说明理由.【答案】(1)或(2)成立,理由见解析(3)存在,4【详解】(1)解:如图,∴∴故答案为:或(2)小明的猜想成立.解法1:如图,设半径为的圆与直线的交点为.因为,所以,即,所以,所以上,小明的猜想成立.解法2:设半径为的圆与直线交点为,因为,所以,解得,所以.,消去,得,点在抛物线上,小明的猜想成立.(3)存在所描的点在上,理由:如图,设所描的点在上,则,因为,所以,整理得,因为,都是正整数,所以只有,满足要求.因此,存在唯一满足要求的,其值是4.题型七 二次函数中的平移、旋转、翻折问题22.(2022·江苏镇江·中考真题)一次函数的图像与轴交于点,二次函数的图像经过点、原点和一次函数图像上的点.(1)求这个二次函数的表达式;(2)如图1,一次函数与二次函数的图像交于点、(),过点作直线轴于点,过点作直线轴,过点作于点.①_________,_________(分别用含的代数式表示);②证明:;(3)如图2,二次函数的图像是由二次函数的图像平移后得到的,且与一次函数的图像交于点、(点在点的左侧),过点作直线轴,过点作直线轴,设平移后点、的对应点分别为、,过点作于点,过点作于点.①与相等吗?请说明你的理由;②若,求的值.【答案】(1)(2)①,;②见解析(3)①,理由见解析;②3【详解】(1)令,则,解得,∴,将点代入中,解得,∴点的坐标为.将,,代入可得:,解得:,∴二次函数的表达式为.(2)①∵一次函数与二次函数的图像交于点、(),∴联立关系式得:,整理得:,解得:,,故答案为:,;②当时,位于的上方,∵、,∴,,∴,当时,位于的下方,同理可证.故可得:;(3)方法一:①∵二次函数图像的顶点为,二次函数的图像的顶点为,∴新二次函数的图像是由原二次函数的图像向右平移个单位,向上平移3个单位得到的.∴的对应点为,的对应点为,联立关系式可得:,整理得:,,当时,解得:,,∴,,∴.②∵,.∴,∴,解得:.方法二:①设、平移前的对应点分别为、,则.则,∵、平移前的对应点分别为、,由(2)②及平移的性质可知,.②∵,∴,∵到轴的距离为,点是轴与二次函数的图像的交点,∴平移后点的对应点即为点.∵二次函数图像的顶点为,二次函数的图像的顶点为,∴新二次函数的图像是由原二次函数的图像向右平移个单位,向上平移3个单位得到的.∴,将点的坐标代入中,解得.另解:∵,∴,的对应点为.∵,∴点的横坐标为,代入,得.∴.将点的坐标代入中,解得.23.(2024·江苏宿迁·中考真题)如图①,已知抛物线与x轴交于两点,将抛物线向右平移两个单位长度,得到抛物线,点P是抛物线在第四象限内一点,连接并延长,交抛物线于点Q.(1)求抛物线的表达式;(2)设点P的横坐标为,点Q的横坐标为,求的值;(3)如图②,若抛物线与抛物线交于点C,过点C作直线,分别交抛物线和于点M、N(M、N均不与点C重合),设点M的横坐标为m,点N的横坐标为n,试判断是否为定值.若是,直接写出这个定值;若不是,请说明理由.【答案】(1);(2);(3)是定值,.【详解】(1)解:∵抛物线与x轴交于两点,∴,解得,∴,∵抛物线向右平移两个单位长度,得到抛物线,∴即(2)解:设点P的坐标为,设直线的解析式为,把点A和点P的坐标代入得到,则解得,∴直线的解析式为,联立与得到,解得,则(3)解:由(1)可得,,与联立得到,,解得,此时∴点C的坐标为,∵点M的横坐标为m,且在上,∴即点M的坐标为设直线的解析式为,把点C和点M的坐标代入得到,则解得,∴直线的解析式为,与联立得到,,整理得到,则,即,即,即为定值.24.(2022·江苏宿迁·中考真题)如图,二次函数与轴交于 (0,0), (4,0)两点,顶点为,连接、,若点是线段上一动点,连接,将沿折叠后,点落在点的位置,线段与轴交于点,且点与、点不重合.(1)求二次函数的表达式;(2)①求证:;②求;(3)当时,求直线与二次函数的交点横坐标.【答案】(1)(2)①证明见解析,②(3)或.【详解】(1)解:∵二次函数与轴交于 (0,0), (4,0)两点,∴代入 (0,0), (4,0)得,,解得:,∴二次函数的表达式为;(2)①证明:∵ =,∴顶点C的坐标是(2,﹣2),抛物线的对称轴为直线x=2,∵二次函数与轴交于(0,0),(4,0)两点,∴由抛物线的对称性可知OC=AC,∴∠CAB=∠COD,∵沿折叠后,点落在点的位置,线段与轴交于点,∴ △ABC≌△BC,∴∠CAB=∠,AB=B,∴∠COD=∠,∵∠ODC=∠BD,∴;②∵,∴,设点D的坐标为(d,0),DC=,∵点与、点不重合,∴0<d<4,对于 =来说,∵ a=1>0,∴抛物线开口向上,在顶点处取最小值,当d=2时,的最小值是4,∴当d=2时,DC有最小值为,OC=,∴有最小值为,∴的最小值为;(3)解:∵,∴,∵,∴ ,∵OC=2,∴B=AB=1,∴点B的坐标是(3,0),设直线BC的解析式为y=x+,把点B(3,0),C(2,﹣2)代入得,解得,∴直线BC的解析式为y=2x-6,设点的坐标是(p,q),∴线段A的中点为(,),由折叠的性质知点(,)在直线BC上,∴=2×-6,解得q=2p-4,B=,整理得=1,解得p=2或p=,当p=2时,q=2p-4=0,此时点(2,0),很显然不符合题意,当p=时,q=2p-4=,此时点(,),符合题意,设直线的解析式为y=x+,把点B(3,0),(,)代入得,,解得,∴直线的解析式为y=x+4,联立直线和抛物线得到,,解得,,∴直线与二次函数的交点横坐标为或.25.(2023·江苏镇江·中考真题)已知,在平面直角坐标系中,点A的坐标为,点B的坐标为,点C与点B关于原点对称,直线分别与y轴交于点E,F,点F在点E的上方,. (1)分别求点E,F的纵坐标(用含m,n的代数式表示),并写出m的取值范围.(2)求点B的横坐标m,纵坐标n之间的数量关系.(用含m的代数式表示n)(3)将线段绕点顺时针旋转,E,F的对应点分别是,.当线段与点B所在的某个函数图象有公共点时,求m的取值范围.【答案】(1),,(2)(3)或【详解】(1)由直线与y轴交于E,得,∵点C与点B关于原点对称,,∴,由直线与y轴交于点F,得,即,综上所述,,设直线对应的一次函数解析式为,将,代入,得:,解得,∴,同理;由点F在点E上边知: ,且,∴,即; (2)由题意得,,整理得,;(3)∵n与m的关系式为,∴在函数的图象上,由旋转得,,当在点B所在的函数图象上时,,解得,∵线段与点B所在的函数图象有公共点,∴或,由旋转得,且;∵或.∵,∴或.题型八 交点/公共点问题26.(2023·江苏南京·中考真题)已知二次函数(a为常数,.(1)若,求证:该函数的图象与x轴有两个公共点.(2)若,求证:当时,.(3)若该函数的图象与轴有两个公共点,,且,则的取值范围是.【答案】(1)见解析(2)见解析(3)或【详解】(1)证明:因为,又因为,所以,,所以,所以该函数的图象与轴有两个公共点.(2)证明:将代入函数解析式得,,所以抛物线的对称轴为直线,开口向下.则当时,随的增大而增大,又因为当时,,所以.(3)对称轴为直线,顶点坐标为,①当时,抛物线开口向上,要保证二次函数与x轴两个交点在与之间(不包含这两点),则只需保证顶点在x轴下方,时,,时,,即,解得:②当时,抛物线开口向下,要保证二次函数与x轴两个交点在与之间(不包含这两点),则只需保证顶点在x轴上方,时,,时即,解得,综上,当或时,二次函数与x轴两个交点在与之间(不包含这两点),故答案为:或.27.(2023·江苏盐城·中考真题)定义:若一次函数的图象与二次函数的图象有两个交点,并且都在坐标轴上,则称二次函数为一次函数的轴点函数.【初步理解】(1)现有以下两个函数:①;②,其中,_________为函数的轴点函数.(填序号)【尝试应用】(2)函数(为常数,)的图象与轴交于点,其轴点函数与轴的另一交点为点.若,求的值.【拓展延伸】(3)如图,函数(为常数,)的图象与轴、轴分别交于,两点,在轴的正半轴上取一点,使得.以线段的长度为长、线段的长度为宽,在轴的上方作矩形.若函数(为常数,)的轴点函数的顶点在矩形的边上,求的值. 【答案】(1)①;(2)或;(3)或或【详解】(1)函数交轴于,交轴于,∵点、都在函数图象上∴①为函数的轴点函数;∵点不在函数图象上∴②不是函数的轴点函数;故答案为:①;(2)函数交轴于,交轴于,∵函数的轴点函数∴和都在上,∵∴∵,∴∴或当时,把代入得,解得,当时,把代入得,解得,综上,或;(3)函数交轴于,交轴于,∵,以线段的长度为长、线段的长度为宽,在轴的上方作矩形∴,,,∵函数(为常数,)的轴点函数∴和在上∴,整理得∴∴的顶点坐标为,∵函数的顶点在矩形的边上∴可以分三种情况讨论:当与重合时;当在上时;当在上时;当与重合时,即,解得;当在上时,,整理得,解得此时二次函数开口向下,则∴整理得:,由整理得,∴解得,∴,当在上时,,整理得,解得∴此时对称轴左边y随x的增大而增大,∴∴整理得:∴代入、后成立∴,综上所述,或或28.(2023·江苏·中考真题)已知二次函数(为常数).(1)该函数图像与轴交于两点,若点坐标为,①则的值是_________,点的坐标是_________;②当时,借助图像,求自变量的取值范围;(2)对于一切实数,若函数值总成立,求的取值范围(用含的式子表示);(3)当时(其中为实数,),自变量的取值范围是,求和的值以及的取值范围.【答案】(1)①②或(2)(3)【详解】(1)解:①∵函数图像与轴交于两点,点坐标为,∴,∴,∴,∴当时,,∴,∴点的坐标是;故答案为:;②,列表如下:1 3 45 0 0 5画出函数图像如下: 由图可知:当时,或;(2)∵,∴当时,有最小值为;∵对于一切实数,若函数值总成立,∴;(3)∵,∴抛物线的开口向上,对称轴为,又当时(其中为实数,),自变量的取值范围是,∴直线与抛物线的两个交点为,直线在抛物线的下方,∴关于对称轴对称,∴,∴,∴,∴,当时,有最小值,∴. 题型九 函数的综合问题29.(2024·江苏南通·中考真题)已知函数(a,b为常数).设自变量x取时,y取得最小值.(1)若,,求的值;(2)在平面直角坐标系中,点在双曲线上,且.求点P到y轴的距离;(3)当,且时,分析并确定整数a的个数.【答案】(1)(2)2或1(3)整数a有4个【详解】(1)解:有题意知,当时,y取得最小值8;(2)解:∵点在双曲线上,∴,∴,∵,∴,化解得,解得或,则点或,∴点P到y轴的距离为2或1;(3)解:∵,∴,∴,∵,∴,化简得,∴,则整数a有4个.30.(2023·江苏宿迁·中考真题)规定:若函数的图像与函数的图像有三个不同的公共点,则称这两个函数互为“兄弟函数”,其公共点称为“兄弟点”.(1)下列三个函数①;②;③,其中与二次函数互为“兄弟函数”的是________(填写序号);(2)若函数与互为“兄弟函数”,是其中一个“兄弟点”的横坐标.①求实数a的值;②直接写出另外两个“兄弟点”的横坐标是________、________;(3)若函数(m为常数)与互为“兄弟函数”,三个“兄弟点”的横坐标分别为、、,且,求的取值范围.【答案】(1)②(2);、(3)【详解】(1)解:作出;;;图像,如图所示: 与图像有三个不同的公共点,根据“兄弟函数”定义,与二次函数互为“兄弟函数”的是②,故答案为:②;(2)解:①函数与互为“兄弟函数”,是其中一个“兄弟点”的横坐标,,则,解得;②联立,即,是其中一个解,因式分解得,则,解得,另外两个“兄弟点”的横坐标是、;(3)解:在平面直角坐标系中作出(m为常数)与图像,如图所示: 联立 ,即,①当时,,即,当时,;②当时,,即,由①中,则,;由图可知,两个函数的交点只能在第二象限,从而,再根据三个“兄弟点”的横坐标分别为、、,且,,,,,由得到,即.31.(2022·江苏南通·中考真题)定义:函数图像上到两坐标轴的距离都不大于的点叫做这个函数图像的“n阶方点”.例如,点是函数图像的“阶方点”;点是函数图像的“2阶方点”.(1)在①;②;③三点中,是反比例函数图像的“1阶方点”的有___________(填序号);(2)若y关于x的一次函数图像的“2阶方点”有且只有一个,求a的值;(3)若y关于x的二次函数图像的“n阶方点”一定存在,请直接写出n的取值范围.【答案】(1)②③(2)3或;(3)【详解】(1)解:∵点到x轴的距离为2,大于1,∴不是反比例函数图象的“1阶方点”,∵点和点都在反比例函数的图象上,且到两坐标轴的距离都不大于1,∴和是反比例函数图象的“1阶方点”,故答案为:②③;(2)如图作正方形,四个顶点坐标分别为(2,2),(-2,2),(-2,-2),(2,-2),当a>0时,若y关于x的一次函数图象的“2阶方点”有且只有一个,则过点(-2,2)或(2,-2),把(-2,2)代入得:,解得:(舍去);把(2,-2)代入得:,解得:;当a<0时,若y关于x的一次函数图象的“2阶方点”有且只有一个,则过点(2,2)或(-2,-2),把(2,2)代入得:,解得:;把(-2,-2)代入得:,解得:(舍去);综上,a的值为3或;(3)∵二次函数图象的顶点坐标为(n,),∴二次函数图象的顶点坐标在直线y=-2x+1上移动,∵y关于x的二次函数图象的“n阶方点”一定存在,∴二次函数的图象与以顶点坐标为(n,n),(-n,n),(-n,-n),(n,-n)的正方形有交点,如图,当过点(n,-n)时,将(n,-n)代入得:,解得:,当过点(-n,n)时,将(-n,n)代入得:,解得:或(舍去),由图可知,若y关于x的二次函数图象的“n阶方点”一定存在,n的取值范围为:.题型十 二次函数解决实际问题32.(2024·江苏盐城·中考真题)请根据以下素材,完成探究任务.制定加工方案生产背景 背景1 ◆某民族服装厂安排70名工人加工一批夏季服装,有“风”“雅”“正”三种样式. ◆因工艺需要,每位工人每天可加工且只能加工“风”服装2件,或“雅”服装1件,或“正”服装1件. ◆要求全厂每天加工“雅”服装至少10件,“正”服装总件数和“风”服装相等.背景2 每天加工的服装都能销售出去,扣除各种成本,服装厂的获利情况为: ①“风”服装:24元/件; ②“正”服装:48元/件; ③“雅”服装:当每天加工10件时,每件获利100元;如果每天多加工1件,那么平均每件获利将减少2元.信息整理 现安排x名工人加工“雅”服装,y名工人加工“风”服装,列表如下: 服装种类加工人数(人)每人每天加工量(件)平均每件获利(元)风y224雅x1正148探究任务 任务1 探寻变量关系 求x、y之间的数量关系.任务2 建立数学模型 设该工厂每天的总利润为w元,求w关于x的函数表达式.任务3 拟定加工方案 制定使每天总利润最大的加工方案.【答案】任务1:;任务2:;任务3:安排19名工人加工“雅”服装,17名工人加工“风”服装,34名工人加工“正”服装,即可获得最大利润【详解】解:任务1:根据题意安排70名工人加工一批夏季服装,∵安排x名工人加工“雅”服装,y名工人加工“风”服装,∴加工“正”服装的有人,∵“正”服装总件数和“风”服装相等,∴,整理得:;任务2:根据题意得:“雅”服装每天获利为:,∴,整理得:∴任务3:由任务2得,∴当时,获得最大利润,,∴,∵开口向下,∴取或,当时,,不符合题意;当时,,符合题意;∴,综上:安排19名工人加工“雅”服装,17名工人加工“风”服装,34名工人加工“正”服装,即可获得最大利润.33.(2022·江苏扬州·中考真题)如图是一块铁皮余料,将其放置在平面直角坐标系中,底部边缘在轴上,且dm,外轮廓线是抛物线的一部分,对称轴为轴,高度dm.现计划将此余料进行切割:(1)若切割成正方形,要求一边在底部边缘上且面积最大,求此正方形的面积;(2)若切割成矩形,要求一边在底部边缘上且周长最大,求此矩形的周长;(3)若切割成圆,判断能否切得半径为dm的圆,请说明理由.【答案】(1) ;(2)20dm;(3)能切得半径为3dm的圆.【详解】(1)由题目可知A(-4,0),B(4,0),C(0,8)设二次函数解析式为y=ax +bx+c,∵对称轴为y轴,∴b=0,将A、C代入得,a=,c=8则二次函数解析式为,如下图所示,正方形MNPQ即为符合题意得正方形,设其边长为2m,则P点坐标可以表示为(m,2m)代入二次函数解析式得,,解得(舍去),∴2m=,则正方形的面积为;(2)如下图所示矩形DEFG,设DE=2n,则E(n,0)将x=n代入二次函数解析式,得,则EF=,矩形DEFG的周长为:2(DE+EF)=2(2n+)=,当n=2时,矩形的周长最大,最大周长为20dm;(3)若能切成圆,能切得半径为3dm的圆,理由如下:如图,N为上一点,也是抛物线上一点,过点N作的切线交y轴于点Q,连接MN,过点N作NP⊥y轴于P,设,由勾股定理得:,∴解得:,(舍去),∴,∴∵∴∴设QN的解析式为:∴∴∴QN的解析式为:与抛物线联立为:所以此时N为与抛物线在y轴右侧的唯一公共点,所以若切割成圆,能够切成半径为3dm的圆.试卷第4页,共92页第14页(共92页) 展开更多...... 收起↑ 资源列表 专题01 二次函数综合压轴题(3年中考,10大题型)-原卷版.docx 专题01 二次函数综合压轴题(3年中考,10大题型)-解析版.docx