江苏13大市中考真题分类-专题09 统计与概率(3年中考,3大题型)(原卷+解析版)

资源下载
  1. 二一教育资源

江苏13大市中考真题分类-专题09 统计与概率(3年中考,3大题型)(原卷+解析版)

资源简介

中小学教育资源及组卷应用平台
【中考真题汇编】江苏13大市三年(2022-2024)中考真题分类汇编
专题09 统计与概率(3年中考,3大题型)
题型一 概率计算 1
题型二 数据的收集与整理 11
题型三 数据分析 33
题型一 概率计算
1.(2024·江苏徐州·中考真题)不透明的袋子中装有2个红球与2个白球,这些球除颜色外无其他差别.
(1)甲从袋子中随机摸出1个球,摸到红球的概率为______;
(2)甲、乙两人分别从袋子中随机摸出1个球(不放回),用列表或画树状图的方法,求两人摸到相同颜色球的概率.
2.(2024·江苏南通·中考真题)南通地铁1号线“世纪大道站”有标识为1、2、3、4的四个出入口.某周六上午,甲、乙两位学生志愿者随机选择该站一个出入口,开展志愿服务活动.
(1)甲在2号出入口开展志愿服务活动的概率为______;
(2)求甲、乙两人在同一出入口开展志愿服务活动的概率.
3.(2024·江苏镇江·中考真题)3张相同的卡片上分别写有中国二十四节气中的“小满”、“芒种”、“夏至”的字样,将卡片的背面朝上.
(1)洗匀后,从中任意抽取1张卡片,抽到写有“小满”的卡片的概率等于__________;
(2)洗匀后,从中任意抽取2张卡片,用画树状图或列表的方法,求抽到一张写有“芒种”,一张写有“夏至”的卡片的概率.
4.(2024·江苏宿迁·中考真题)某校组织七年级学生开展以“讲好红色故事,传承红色基因”为主题的研学活动,策划了四条研学线路供学生选择:A彭雪枫纪念馆,B淮海军政大礼堂,C爱园烈士陵园,D大王庄党性教育基地,每名学生只能任意选择一条线路.
(1)小刚选择线路A的概率为________;
(2)请用画树状图或列表的方法,求小刚和小红选择同一线路的概率.
5.(2024·江苏无锡·中考真题)一只不透明的袋子中装有1个白球、1个红球和1个绿球,这些球除颜色外都相同.
(1)将球搅匀,从中任意摸出1个球,摸到白球的概率是______;
(2)将球搅匀,从中任意摸出1个球,记录颜色后放回、搅匀,再从中任意摸出1个球.求2次摸到的球颜色不同的概率.(请用“画树状图”或“列表”等方法写出分析过程)
6.(2024·江苏常州·中考真题)在3张相同的小纸条上分别写有“石头”、“剪子”、“布”.将这3张小纸条做成3支签,放在不透明的盒子中搅匀.
(1)从盒子中任意抽出1支签,抽到“石头”的概率是________;
(2)甲、乙两人通过抽签分胜负,规定:“石头”胜“剪子”,“剪子”胜“布”,“布”胜“石头”.甲先从盒子中任意抽出1支签(不放回),乙再从余下的2支签中任意抽出1支签,求甲取胜的概率.
7.(2024·江苏苏州·中考真题)一个不透明的盒子里装有4张书签,分别描绘“春”,“夏”,“秋”,“冬”四个季节,书签除图案外都相同,并将4张书签充分搅匀.
(1)若从盒子中任意抽取1张书签,恰好抽到“夏”的概率为______;
(2)若从盒子中任意抽取2张书签(先抽取1张书签,且这张书签不放回,再抽取1张书签),求抽取的书签恰好1张为“春”,1张为“秋”的概率.(请用画树状图或列表等方法说明理由)
8.(2024·江苏扬州·中考真题)2024年“五一”假期,扬州各旅游景区持续火热.小明和小亮准备到东关街、瘦西湖、运河三湾风景区、个园、何园(分别记作A、B、C、D、E)参加公益讲解活动.
(1)若小明在这5个景区中随机选择1个景区,则选中东关街的概率是______;
(2)小明和小亮在C、D、E三个景区中,各自随机选择1个景区,请用画树状图或列表的方法,求小明和小亮选到相同景区的概率.
9.(2024·江苏盐城·中考真题)在“重走建军路,致敬新四军”红色研学活动中,学校建议同学们利用周末时间自主到以下三个基地开展研学活动.
A.新四军纪念馆(主馆区);
B.新四军重建军部旧址(泰山庙):
C.新四军重建军部纪念塔(大铜马),
小明和小丽各自随机选择一个基地作为本次研学活动的第一站.
(1)小明选择基地A的概率为________:
(2)用画树状图或列表的方法,求小明和小丽选择相同基地的概率.
10.(2024·江苏连云港·中考真题)数学文化节猜谜游戏中,有四张大小、形状、质地都相同的字谜卡片,分别记作字谜A、字谜B、字谜C、字谜D,其中字谜A、字谜B是猜“数学名词”,字谜C、字谜D是猜“数学家人名”.
(1)若小军从中随机抽取一张字谜卡片,则小军抽取的字谜是猜“数学名词”的概率是__________;
(2)若小军一次从中随机抽取两张字谜卡片,请用画树状图或列表的方法求小军抽取的字谜均是猜“数学家人名”的概率.
11.(2023·江苏南京·中考真题)某旅游团从甲、乙、丙、丁4个景点中随机选取景点游览.
(1)选取2个景点,求恰好是甲、乙的概率:
(2)选取3个景点,则甲、乙在其中的概率为 .
12.(2023·江苏盐城·中考真题)随着盐城交通的快速发展,城乡居民出行更加便捷.如图,从甲镇到乙镇有乡村公路和省级公路两条路线;从乙镇到盐城南洋国际机场,有省级公路、高速公路和城市高架三条路线.小华驾车从甲镇到盐城南洋国际机场接人(不考虑其他因素).
(1)从甲镇到乙镇,小华所选路线是乡村公路A的概率为_________.
(2)用列表或画树状图的方法,求小华两段路程都选省级公路的概率.
13.(2023·江苏·中考真题)小华、小玲一起到淮安西游乐园游玩,他们决定在三个热门项目(A:智取芭蕉扇、B:三打白骨精、C:盘丝洞)中各自随机选择一个项目游玩.
(1)小华选择C项目的概率是_________;
(2)用画树状图或列表等方法求小华、小玲选择不同游玩项目的概率.
14.(2023·江苏镇江·中考真题)一只不透明的袋子中装有2个红球和1个白球,这些球除颜色外都相同.将球搅匀,从中任意摸出1个球后,不放回,将袋中剩余的球搅匀,再从中任意摸出1个球.用画树状图或列表的方法,求2次都摸到红球的概率.
15.(2023·江苏南通·中考真题)有同型号的,两把锁和同型号的,,三把钥匙,其中钥匙只能打开锁,钥匙只能打开锁,钥匙不能打开这两把锁.
(1)从三把钥匙中随机取出一把钥匙,取出钥匙的概率等于___________;
(2)从两把锁中随机取出一把锁,从三把钥匙中随机取出一把钥匙,求取出的钥匙恰好能打开取出的锁的概率.
16.(2023·江苏宿迁·中考真题)某校计划举行校园歌手大赛.九(1)班准备从A、B、C三名男生和D、E两名女生中随机选出参赛选手.
(1)若只选1名选手参加比赛,则女生D入选的概率是________;
(2)若选2名选手参加比赛,求恰有1名男生和1名女生的概率(用画树状图或列表法求解).
17.(2023·江苏泰州·中考真题)某校组织学生去敬老院表演节目,表演形式有舞蹈、情景剧和唱歌3种类型.小明、小丽2人积极报名参加,从3种类型中随机挑选一种类型.求小明、小丽选择不同类型的概率.
18.(2023·江苏无锡·中考真题)为了深入推动大众旅游,满足人民群众美好生活需要,我市举办中国旅游日惠民周活动,活动主办方在活动现场提供免费门票抽奖箱,里面放有4张相同的卡片,分别写有景区:A.宜兴竹海,B.宜兴善卷洞,C.阖闾城遗址博物馆,D.锡惠公园.抽奖规则如下:搅匀后从抽奖箱中任意抽取一张卡片,记录后放回,根据抽奖的结果获得相应的景区免费门票.
(1)小明获得一次抽奖机会,他恰好抽到景区A门票的概率是_________.
(2)小亮获得两次抽奖机会,求他恰好抽到景区A和景区B门票的概率.
19.(2023·江苏徐州·中考真题)甲,乙、丙三人到淮海战役烈士纪念塔园林游览,若每人分别从纪念塔、纪念馆这两个景点中选择一个参观,且选择每个景点的机会相等,则三人选择相同景点的概率为多少?
20.(2023·江苏连云港·中考真题)如图,有张分别印有版西游图案的卡片:唐僧、孙悟空、猪八戒、沙悟净.

现将这张卡片(卡片的形状、大小、质地都相同)放在不透明的盒子中,搅匀后从中任意取出张卡片,记录后放回、搅匀,再从中任意取出张卡片求下列事件发生的概率:
(1)第一次取出的卡片图案为“孙悟空”的概率为__________;
(2)用画树状图或列表的方法,求两次取出的2张卡片中至少有张图案为“唐僧”的概率.
21.(2023·江苏扬州·中考真题)扬州是个好地方,有着丰富的旅游资源.某天甲、乙两人来扬州旅游,两人分别从,,三个景点中随机选择一个景点游览.
(1)甲选择景点的概率为________;
(2)请用画树状图或列表的方法,求甲、乙两人中至少有一人选择景点的概率.
22.(2023·江苏苏州·中考真题)一只不透明的袋子中装有4个小球,分别标有编号,这些小球除编号外都相同.
(1)搅匀后从中任意摸出1个球,这个球的编号是2的概率为________________.
(2)搅匀后从中任意摸出1个球,记录球的编号后放回、搅匀,再从中任意摸出1个球.求第2次摸到的小球编号比第1次摸到的小球编号大1的概率是多少?(用画树状图或列表的方法说明)
23.(2022·江苏南京·中考真题)甲城市有2个景点、,乙城市由3个景点、、,从中随机选取景点游览,求下列事件的概率:
(1)选取1个景点,恰好在甲城市;
(2)选取2个景点,恰好在同一个城市.
24.(2022·江苏淮安·中考真题)一只不透明的袋子中装有3个大小、质地完全相同的乒乓球,球面上分别标有数字1、2、3,搅匀后先从袋子中任意摸出1个球,记下数字后放回,搅匀后再从袋子中任意摸出1个球,记下数字.
(1)第一次摸到标有偶数的乒乓球的概率是______;
(2)用画树状图或列表等方法求两次都摸到标有奇数的乒乓球的概率.
25.(2022·江苏徐州·中考真题)如图,将下列3张扑克牌洗匀后数字朝下放在桌面上.
(1)从中随机抽取1张,抽得扑克牌上的数字为3的概率为 ;
(2)从中随机抽取2张,用列表或画树状图的方法,求抽得2张扑克牌的数字不同的概率.
26.(2022·江苏镇江·中考真题)一只不透明的袋子中装有2个白球、1个红球,这些球除颜色外都相同.
(1)搅匀后从中任意摸出一个球,摸到红球的概率等于_________;
(2)搅匀后从中任意摸出一个球,记录颜色后放回、搅匀,再从中任意摸出一个球.用列表或画树状图的方法,求2次都摸到红球的概率.
27.(2022·江苏南通·中考真题)不透明的袋子中装有红球、黄球、蓝球各一个,这些球除颜色外无其他差别.
(1)从袋子中随机摸出一个球,摸到蓝球的概率是___________;
(2)从袋子中随机摸出一个球后,放回并摇匀,再随机摸出一个球.求两次摸到的球的颜色为“一红一黄”的概率.
28.(2022·江苏盐城·中考真题)某社区举行新冠疫情防控核酸检测大演练,卫生防疫部门在该社区设置了三个核酸检测点A、B、C,甲、乙两人任意选择一个检测点参加检测.求甲、乙两人不在同一检测点参加检测的概率.(用画树状图或列表的方法求解)
29.(2022·江苏泰州·中考真题)即将在泰州举办的江苏省第20届运动会带动了我市的全民体育热,小明去某体育馆锻炼,该体育馆有A、B两个进馆通道和C、D、E三个出馆通道,从进馆通道进馆的可能性相同,从出馆通道出馆的可能性也相同.用列表或画树状图的方注列出小明一次经过进馆通道与出馆通道的所有等可能的结果,并求他恰好经过通道A与通道D的概率.
30.(2022·江苏无锡·中考真题)建国中学有7位学生的生日是10月1日,其中男生分别记为,,,,女生分别记为,,.学校准备召开国庆联欢会,计划从这7位学生中抽取学生参与联欢会的访谈活动.
(1)若任意抽取1位学生,且抽取的学生为女生的概率是 ;
(2)若先从男生中任意抽取1位,再从女生中任意抽取1位,求抽得的2位学生中至少有1位是或的概率.(请用“画树状图”或“列表”等方法写出分析过程)
31.(2022·江苏苏州·中考真题)一只不透明的袋子中装有1个白球,3个红球,这些球除颜色外都相同.
(1)搅匀后从中任意摸出1个球,这个球是白球的概率为______;
(2)搅匀后从中任意摸出1个球,记录颜色后放回,搅匀,再从中任意摸出1个球,求2次摸到的球恰好是1个白球和1个红球的概率.(请用画树状图或列表等方法说明理由)
32.(2022·江苏宿迁·中考真题)从甲、乙、丙、丁4名学生中选2名学生参加一次乒乓球单打比赛,求下列事件发生的概率.
(1)甲一定参加比赛,再从其余3名学生中任意选取1名,恰好选中丙的概率是 ;
(2)任意选取2名学生参加比赛,求一定有乙的概率.(用树状图或列表的方法求解).
33.(2022·江苏扬州·中考真题)某超市为回馈广大消费者,在开业周年之际举行摸球抽奖活动.摸球规则如下:在一只不透明的口袋中装有1个白球和2个红球,这些球除颜色外都相同,搅匀后先从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球.
(1)用树状图列出所有等可能出现的结果;
(2)活动设置了一等奖和二等奖两个奖次,一等奖的获奖率低于二等奖.现规定摸出颜色不同的两球和摸出颜色相同的两球分别对应不同奖次,请写出它们分别对应的奖次,并说明理由.
34.(2022·江苏连云港·中考真题)“石头、剪子、布”是一个广为流传的游戏,规则是:甲、乙两人都做出“石头”“剪子”“布”3种手势中的1种,其中“石头”赢“剪子”,“剪子”赢“布”,“布”赢“石头”,手势相同不分输赢.假设甲、乙两人每次都随意并且同时做出3种手势中的1种.
(1)甲每次做出“石头”手势的概率为_________;
(2)用画树状图或列表的方法,求乙不输的概率.
35.(2022·江苏常州·中考真题)在5张相同的小纸条上,分别写有语句:①函数表达式为;②函数表达式为;③函数的图像关于原点对称;④函数的图像关于轴对称;⑤函数值随自变量增大而增大.将这5张小纸条做成5支签,①、②放在不透明的盒子中搅匀,③、④、⑤放在不透明的盒子中搅匀.
(1)从盒子中任意抽出1支签,抽到①的概率是______;
(2)先从盒子中任意抽出1支签,再从盒子中任意抽出1支签.求抽到的2张小纸条上的语句对函数的描述相符合的概率.
36.(2023·江苏·中考真题)在张相同的小纸条上,分别写有:①;②;③;④乘法;⑤加法.将这张小纸条做成支签,①、②、③放在不透明的盒子中搅匀,④、⑤放在不透明的盒子中搅匀.
(1)从盒子中任意抽出支签,抽到无理数的概率是______;
(2)先从盒子中任意抽出支签,再从盒子中任意抽出支签,求抽到的个实数进行相应的运算后结果是无理数的概率.
题型二 数据的收集与整理
37.(2024·江苏徐州·中考真题)参加初中学业水平考试的人数简称“中考人数”.如图,某市根据2016﹣2024年中考人数及2024年上半年小学、初中各年级在校学生人数,绘制出2016﹣2032年中考人数(含预估)统计图如图:
根据以上信息,解决下列问题.
(1)下列结论中,所有正确结论的序号是______.
①2016﹣2031年中考人数呈现先升后降的趋势;
②与上一年相比,中考人数增加最多的年份是2021年;
③2016﹣2024年中考人数的波动比2024﹣2032年中考人数的波动大.
(2)为促进人口长期均衡发展,有效提高人口出生率,我国于2013﹣2021年先后实施了三项鼓励生育的政策,其中导致该市2032年中考人数较2031年增加的最主要原因是______.
A.2013年单独两孩政策
B.2015年全面两孩政策
C.2021年三孩生育政策
(3)2024年上半年,该市小学在校学生共有多少人?
38.(2024·江苏南通·中考真题)我国淡水资源相对缺乏,节约用水应成为人们的共识.为了解某小区家庭用水情况,随机调查了该小区50个家庭去年的月均用水量(单位:吨),绘制出如下未完成的统计图表.
50个家庭去年月均用水量频数分布表
组别 家庭月均用水量(单位:吨) 频数
A 7
B m
C n
D 6
E 2
合计 50
根据上述信息,解答下列问题:
(1)______,______;
(2)这50个家庭去年月均用水量的中位数落在______组;
(3)若该小区有1200个家庭,估计去年月均用水量小于4.8吨的家庭数有多少个?
39.(2024·江苏镇江·中考真题)有甲、乙两只不透明的袋子,每只袋子中装有红球和黄球若干,各袋中所装球的总个数相同,这些球除颜色外都相同.实践组用甲袋、创新组用乙袋各自做摸球试验:两人一组,一人从袋中任意摸出1个球,另一人记下颜色后将球放回并搅匀,各组连续做这样的试验,将记录的数据绘制成如下两种条形统计图:

(1)__________图能更好地反映各组试验的总次数,__________图能更好地反映各组试验摸到红球的频数(填“A”或“B”);
(2)求实践组摸到黄球的频率;
(3)根据以上两种条形统计图,你还能获得哪些信息(写出一条即可)?
40.(2024·江苏宿迁·中考真题)某校为丰富学生的课余生活,开展了多姿多彩的体育活动,开设了五种球类运动项目:A篮球,B足球,C排球,D羽毛球,E乒乓球.为了解学生最喜欢以上哪种球类运动项目,随机抽取部分学生进行调查(每位学生仅选一种),并绘制了统计图:
某同学不小心将图中部分数据丢失,请结合统计图,完成下列问题:
(1)本次调查的样本容量是________,扇形统计图中C对应圆心角的度数为________
(2)请补全条形统计图;
(3)若该校共有2000名学生,请你估计该校最喜欢“E乒乓球”的学生人数.
41.(2024·江苏无锡·中考真题)“五谷者,万民之命,国之重宝.”夯实粮食安全根基,需要强化农业科技支撑.农业科研人员小李在试验田里种植了新品种大麦,为考察麦穗长度的分布情况,开展了一次调查研究.
【确定调查方式】
(1)小李计划从试验田里抽取100个麦穗,将抽取的这100个麦穗的长度作为样本,下面的抽样调查方式合理的是______;(只填序号)
①抽取长势最好的100个麦穗的长度作为样本
②抽取长势最差的100个麦穗的长度作为样本
③随机抽取100个麦穗的长度作为样本
【整理分析数据】
(2)小李采用合理的调查方式获得该试验田100个麦穗的长度(精确到0.1cm),并将调查所得的数据整理如下:
试验田100个麦穗长度频率分布表
长度 频率
0.04
0.45
0.30
0.09
合计 1
根据以上图表信息,解答下列问题:
①频率分布表中的______;
②请把频数分布直方图补充完整;(画图后请标注相应数据)
【作出合理估计】
(3)请你估计长度不小于的麦穗在该试验田里所占比例为多少.
42.(2024·江苏苏州·中考真题)某校计划在七年级开展阳光体育锻炼活动,开设以下五个球类项目:A(羽毛球),B(乒乓球),C(篮球),D(排球),E(足球),要求每位学生必须参加,且只能选择其中一个项目.为了了解学生对这五个项目的选择情况,学校从七年级全体学生中随机抽取部分学生进行问卷调查,对调查所得到的数据进行整理、描述和分析,部分信息如下:
根据以上信息,解决下列问题:
(1)将图①中的条形统计图补充完整(画图并标注相应数据);
(2)图②中项目E对应的圆心角的度数为______°;
(3)根据抽样调查结果,请估计本校七年级800名学生中选择项目B(乒乓球)的人数.
43.(2024·江苏扬州·中考真题)2024年5月28日,神舟十八号航天员叶光富、李聪、李广苏密切协同,完成出舱活动,活动时长达8.5小时,刷新了中国航天员单次出舱活动时间纪录,进一步激发了青少年热爱科学的热情.某校为了普及“航空航天”知识,从该校1200名学生中随机抽取了200名学生参加“航空航天”知识测试,将成绩整理绘制成如下不完整的统计图表:
成绩统计表
组别 成绩x(分) 百分比
A组
B组
C组 a
D组
E组
成绩条形统计图
根据所给信息,解答下列问题:
(1)本次调查的成绩统计表中________%,并补全条形统计图;
(2)这200名学生成绩的中位数会落在________组(填A、B、C、D或E);
(3)试估计该校1200名学生中成绩在90分以上(包括90分)的人数.
44.(2024·江苏盐城·中考真题)阅读涵养心灵.某地区2023年9月就“初中生每天阅读时间”对七年级8000名学生进行了抽样调查(设每天阅读时间为,调查问卷设置了四个时间选项:A.;B.;C.;D.),并根据调查结果制作了如图1所示的条形统计图.2023年9月该地区出台系列激励措施,力推学生阅读习惯养成.为了检测这些措施的效果,2023年12月该地区又对七年级学生进行了一次抽样调查,并根据调查结果制作了如图2所示的扇形统计图.
9月份学生每天阅读时间条形统计图
12月份学生每天阅读时间扇形统计图
请根据提供的信息,解答下列问题.
(1)2023年9月份抽样调查的样本容量为________,该地区七年级学生“每天阅读时间不少于1小时”的人数约为________人;
(2)估算该地区2023年12月份“每天阅读时间不少于1小时”的七年级学生人数相对于9月份的增长率;(精确到)
(3)根据两次调查结果,对该地区出台相关激励措施的做法进行评价.
45.(2024·江苏连云港·中考真题)为了解七年级男生体能情况,某校随机抽取了七年级20名男生进行体能测试,并对测试成绩(单位:分)进行了统计分析:
【收集数据】
100 94 88 88 52 79 83 64 83 87
76 89 91 68 77 97 72 83 96 73
【整理数据】
该校规定:为不合格,为合格,为良好,为优秀.(成绩用表示)
等次 频数(人数) 频率
不合格 1 0.05
合格 a 0.20
良好 10 0.50
优秀 5 b
合计 20 1.00
【分析数据】
此组数据的平均数是82,众数是83,中位数是c;
【解决问题】
(1)填空:__________,__________,__________;
(2)若该校七年级共有300名男生,估计体能测试能达到优秀的男生约有多少人?
(3)根据上述统计分析情况,写一条你的看法.
46.(2023·江苏南京·中考真题)社会运转和日常生活离不开物流行业的发展,阅读以下统计图并回答问题.
2011~2022年中国社会物流总费用及占GDP比重统计图
(1)下列结论中,所有正确结论的序号是 .
①2011~2022年社会物流总费用占 GDP 比重总体呈先下降后稳定的趋势:
②2011~2016年社会物流总费用的波动比2017~2022年社会物流总费用的波动大;
③2012~2022 年社会物流总费用逐年增加,其中增加的幅度最大的一年是 2021年,
(2)请结合上图提供的信息,从不同角度写出两个与我国GDP 相关的结论.
47.(2023·江苏盐城·中考真题)盐城市大丰国家级麋鹿自然保护区在过去的37年间,将濒临灭绝的39头世界珍稀野生动物麋鹿发展到如今的7033头.
某校生物兴趣小组去实地调查,绘制出如下统计图.
(注:麋鹿总头数=人工驯养头数+野生头数)

解答下列问题:
(1)①在扇形统计图中,哺乳类所在扇形的圆心角度数为_________°;
②在折线统计图中,近6年野生麋鹿头数的中位数为_________头.
(2)填表:
年份 2017 2018 2019 2020 2021 2022
人工驯养麋鹿头数 3473 3531 3666 3861 _________ 3917
(3)结合以上的统计和计算,谈谈你对该保护区的建议或想法.
48.(2023·江苏镇江·中考真题)香醋中有一种物质,其含量不同,风味就不同,各风味香醋中该种物质的含量如下表.
风味 偏甜 适中 偏酸
含量/ 71.2 89.8 110.9
某超市销售不同包装(塑料瓶装和玻璃瓶装)的以上三种风味的香醋,小明将该超市月份售出的香醋数量绘制成如下条形统计图.

已知月份共售出150瓶香醋,其中“偏酸”的香醋占.
(1)求出a,b的值.
(2)售出的玻璃瓶装香醋中该种物质的含量的众数为______,中位数为______.
(3)根据小明绘制的条形统计图,你能获得哪些信息?(写出一条即可)
49.(2023·江苏南通·中考真题)某校开展以"筑梦天宫、探秘苍穹"为主题的航天知识竞赛,赛后在七、八年级各随机抽取20名学生的竞赛成绩,进行整理、分析,得出有关统计图表.

(1)若该校八年级共有300名学生参赛,估计优秀等次的约有____________人;
(2)你认为七、八年级中哪个年级学生的竞赛成绩更好些 请从两个方面说明理由.
50.(2023·江苏宿迁·中考真题)为了解某校九年级学生周末活动情况,随机抽取了部分学生进行调查,并绘制了如图所示的两幅不完整的统计表和统计图.
学生参加周末活动人数统计表
活动名称 人数
A.课外阅读 40
B.社会实践 48
C.家务劳动 m
D.户外运动 n
E.其它活动 26

请结合图表中提供的信息,解答下列问题:
(1)________,________;
(2)扇形统计图中A对应的圆心角是________度;
(3)若该校九年级有800名学生,请估算该校九年级周末参加家务劳动的人数.
51.(2023·江苏泰州·中考真题)如图是我国2019~2022年汽车销售情况统计图.

根据图中信息,解答下列问题:
(1)2022年我国新能源汽车销售量约占该年各类汽车销售总量的_____________(精确到);
这4年中,我国新能源汽车销售量在各类汽车销售总量占比最高的年份是___________年;
(2)小明说:新能源汽车2022年的销售量超过前3年的总和,所以2022年新能源汽车销售量的增长率比2021年高.你同意他的说法吗?请结合统计图说明你的理由.
52.(2023·江苏无锡·中考真题)2023年5月30日,神舟十六号载人飞船成功发射,为大力弘扬航天精神,普及航天知识,激发学生探索和创新热情,某初中在全校开展航天知识竞赛活动现采用简单随机抽样的方法从每个年级抽取相同数量的学生答题成绩进行分析,绘制成下列图表,请根据图表提供的信息,解答下列问题:
学生参加航天知识竞赛成绩频数分布表
竞赛成绩x(组别) (A) (B) (C) (D) (E) (F)
频数 21 96 a 57 b 6
学生参加航天知识竞赛成绩统计表
年级 平均数 众数 中位数
七年级 82 81
八年级 82 82
九年级 83 80

(1)_________;_________%;
(2)请根据“学生参加航天知识竞赛成绩统计表”对本次竞赛中3个年级的总体情况做出评价,并说明理由.
53.(2023·江苏徐州·中考真题)为了解某地区九年级学生的视力情况,从该地区九年级学生中抽查了部分学生,根据调查结果,绘制了如下两幅不完整的统计图.

根据以上信息,解决下列问题:
(1)此次调查的样本容量为 ;
(2)扇形统计图中对应圆心角的度数为 °;
(3)请补全条形统计图;
(4)若该地区九年级学生共有人,请估计其中视力正常的人数.
54.(2023·江苏连云港·中考真题)为了解本校八年级学生的暑期课外阅读情况,某数学兴趣小组抽取了50名学生进行问卷调查.
(1)下面的抽取方法中,应该选择( )
A.从八年级随机抽取一个班的50名学生
B.从八年级女生中随机抽取50名学生
C.从八年级所有学生中随机抽取50名学生
(2)对调查数据进行整理,得到下列两幅尚不完整的统计图表:
暑期课外阅读情况统计表
阅读数量(本) 人数
0 5
1 25
2
3本及以上 5
合计 50

统计表中的__________,补全条形统计图;
(3)若八年级共有800名学生,估计八年级学生暑期课外阅读数量达到2本及以上的学生人数;
(4)根据上述调查情况,写一条你的看法.
55.(2023·江苏苏州·中考真题)某初中学校为加强劳动教育,开设了劳动技能培训课程.为了解培训效果,学校对七年级320名学生在培训前和培训后各进行一次劳动技能检测,两次检测项目相同,评委依据同一标准进行现场评估,分成“合格”、“良好”、“优秀”3个等级,依次记为2分、6分、8分(比如,某同学检测等级为“优秀”,即得8分).学校随机抽取32名学生的2次检测等级作为样本,绘制成下面的条形统计图:

(1)这32名学生在培训前得分的中位数对应等级应为________________;(填“合格”、“良好”或“优秀”)
(2)求这32名学生培训后比培训前的平均分提高了多少?
(3)利用样本估计该校七年级学生中,培训后检测等级为“良好”与“优秀”的学生人数之和是多少?
56.(2022·江苏南京·中考真题)某企业餐厅,有A、两家公司可选择,该企业现连续10个工作日选择A公司,接着连续10个工作日选择公司,记录送餐用时(单位:)如下表:
1 2 3 4 5 6 7 8 9 10
A公司送餐用时 26 26 30 25 27 29 24 28 30 25
公司送餐用时 20 18 21 16 34 32 15 14 35 15
根据上表数据绘制的折线统计图如图所示:

(1)根据上述信息,请你帮该企业选择合适的公司订餐,并简述理由;
(2)如果某工作日该企业希望送餐用时不超过,应选择哪家公司?请简述理由.
57.(2022·江苏淮安·中考真题)某校计划成立学生体育社团,为了解学生对不同体育项目的喜爱情况,学校随机抽取了部分学生进行“我最喜爱的一个体育项目”问卷调查,规定每人必须并且只能在“篮球”“足球”“乒乓球”“健美操”“跑步”五个项目中选择一项,并根据统计结果绘制了两幅不完整的统计图.
请解答下列问题:
(1)在这次调查中,该校一共抽样调查了______名学生,扇形统计图中“跑步”项目所对应的扇形圆心角的度数是______°;
(2)请补全条形统计图;
(3)若该校共有1200名学生,试估计该校学生中最喜爱“篮球”项目的人数.
58.(2022·江苏镇江·中考真题)某地交警在一个路口对某个时段来往的车辆的车速进行监测,统计数据如下表:
车速() 40 41 42 43 44 45
频数 6 8 15 3 2
其中车速为40、43(单位:)的车辆数分别占监测的车辆总数的12%、32%.
(1)求出表格中的值;
(2)如果一辆汽车行驶的车速不超过的10%,就认定这辆车是安全行驶.若一年内在该时段通过此路口的车辆有20000辆,试估计其中安全行驶的车辆数.
59.(2022·江苏南通·中考真题)为了了解八年级学生本学期参加社会实践活动的天数情况,A,B两个县区分别随机抽查了200名八年级学生.根据调查结果绘制了统计图表,部分图表如下:
A,B两个县区的统计表
平均数 众数 中位数
A县区 3.85 3 3
B县区 3.85 4 2.5
(1)若A县区八年级共有约5000名学生,估计该县区八年级学生参加社会实践活动不少于3天的学生约为___________名;
(2)请对A,B两个县区八年级学生参加社会实践活动的天数情况进行比较,做出判断,并说明理由.
60.(2022·江苏盐城·中考真题)合理的膳食可以保证青少年体格和智力的正常发育.综合实践小组为了解某校学生膳食营养状况,从该校1380名学生中调查了100名学生的膳食情况,调查数据整理如下:
中国营养学会推荐的三大营养素供能比参考值
蛋白质 10%~15%
脂肪 20%~30%
碳水化合物 50%~65%
注:供能比为某物质提供的能量占人体所需总能量的百分比.
(1)本次调查采用___________的调查方法;(填“普查”或“抽样调查”)
(2)通过对调查数据的计算,样本中的蛋白质平均供能比约为14.6%,请计算样本中的脂肪平均供能比和碳水化合物平均供能比;
(3)结合以上的调查和计算,对照下表中的参考值,请你针对该校学生膳食状况存在的问题提一条建议.
61.(2022·江苏常州·中考真题)为减少传统塑料袋对生态环境的破坏,国家提倡使用可以在自然环境下(特定微生物、温度、湿度)较快完成降解的环保塑料袋.调查小组就某小区每户家庭1周内环保塑料袋的使用情况进行了抽样调查,使用情况为(不使用)、(1~3个)、(4~6个)、(7个及以上),以下是根据调查结果绘制的统计图的一部分.
(1)本次调查的样本容量是_____,请补全条形统计图;
(2)已知该小区有1500户家庭,调查小组估计:该小区1周内使用7个及以上环保塑料袋的家庭约有225户.调查小组的估计是否合理?请说明理由.
62.(2022·江苏泰州·中考真题)农业、工业和服务业统称为“三产”,2021年泰州市“三产”总值增长率在全省排名第一.观察下列两幅统计图,回答问题.
(1)2017—2021年农业产值增长率的中位数是 %﹔若2019年“三产”总值为5200亿元,则2020年服务业产值比2019年约增加 亿元(结果保留整数).
(2)小亮观察折线统计图后认为:这五年中,每年服务业产值都比工业产值高,你同意他的说法吗 请结合扇形统计图说明你的理由.
63.(2022·江苏无锡·中考真题)育人中学初二年级共有200名学生,2021年秋学期学校组织初二年级学生参加30秒跳绳训练,开学初和学期末分别对初二年级全体学生进行了摸底测试和最终测试,两次测试数据如下:
育人中学初二学生30秒跳绳测试成绩的频数分布表
跳绳个数(x) x≤50 50<x≤60 60<x≤70 70<x≤80 x>80
频数(摸底测试) 19 27 72 a 17
频数(最终测试) 3 6 59 b c
育人中学初二学生30秒跳绳最终测试成绩的扇形统计图
(1)表格中a= ;
(2)请把下面的扇形统计图补充完整;(只需标注相应的数据)
(3)请问经过一个学期的训练,该校初二年级学生最终测试30秒跳绳超过80个的人数有多少?
64.(2022·江苏苏州·中考真题)某校九年级640名学生在“信息素养提升”培训前、后各参加了一次水平相同的测试,并以同一标准折算成“6分”、“7分”、“8分”、“9分”、“10分”5个成绩.为了解培训效果,用抽样调查的方式从中抽取了32名学生的2次测试成绩,并用划记法制成了如下表格:
培训前 成绩(分) 6 7 8 9 10
划记 正正 正 正
人数(人) 12 4 7 5 4
培训后 成绩(分) 6 7 8 9 10
划记 一 正 正正正
人数(人) 4 1 3 9 15
(1)这32名学生2次测试成绩中,培训前测试成绩的中位数是m,培训后测试成绩的中位数是n,则m______n;(填“>”、“<”或“=”)
(2)这32名学生经过培训,测试成绩为“6分”的百分比比培训前减少了多少?
(3)估计该校九年级640名学生经过培训,测试成绩为“10分”的学生增加了多少人?
65.(2022·江苏宿迁·中考真题)为了解某校九年级学生开展“综合与实践”活动的情况,抽样调查了该校名九年级学生上学期参加“综合与实践”活动的天数,并根据调查所得的数据绘制了如下尚不完整的两幅统计图.根据图表信息,解答下列问题:
(1) , ;
(2)补全条形统计图;
(3)根据抽样调查的结果,请你估计该校九年级2000名学生中上学期参加“综合与实践”活动4天及以上的人数.
66.(2022·江苏扬州·中考真题)某校初一年级有600名男生 ,为增强体质,拟在初一男生中开展引体向上达标测试活动.为制定合格标准,开展如下调查统计活动.
(1)A调查组从初一体育社团中随机抽取20名男生进行引体向上测试,B调查组从初一所有男生中随机抽取20名男生进行引体向上测试,其中_________(填“A”或“B”),调查组收集的测试成绩数据能较好地反映该校初一男生引体向上的水平状况;
(2)根据合理的调查方式收集到的测试成绩数据记录如下:
成绩/个 2 3 4 5 7 13 14 15
人数/人 1 1 1 8 5 1 2 1
这组测试成绩的平均数为_________个,中位数为__________个;
(3)若以(2)中测试成绩的中位数作为该校初一男生引体向上的合格标准,请估计该校初一有多少名男生不能达到合格标准.
67.(2022·江苏连云港·中考真题)为落实国家“双减”政策,某校为学生开展了课后服务,其中在体育类活动中开设了四种运动项目:A乒乓球,B排球,C篮球,D跳绳.为了解学生最喜欢哪一种运动项目,随机抽取部分学生进行调查(每位学生仅选一种),并将调查结果制成如下尚不完整的统计图表.
问卷情况统计表:
运动项目 人数
A乒乓球 m
B排球 10
C篮球 80
D跳绳 70
(1)本次调查的样本容量是_______,统计表中m=_________;
(2)在扇形统计图中,“B排球”对应的圆心角的度数是_________;
(3)若该校共有2000名学生,请你估计该校最喜欢“A乒乓球”的学生人数.
题型三 数据分析
68.(2024·江苏常州·中考真题)某企业生产了2000个充电宝,为了解这批充电宝的使用寿命(完全充放电次数),从中随机抽取了20个进行检测,数据整理如下:
完全充放电次数t
充电宝数量/个 2 3 10 5
(1)本次检测采用的是抽样调查,试说明没有采用普查的理由;
(2)根据上述信息,下列说法中正确的是________(写出所有正确说法的序号);
①这20个充电宝的完全充放电次数都不低于300次;
②这20个充电宝的完全充放电次数t的中位数满足;
③这20个充电宝的完全充放电次数t的平均数满足.
(3)估计这批充电宝中完全充放电次数在600次及以上的数量.
69.(2023·江苏·中考真题)为了调动员工的积极性,商场家电部经理决定确定一个适当的月销售目标,对完成目标的员工进行奖励.家电部对20名员工当月的销售额进行统计和分析.
数据收集(单位:万元):
5.0 9.9 6.0 5.2 8.2 6.2 7.6 9.4 8.2 7.8
5.1 7.5 6.1 6.3 6.7 7.9 8.2 8.5 9.2 9.8
数据整理:
销售额/万元
频数 3 5 4 4
数据分析:
平均数 众数 中位数
7.44 8.2
问题解决:
(1)填空:_________,_________.
(2)若将月销售额不低于7万元确定为销售目标,则有_____名员工获得奖励.
(3)经理对数据分析以后,最终对一半的员工进行了奖励.员工甲找到经理说:“我这个月的销售额是7.5万元,比平均数7.44万元高,所以我的销售额超过一半员工,为什么我没拿到奖励?”假如你是经理,请你给出合理解释.
70.(2023·江苏扬州·中考真题)某校为了普及环保知识,从七、八两个年级中各选出10名学生参加环保知识竞赛(满分100分),并对成绩进行整理分析,得到如下信息:

平均数 众数 中位数
七年级参赛学生成绩 85.5 m 87
八年级参赛学生成绩 85.5 85 n
根据以上信息,回答下列问题:
(1)填空:________,________;
(2)七、八年级参赛学生成绩的方差分别记为、,请判断___________(填“”“”或“”);
(3)从平均数和中位数的角度分析哪个年级参赛学生的成绩较好.
71.(2022·江苏徐州·中考真题)如图,下列装在相同的透明密封盒内的古钱币,其密封盒上分别标有古钱币的尺寸及质量,例如:钱币“文星高照”密封盒上所标“”是指该枚古钱币的直径为,厚度为,质量为.已知这些古钱币的材质相同.
根据图中信息,解决下列问题.
(1)这5枚古钱币,所标直径的平均数是 ,所标厚度的众数是 ,所标质量的中位数是 g;
(2)由于古钱币无法从密封盒内取出,为判断密封盒上所标古钱币的质量是否有错,桐桐用电子秤测得每枚古钱币与其密封盒的总质量如下:
名称 文星高照 状元及第 鹿鹤同春 顺风大吉 连中三元
总质量/g 58.7 58.1 55.2 54.3 55.8
请你应用所学的统计知识,判断哪枚古钱币所标的质量与实际质量差异较大,并计算该枚古钱币的实际质量约为多少克.
72.(2023·江苏·中考真题)为合理安排进、离校时间,学校调查小组对某一天八年级学生上学、放学途中的用时情况进行了调查.本次调查在八年级随机抽取了名学生,建立以上学途中用时为横坐标、放学途中用时为纵坐标的平面直角坐标系,并根据调查结果画出相应的点,如图所示:

(1)根据图中信息,下列说法中正确的是______(写出所有正确说法的序号):
①这名学生上学途中用时都没有超过;
②这名学生上学途中用时在以内的人数超过一半;
③这名学生放学途中用时最短为;
④这名学生放学途中用时的中位数为.
(2)已知该校八年级共有名学生,请估计八年级学生上学途中用时超过的人数;
(3)调查小组发现,图中的点大致分布在一条直线附近.请直接写出这条直线对应的函数表达式并说明实际意义.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
第6页(共36页)中小学教育资源及组卷应用平台
【中考真题汇编】江苏13大市三年(2022-2024)中考真题分类汇编
专题09 统计与概率(3年中考,3大题型)
题型一 概率计算 1
题型二 数据的收集与整理 24
题型三 数据分析 59
题型一 概率计算
1.(2024·江苏徐州·中考真题)不透明的袋子中装有2个红球与2个白球,这些球除颜色外无其他差别.
(1)甲从袋子中随机摸出1个球,摸到红球的概率为______;
(2)甲、乙两人分别从袋子中随机摸出1个球(不放回),用列表或画树状图的方法,求两人摸到相同颜色球的概率.
【答案】(1)
(2)
【详解】(1)解:摸到红球的概率为:;
(2)解:画树状图得:
∵共有12种等可能的结果,两人都摸到相同颜色的小球的有4种情况,
∴两人都摸到相同颜色的小球的概率为:.
答:两人摸到相同颜色球的概率为.
2.(2024·江苏南通·中考真题)南通地铁1号线“世纪大道站”有标识为1、2、3、4的四个出入口.某周六上午,甲、乙两位学生志愿者随机选择该站一个出入口,开展志愿服务活动.
(1)甲在2号出入口开展志愿服务活动的概率为______;
(2)求甲、乙两人在同一出入口开展志愿服务活动的概率.
【答案】(1)
(2)
【详解】(1)解:∵有标识为1、2、3、4的四个出入口,
∴甲在2号出入口开展志愿服务活动的概率为,
故答案为:;
(2)解:画树状图如下:
共有16种等可能结果,其中甲、乙两人在同一出入口开展志愿服务活动有4种结果,
∴甲、乙两人在同一出入口开展志愿服务活动的概率为.
3.(2024·江苏镇江·中考真题)3张相同的卡片上分别写有中国二十四节气中的“小满”、“芒种”、“夏至”的字样,将卡片的背面朝上.
(1)洗匀后,从中任意抽取1张卡片,抽到写有“小满”的卡片的概率等于__________;
(2)洗匀后,从中任意抽取2张卡片,用画树状图或列表的方法,求抽到一张写有“芒种”,一张写有“夏至”的卡片的概率.
【答案】(1)
(2)
【详解】(1)解:张相同的卡片上分别写有中国二十四节气中的“小满”、“芒种”、“夏至”的字样,
洗匀后,从中任意抽取1张卡片,抽到写有“小满”的卡片的概率,
故答案为:;
(2)解:把写有中国二十四节气中的“小满”、“芒种”、“夏至”3张卡片分别记为、、,
画树状图如下:
共有6种等可能的结果,其中抽到一张写有“芒种”,一张写有“夏至”的卡片的结果有2种,
抽到一张写有“芒种”,一张写有“夏至”的卡片的概率为.
4.(2024·江苏宿迁·中考真题)某校组织七年级学生开展以“讲好红色故事,传承红色基因”为主题的研学活动,策划了四条研学线路供学生选择:A彭雪枫纪念馆,B淮海军政大礼堂,C爱园烈士陵园,D大王庄党性教育基地,每名学生只能任意选择一条线路.
(1)小刚选择线路A的概率为________;
(2)请用画树状图或列表的方法,求小刚和小红选择同一线路的概率.
【答案】(1);
(2)
【详解】(1)解:依题意,共四条研学线路,每条线路被选择的可能性相同.
小刚选择线路A的概率为;
故答案为:
(2)解:依题意,列表可得
小刚\小红 A B C D
A AA BA CA DA
B AB BB CB DB
C AC BC CC DC
D AD BD CD DD
由列表可得,共有16种等可能性结果,其中相同线路的可能结果有4种,
小刚和小红选择同一线路的概率为.
5.(2024·江苏无锡·中考真题)一只不透明的袋子中装有1个白球、1个红球和1个绿球,这些球除颜色外都相同.
(1)将球搅匀,从中任意摸出1个球,摸到白球的概率是______;
(2)将球搅匀,从中任意摸出1个球,记录颜色后放回、搅匀,再从中任意摸出1个球.求2次摸到的球颜色不同的概率.(请用“画树状图”或“列表”等方法写出分析过程)
【答案】(1)
(2)
【详解】(1)解:∵袋子中一共有3个球,其中只有一个白球,
∴摸到白球的概率,
故答案为:;
(2)解:根据题意列出表格如下:
白 红 绿
白 (白,白) (白,红) (白,绿)
红 (红,白) (红,红) (红,绿)
绿 (绿,白) (绿,红) (绿,绿)
由表可知,一共有9种等可能的情况,2次摸到的球颜色不同的情况有6种,
∴2次摸到的球颜色不同的概率.
6.(2024·江苏常州·中考真题)在3张相同的小纸条上分别写有“石头”、“剪子”、“布”.将这3张小纸条做成3支签,放在不透明的盒子中搅匀.
(1)从盒子中任意抽出1支签,抽到“石头”的概率是________;
(2)甲、乙两人通过抽签分胜负,规定:“石头”胜“剪子”,“剪子”胜“布”,“布”胜“石头”.甲先从盒子中任意抽出1支签(不放回),乙再从余下的2支签中任意抽出1支签,求甲取胜的概率.
【答案】(1)
(2)
【详解】(1)解:∵一共有3支签,写有“石头”的签有1支,且每支签被抽到的概率相同,
∴从盒子中任意抽出1支签,抽到“石头”的概率是,
故答案为:;
(2)解:设分别用A、B、C表示“石头”、“剪子”、“布”,列表如下:
甲乙
由表格可知,一共有6种等可能性的结果数,其中甲获胜的结果数有,,,共3种,
∴甲获胜的概率为.
7.(2024·江苏苏州·中考真题)一个不透明的盒子里装有4张书签,分别描绘“春”,“夏”,“秋”,“冬”四个季节,书签除图案外都相同,并将4张书签充分搅匀.
(1)若从盒子中任意抽取1张书签,恰好抽到“夏”的概率为______;
(2)若从盒子中任意抽取2张书签(先抽取1张书签,且这张书签不放回,再抽取1张书签),求抽取的书签恰好1张为“春”,1张为“秋”的概率.(请用画树状图或列表等方法说明理由)
【答案】(1)
(2)
【详解】(1)解:∵有4张书签,分别描绘“春”,“夏”,“秋”,“冬”四个季节,
∴恰好抽到“夏”的概率为,
故答案为:;
(2)解:用树状图列出所有等可的结果:
等可能的结果:(春,夏),(春,秋),(春,冬),(夏,春),(夏,秋),(夏,冬),(秋,春),(秋,夏),(秋,冬),(冬,春),(冬,夏),(冬,秋).
在12个等可能的结果中,抽取的书签1张为“春”,1张为“秋”出现了2次,
P(抽取的书签价好1张为“春”,1张为“秋”).
8.(2024·江苏扬州·中考真题)2024年“五一”假期,扬州各旅游景区持续火热.小明和小亮准备到东关街、瘦西湖、运河三湾风景区、个园、何园(分别记作A、B、C、D、E)参加公益讲解活动.
(1)若小明在这5个景区中随机选择1个景区,则选中东关街的概率是______;
(2)小明和小亮在C、D、E三个景区中,各自随机选择1个景区,请用画树状图或列表的方法,求小明和小亮选到相同景区的概率.
【答案】(1)
(2)
【详解】(1)解:由题意得从这些景区随机选择1个景区,选中东关街的有1种可能,
∴选中东关街的概率是,
故案 为:;
(2)列表如下:
小亮 小明 C D E
C
D
E
共有9种等可能结果,其中小明和小亮选到相同景区的结果有3种,
∴小明和小亮选到相同景区的概率:;
答:小明和小亮选到相同景区的概率.
9.(2024·江苏盐城·中考真题)在“重走建军路,致敬新四军”红色研学活动中,学校建议同学们利用周末时间自主到以下三个基地开展研学活动.
A.新四军纪念馆(主馆区);
B.新四军重建军部旧址(泰山庙):
C.新四军重建军部纪念塔(大铜马),
小明和小丽各自随机选择一个基地作为本次研学活动的第一站.
(1)小明选择基地A的概率为________:
(2)用画树状图或列表的方法,求小明和小丽选择相同基地的概率.
【答案】(1)
(2)
【详解】(1)解:由题意得,小明选择基地A的概率为;
故答案为:
(2)解:列表如下:
A B C
A
B
C
共有9种等可能的结果,其中小明和小丽选择到相同基地的结果有3种,
∴小明和小丽选择相同基地的概率为.
10.(2024·江苏连云港·中考真题)数学文化节猜谜游戏中,有四张大小、形状、质地都相同的字谜卡片,分别记作字谜A、字谜B、字谜C、字谜D,其中字谜A、字谜B是猜“数学名词”,字谜C、字谜D是猜“数学家人名”.
(1)若小军从中随机抽取一张字谜卡片,则小军抽取的字谜是猜“数学名词”的概率是__________;
(2)若小军一次从中随机抽取两张字谜卡片,请用画树状图或列表的方法求小军抽取的字谜均是猜“数学家人名”的概率.
【答案】(1)
(2)
【详解】(1)小军抽取的字谜是猜“数学名词”的概率是,
故答案为:.
(2)根据题意,画树状图如下:

由图可知,共有12种等可能的结果,其中小军抽取的字谜均是猜“数学家人名”的有2种,
∴小军抽取的字谜均是猜“数学家人名”的概率是.
11.(2023·江苏南京·中考真题)某旅游团从甲、乙、丙、丁4个景点中随机选取景点游览.
(1)选取2个景点,求恰好是甲、乙的概率:
(2)选取3个景点,则甲、乙在其中的概率为 .
【答案】(1)
(2)
【详解】(1)解:画树状图如下:
共有12种等可能结果,其中恰好是甲、乙的结果有2种;
∴恰好是甲、乙的概率为:;
(2)解:设“选取3个景点,甲、乙在其中”为事件A,
从4个景点中随机选取3个景点的选法有:(甲、乙、丙),(甲、乙、丁),(甲、丙、丁),(乙、丙、丁).
共4种等可能结果,其中甲、乙在的结果有2种,
∴.
故答案为:.
12.(2023·江苏盐城·中考真题)随着盐城交通的快速发展,城乡居民出行更加便捷.如图,从甲镇到乙镇有乡村公路和省级公路两条路线;从乙镇到盐城南洋国际机场,有省级公路、高速公路和城市高架三条路线.小华驾车从甲镇到盐城南洋国际机场接人(不考虑其他因素).
(1)从甲镇到乙镇,小华所选路线是乡村公路A的概率为_________.
(2)用列表或画树状图的方法,求小华两段路程都选省级公路的概率.
【答案】(1)
(2)
【详解】(1)从甲镇到乙镇,小华所选路线是乡村公路A的概率为,
故答案为:.
(2)列表如下:
C D E
A AC AD AE
B BC BD BE
共有6种等可能的结果,其中两段路程都选省级公路只有,共1种,
∴小华两段路程都选省级公路的概率.
13.(2023·江苏·中考真题)小华、小玲一起到淮安西游乐园游玩,他们决定在三个热门项目(A:智取芭蕉扇、B:三打白骨精、C:盘丝洞)中各自随机选择一个项目游玩.
(1)小华选择C项目的概率是_________;
(2)用画树状图或列表等方法求小华、小玲选择不同游玩项目的概率.
【答案】(1)
(2)
【详解】(1)解:共有三个热门项目,小华选择C项目的概率是;
故答案为:.
(2)解:列表法如图,
小华小丽
共有9种等可能结果,其中小华、小玲选择不同游玩项目,有6种,
∴小华、小玲选择不同游玩项目的概率.
14.(2023·江苏镇江·中考真题)一只不透明的袋子中装有2个红球和1个白球,这些球除颜色外都相同.将球搅匀,从中任意摸出1个球后,不放回,将袋中剩余的球搅匀,再从中任意摸出1个球.用画树状图或列表的方法,求2次都摸到红球的概率.
【答案】
【详解】解:画树状图如下:

一共有6种等可能的结果,其中2次都摸到红球有2种可能的结果,
次都摸到红球).
15.(2023·江苏南通·中考真题)有同型号的,两把锁和同型号的,,三把钥匙,其中钥匙只能打开锁,钥匙只能打开锁,钥匙不能打开这两把锁.
(1)从三把钥匙中随机取出一把钥匙,取出钥匙的概率等于___________;
(2)从两把锁中随机取出一把锁,从三把钥匙中随机取出一把钥匙,求取出的钥匙恰好能打开取出的锁的概率.
【答案】(1)
(2)
【详解】(1)解:共有三把钥匙,取出钥匙的概率等于;
故答案为:.
(2)解:据题意,可以画出如下的树状图:

由树状图知,所有可能出现的结果共有种,这些结果出现的可能性相等.
其中取出的钥匙恰好能打开取出的锁(记为事件)的结果有种.
∴.
16.(2023·江苏宿迁·中考真题)某校计划举行校园歌手大赛.九(1)班准备从A、B、C三名男生和D、E两名女生中随机选出参赛选手.
(1)若只选1名选手参加比赛,则女生D入选的概率是________;
(2)若选2名选手参加比赛,求恰有1名男生和1名女生的概率(用画树状图或列表法求解).
【答案】(1)
(2)
【详解】(1)解:只选1名选手参加比赛,女生D入选的概率
故答案为:;
(2)画树状图为如下:
共有20种等可能的结果数,其中选中1名男生和1名女生的有12种,,,,,,,,,,,,
所以恰好选中1名男生和1名女生的概率.
17.(2023·江苏泰州·中考真题)某校组织学生去敬老院表演节目,表演形式有舞蹈、情景剧和唱歌3种类型.小明、小丽2人积极报名参加,从3种类型中随机挑选一种类型.求小明、小丽选择不同类型的概率.
【答案】小明、小丽选择不同类型的概率为.
【详解】解:用树状图法表示所有等可能出现的结果如下:
共有9种等可能出现的结果,其中小明、小丽选择不同类型的有6种,
所以小明、小丽选择不同类型的概率为.
18.(2023·江苏无锡·中考真题)为了深入推动大众旅游,满足人民群众美好生活需要,我市举办中国旅游日惠民周活动,活动主办方在活动现场提供免费门票抽奖箱,里面放有4张相同的卡片,分别写有景区:A.宜兴竹海,B.宜兴善卷洞,C.阖闾城遗址博物馆,D.锡惠公园.抽奖规则如下:搅匀后从抽奖箱中任意抽取一张卡片,记录后放回,根据抽奖的结果获得相应的景区免费门票.
(1)小明获得一次抽奖机会,他恰好抽到景区A门票的概率是_________.
(2)小亮获得两次抽奖机会,求他恰好抽到景区A和景区B门票的概率.
【答案】(1)
(2)
【详解】(1)解:∵共有4张相同的卡片且任意抽取一张卡片,记录后放回,
∴每张卡片抽到的概率都是,
设小明恰好抽到景区A门票为事件,则,
故答案为:;
(2)解:根据题意,画树状图如下:

∴一共有16种等可能的情况,恰好抽到景区A和景区B门票的情况有2种,
∴他恰好抽到景区A和景区B门票的概率为;
19.(2023·江苏徐州·中考真题)甲,乙、丙三人到淮海战役烈士纪念塔园林游览,若每人分别从纪念塔、纪念馆这两个景点中选择一个参观,且选择每个景点的机会相等,则三人选择相同景点的概率为多少?
【答案】
【详解】解:由题意可得如下树状图:

∴甲、乙、丙三人分别从纪念塔、纪念馆这两个景点中选择一个参观,则共有8种情况,其中三人选择相同景点参观共有2种,所以三人选择相同景点的概率为.
20.(2023·江苏连云港·中考真题)如图,有张分别印有版西游图案的卡片:唐僧、孙悟空、猪八戒、沙悟净.

现将这张卡片(卡片的形状、大小、质地都相同)放在不透明的盒子中,搅匀后从中任意取出张卡片,记录后放回、搅匀,再从中任意取出张卡片求下列事件发生的概率:
(1)第一次取出的卡片图案为“孙悟空”的概率为__________;
(2)用画树状图或列表的方法,求两次取出的2张卡片中至少有张图案为“唐僧”的概率.
【答案】(1)
(2)
【详解】(1)解:共有张卡片,
第一次取出的卡片图案为“孙悟空”的概率为
故答案为:.
(2)树状图如图所示:

由图可以看出一共有16种等可能结果,其中至少一张卡片图案为“A唐僧”的结果有7种.
∴(至少一张卡片图案为“A唐僧”).
答:两次取出的2张卡片中至少有一张图案为“A唐僧”的概率为.
21.(2023·江苏扬州·中考真题)扬州是个好地方,有着丰富的旅游资源.某天甲、乙两人来扬州旅游,两人分别从,,三个景点中随机选择一个景点游览.
(1)甲选择景点的概率为________;
(2)请用画树状图或列表的方法,求甲、乙两人中至少有一人选择景点的概率.
【答案】(1)
(2)
【详解】(1)解:共有个景点可供选择,且选择每种景点是随机的,
甲选择景点的概率为.
(2)解:根据题意,列表如下:
由表格可知,共有种等可能的结果,其中甲、乙至少有一人选择景点共有种等可能的结果,
甲、乙至少有一人选择景点的概率为.
22.(2023·江苏苏州·中考真题)一只不透明的袋子中装有4个小球,分别标有编号,这些小球除编号外都相同.
(1)搅匀后从中任意摸出1个球,这个球的编号是2的概率为________________.
(2)搅匀后从中任意摸出1个球,记录球的编号后放回、搅匀,再从中任意摸出1个球.求第2次摸到的小球编号比第1次摸到的小球编号大1的概率是多少?(用画树状图或列表的方法说明)
【答案】(1)
(2)
【详解】(1)解:搅匀后从中任意摸出1个球,这个球的编号是2的概率为;
(2)如图,画树状图如下:

所有可能的结果数为16个,第2次摸到的小球编号比第1次摸到的小球编号大1的结果数为3个,
∴第2次摸到的小球编号比第1次摸到的小球编号大1的概率为:.
23.(2022·江苏南京·中考真题)甲城市有2个景点、,乙城市由3个景点、、,从中随机选取景点游览,求下列事件的概率:
(1)选取1个景点,恰好在甲城市;
(2)选取2个景点,恰好在同一个城市.
【答案】(1)
(2)
【详解】(1)解:随机选取1个景点,有5种等可能结果:、、、、,其中恰好在甲城市的为、占2种,
∴恰好在甲城市的概率,即随机选取1个景点,恰好在甲城市的概率为.
(2)解:随机选取2个景点,共有10种等可能结果:、、、、、、、、、,其中满足恰好在同一个城市的为:、、、,占其中4种,
∴恰好在同一个城市的概率即随机选取2个景点,恰好在同一个城市的概率为.
24.(2022·江苏淮安·中考真题)一只不透明的袋子中装有3个大小、质地完全相同的乒乓球,球面上分别标有数字1、2、3,搅匀后先从袋子中任意摸出1个球,记下数字后放回,搅匀后再从袋子中任意摸出1个球,记下数字.
(1)第一次摸到标有偶数的乒乓球的概率是______;
(2)用画树状图或列表等方法求两次都摸到标有奇数的乒乓球的概率.
【答案】(1)
(2)两次都摸到标有奇数的乒乓球的概率为
【详解】(1)解:∵袋中共有3个分别标有数字1、2、3的小球,数字2为偶数,
∴第一次摸到标有偶数的乒乓球的概率是
故答案为:.
(2)解:画树状图如下:
共有9种等可能的结果,其中两次都摸到标有奇数的乒乓球的结果有:,共4种,
∴两次都摸到标有奇数的乒乓球的概率为.
25.(2022·江苏徐州·中考真题)如图,将下列3张扑克牌洗匀后数字朝下放在桌面上.
(1)从中随机抽取1张,抽得扑克牌上的数字为3的概率为 ;
(2)从中随机抽取2张,用列表或画树状图的方法,求抽得2张扑克牌的数字不同的概率.
【答案】(1)
(2)
【详解】(1)解:根据题意,3张扑克牌中,数字为2的扑克牌有一张,数字为3的扑克牌有两张,
从中随机抽取1张,抽得扑克牌上的数字为3的概率为,
故答案为:;
(2)解:画树状图如下:
如图,共有6种等可能的结果,其中抽到2张扑克牌的数字不同的结果有4种,
抽得2张扑克牌的数字不同的概率为.
26.(2022·江苏镇江·中考真题)一只不透明的袋子中装有2个白球、1个红球,这些球除颜色外都相同.
(1)搅匀后从中任意摸出一个球,摸到红球的概率等于_________;
(2)搅匀后从中任意摸出一个球,记录颜色后放回、搅匀,再从中任意摸出一个球.用列表或画树状图的方法,求2次都摸到红球的概率.
【答案】(1)
(2)
【详解】(1)解:共有3个球,其中红球1个,
∴摸到红球的概率等于;
(2)画树状图如下:
∵有9种结果,其中2次都摸到红球的结果有1种,
∴2次都摸到红球的概率.
27.(2022·江苏南通·中考真题)不透明的袋子中装有红球、黄球、蓝球各一个,这些球除颜色外无其他差别.
(1)从袋子中随机摸出一个球,摸到蓝球的概率是___________;
(2)从袋子中随机摸出一个球后,放回并摇匀,再随机摸出一个球.求两次摸到的球的颜色为“一红一黄”的概率.
【答案】(1)
(2)
【详解】(1)解:∵不透明的袋子中共有3个球,其中1个蓝球,
∴随机摸出一个球,摸到蓝球的概率是,
故答案为:;
(2)根据题意画树状图如下:
由图可知,共有9种等可能的情况数,其中摸到“一红一黄”的情况有2种,
则两次摸到的球的颜色为“一红一黄”的概率是.
28.(2022·江苏盐城·中考真题)某社区举行新冠疫情防控核酸检测大演练,卫生防疫部门在该社区设置了三个核酸检测点A、B、C,甲、乙两人任意选择一个检测点参加检测.求甲、乙两人不在同一检测点参加检测的概率.(用画树状图或列表的方法求解)
【答案】
【详解】解:画树状图如下:
由图可知,共有9种等可能的结果,其中甲、乙两人不在同一检测点参加检测的结果有6种,故甲、乙两人不在同一检测点参加检测的概率为.
29.(2022·江苏泰州·中考真题)即将在泰州举办的江苏省第20届运动会带动了我市的全民体育热,小明去某体育馆锻炼,该体育馆有A、B两个进馆通道和C、D、E三个出馆通道,从进馆通道进馆的可能性相同,从出馆通道出馆的可能性也相同.用列表或画树状图的方注列出小明一次经过进馆通道与出馆通道的所有等可能的结果,并求他恰好经过通道A与通道D的概率.
【答案】
【详解】解:列表如下:
C D E
A AC AD AE
B BC BD BE
∵由表可知共有6种等可能的结果数,其中恰好经过通道A与通道D的结果有1种,
∴P(恰好经过通道A与通道D)=.
答:他恰好经过通道A与通道D的概率为.
30.(2022·江苏无锡·中考真题)建国中学有7位学生的生日是10月1日,其中男生分别记为,,,,女生分别记为,,.学校准备召开国庆联欢会,计划从这7位学生中抽取学生参与联欢会的访谈活动.
(1)若任意抽取1位学生,且抽取的学生为女生的概率是 ;
(2)若先从男生中任意抽取1位,再从女生中任意抽取1位,求抽得的2位学生中至少有1位是或的概率.(请用“画树状图”或“列表”等方法写出分析过程)
【答案】(1)
(2)
【详解】(1)解:任意抽取1位学生,且抽取的学生为女生的概率是,
故答案为:.
(2)解:列出表格如下:
一共有12种情况,其中至少有1位是或的有6种,
∴抽得的2位学生中至少有1位是或的概率为.
31.(2022·江苏苏州·中考真题)一只不透明的袋子中装有1个白球,3个红球,这些球除颜色外都相同.
(1)搅匀后从中任意摸出1个球,这个球是白球的概率为______;
(2)搅匀后从中任意摸出1个球,记录颜色后放回,搅匀,再从中任意摸出1个球,求2次摸到的球恰好是1个白球和1个红球的概率.(请用画树状图或列表等方法说明理由)
【答案】(1)
(2)2次摸到的球恰好是1个白球和1个红球的概率为
【详解】(1)解:∵一只不透明的袋子中装有1个白球和3个红球,这些球除颜色外都相同,
∴搅匀后从中任意摸出1个球,则摸出白球的概率为: .
故答案为:;
(2)解: 画树状图,如图所示:
共有16种不同的结果数,其中两个球颜色不同的有6种,
∴2次摸到的球恰好是1个白球和1个红球的概率为.
32.(2022·江苏宿迁·中考真题)从甲、乙、丙、丁4名学生中选2名学生参加一次乒乓球单打比赛,求下列事件发生的概率.
(1)甲一定参加比赛,再从其余3名学生中任意选取1名,恰好选中丙的概率是 ;
(2)任意选取2名学生参加比赛,求一定有乙的概率.(用树状图或列表的方法求解).
【答案】(1)
(2)
【详解】(1)解:由甲一定参加比赛,再从其余3名学生中任意选取1名,共有甲、乙,甲、丙,甲、丁三种等可能,符合条件的情况数有1种,
∴甲一定参加比赛,再从其余3名学生中任意选取1名,恰好选中丙的概率是
(2)列表如下:
甲 乙 丙 丁
甲 甲、乙 甲、丙 甲、丁
乙 乙、甲 乙、丙 乙、丁
丙 丙、甲 丙、乙 丙、丁
丁 丁、甲 丁、乙 丁、丙
所有所有的等可能的情况数有12种,符合条件的情况数有6种,
所以一定有乙的概率为:
33.(2022·江苏扬州·中考真题)某超市为回馈广大消费者,在开业周年之际举行摸球抽奖活动.摸球规则如下:在一只不透明的口袋中装有1个白球和2个红球,这些球除颜色外都相同,搅匀后先从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球.
(1)用树状图列出所有等可能出现的结果;
(2)活动设置了一等奖和二等奖两个奖次,一等奖的获奖率低于二等奖.现规定摸出颜色不同的两球和摸出颜色相同的两球分别对应不同奖次,请写出它们分别对应的奖次,并说明理由.
【答案】(1)见解析
(2)见解析
【详解】(1)解:画树状图如下:
由树状图知共有6种情况;
(2)解:由(1)知抽到颜色相同的两球共有2种情况,
抽到颜色不同的两球共有4种情况,
所以抽到颜色相同的两球对应一等奖,抽到颜色不同的两球对应二等奖.
34.(2022·江苏连云港·中考真题)“石头、剪子、布”是一个广为流传的游戏,规则是:甲、乙两人都做出“石头”“剪子”“布”3种手势中的1种,其中“石头”赢“剪子”,“剪子”赢“布”,“布”赢“石头”,手势相同不分输赢.假设甲、乙两人每次都随意并且同时做出3种手势中的1种.
(1)甲每次做出“石头”手势的概率为_________;
(2)用画树状图或列表的方法,求乙不输的概率.
【答案】(1)
(2)见解析,
【详解】(1)解:∵甲每次做出的手势只有“石头”、“剪子”、“布”其中的一种,
∴甲每次做出“石头”手势的概率为;
(2)解:树状图如图所示:
甲、乙两人同时做出手势共有9种等可能结果,其中乙不输的共有6种,
∴(乙不输).
答:乙不输的概率是.
35.(2022·江苏常州·中考真题)在5张相同的小纸条上,分别写有语句:①函数表达式为;②函数表达式为;③函数的图像关于原点对称;④函数的图像关于轴对称;⑤函数值随自变量增大而增大.将这5张小纸条做成5支签,①、②放在不透明的盒子中搅匀,③、④、⑤放在不透明的盒子中搅匀.
(1)从盒子中任意抽出1支签,抽到①的概率是______;
(2)先从盒子中任意抽出1支签,再从盒子中任意抽出1支签.求抽到的2张小纸条上的语句对函数的描述相符合的概率.
【答案】(1)
(2)
【详解】(1)解:从盒子中任意抽出1支签,抽到①的概率是;
故答案为:;
(2)解:画出树状图:
共有6种结果,抽到的2张小纸条上的语句对函数的描述相符合的有①、③和①、⑤和②、④共3种,
抽到的2张小纸条上的语句对函数的描述相符合的概率为.
36.(2023·江苏·中考真题)在张相同的小纸条上,分别写有:①;②;③;④乘法;⑤加法.将这张小纸条做成支签,①、②、③放在不透明的盒子中搅匀,④、⑤放在不透明的盒子中搅匀.
(1)从盒子中任意抽出支签,抽到无理数的概率是______;
(2)先从盒子中任意抽出支签,再从盒子中任意抽出支签,求抽到的个实数进行相应的运算后结果是无理数的概率.
【答案】(1)
(2)
【详解】(1)解:∵,
故和均为无理数,
故盒子中任意抽出支签,抽到无理数的概率是.
故答案为:.
(2)解:树状图画出所有情况为:
即抽签的组合有种,分别为:
组合情况 运算结果 运算结果是否是无理数
第一种组合 ,,乘法 否
第二种组合 ,,加法 是
第三种组合 ,,乘法 是
第四种组合 ,,加法 是
第五种组合 ,,乘法 否
第六种组合 ,,加法 是
第七种组合 ,,乘法 是
第八种组合 ,,加法 是
第九种组合 ,,乘法 是
第十种组合 ,,加法 是
第十一种组合 ,,乘法; 是
第十二种组合 ,,加法 是
对应的组合运算结果共个,其中运算结果为无理数的有个,
故抽到的个实数进行相应的运算后结果是无理数的概率为.
题型二 数据的收集与整理
37.(2024·江苏徐州·中考真题)参加初中学业水平考试的人数简称“中考人数”.如图,某市根据2016﹣2024年中考人数及2024年上半年小学、初中各年级在校学生人数,绘制出2016﹣2032年中考人数(含预估)统计图如图:
根据以上信息,解决下列问题.
(1)下列结论中,所有正确结论的序号是______.
①2016﹣2031年中考人数呈现先升后降的趋势;
②与上一年相比,中考人数增加最多的年份是2021年;
③2016﹣2024年中考人数的波动比2024﹣2032年中考人数的波动大.
(2)为促进人口长期均衡发展,有效提高人口出生率,我国于2013﹣2021年先后实施了三项鼓励生育的政策,其中导致该市2032年中考人数较2031年增加的最主要原因是______.
A.2013年单独两孩政策
B.2015年全面两孩政策
C.2021年三孩生育政策
(3)2024年上半年,该市小学在校学生共有多少人?
【答案】(1)①③
(2)B
(3)2024年上半年,该市小学在校学生共有81.6万人
【详解】(1)解:由统计图可知:2016﹣2031年中考人数呈现的是先升后降的趋势,故①正确;
,,
与上一年相比,中考人数增加最多的年份是2020年,故②不正确;
2016﹣2024年中考人数的波动比2024﹣2032年中考人数的波动大,故③不正确;
故答案为:①③;
(2)解:导致该市2032年中考人数较2031年增加的主要原因是2015年全面两孩政策的实施,
故选:B;
(3)解:由统计图可知:2024年上半年,该市六年级至一年级小学生将是在2027﹣2032年参加中考的考生,
该市小学在校学生人数共有:(万人),
答:2024年上半年,该市小学在校学生共有81.6万人.
38.(2024·江苏南通·中考真题)我国淡水资源相对缺乏,节约用水应成为人们的共识.为了解某小区家庭用水情况,随机调查了该小区50个家庭去年的月均用水量(单位:吨),绘制出如下未完成的统计图表.
50个家庭去年月均用水量频数分布表
组别 家庭月均用水量(单位:吨) 频数
A 7
B m
C n
D 6
E 2
合计 50
根据上述信息,解答下列问题:
(1)______,______;
(2)这50个家庭去年月均用水量的中位数落在______组;
(3)若该小区有1200个家庭,估计去年月均用水量小于4.8吨的家庭数有多少个?
【答案】(1)20,15
(2)B
(3)648个
【详解】(1)解:根据题意可知:,
解得:,
∴,
故答案为:20,15;
(2)解:∵一共有50组用水量数据,
∴50组数据从小到大排列,中位数为第25位和26位的平均数,即中位数在B组.
∴这50个家庭去年月均用水量的中位数落在B组,
故答案为:B;
(3)解:(个),
故去年月均用水量小于4.8吨的家庭数有648个.
39.(2024·江苏镇江·中考真题)有甲、乙两只不透明的袋子,每只袋子中装有红球和黄球若干,各袋中所装球的总个数相同,这些球除颜色外都相同.实践组用甲袋、创新组用乙袋各自做摸球试验:两人一组,一人从袋中任意摸出1个球,另一人记下颜色后将球放回并搅匀,各组连续做这样的试验,将记录的数据绘制成如下两种条形统计图:

(1)__________图能更好地反映各组试验的总次数,__________图能更好地反映各组试验摸到红球的频数(填“A”或“B”);
(2)求实践组摸到黄球的频率;
(3)根据以上两种条形统计图,你还能获得哪些信息(写出一条即可)?
【答案】(1),;
(2);
(3)实践组摸到黄球的频率小于创新组摸到黄球的频率(答案不唯一).
【详解】(1)解:图能更好地反映各组试验的总次数,图能更好地反映各组试验摸到红球的频数;
故答案为:,.
(2)解:实践组摸到黄球的频率;
(3)解:实践组摸到黄球的频率小于创新组摸到黄球的频率(答案不唯一).
40.(2024·江苏宿迁·中考真题)某校为丰富学生的课余生活,开展了多姿多彩的体育活动,开设了五种球类运动项目:A篮球,B足球,C排球,D羽毛球,E乒乓球.为了解学生最喜欢以上哪种球类运动项目,随机抽取部分学生进行调查(每位学生仅选一种),并绘制了统计图:
某同学不小心将图中部分数据丢失,请结合统计图,完成下列问题:
(1)本次调查的样本容量是________,扇形统计图中C对应圆心角的度数为________
(2)请补全条形统计图;
(3)若该校共有2000名学生,请你估计该校最喜欢“E乒乓球”的学生人数.
【答案】(1)200;36
(2)见解析
(3)460人
【详解】(1)解:本次调查的样本容量是;
扇形统计图中C对应圆心角的度数为;
故答案为:200;36
(2)解:最喜欢“B足球”的学生人数为人,
补全条形统计图,如图:
(3)解:人,
即该校最喜欢“E乒乓球”的学生人数为460人.
41.(2024·江苏无锡·中考真题)“五谷者,万民之命,国之重宝.”夯实粮食安全根基,需要强化农业科技支撑.农业科研人员小李在试验田里种植了新品种大麦,为考察麦穗长度的分布情况,开展了一次调查研究.
【确定调查方式】
(1)小李计划从试验田里抽取100个麦穗,将抽取的这100个麦穗的长度作为样本,下面的抽样调查方式合理的是______;(只填序号)
①抽取长势最好的100个麦穗的长度作为样本
②抽取长势最差的100个麦穗的长度作为样本
③随机抽取100个麦穗的长度作为样本
【整理分析数据】
(2)小李采用合理的调查方式获得该试验田100个麦穗的长度(精确到0.1cm),并将调查所得的数据整理如下:
试验田100个麦穗长度频率分布表
长度 频率
0.04
0.45
0.30
0.09
合计 1
根据以上图表信息,解答下列问题:
①频率分布表中的______;
②请把频数分布直方图补充完整;(画图后请标注相应数据)
【作出合理估计】
(3)请你估计长度不小于的麦穗在该试验田里所占比例为多少.
【答案】(1)③(2)①0.12,频数分布直方图见详解 (3)
【详解】解:(1)∵抽样调查方式样本的选取需要的是广泛性和可靠性,
∴抽样调查方式合理的是随机抽取100个麦穗的长度作为样本,
故答案为:③
(2)①频率分布表中的,
故答案为:0.12,
②麦穗长度频率分布在之间的频数有:,
频数分布直方图补全如下:
(3),
故长度不小于的麦穗在该试验田里所占比例为.
42.(2024·江苏苏州·中考真题)某校计划在七年级开展阳光体育锻炼活动,开设以下五个球类项目:A(羽毛球),B(乒乓球),C(篮球),D(排球),E(足球),要求每位学生必须参加,且只能选择其中一个项目.为了了解学生对这五个项目的选择情况,学校从七年级全体学生中随机抽取部分学生进行问卷调查,对调查所得到的数据进行整理、描述和分析,部分信息如下:
根据以上信息,解决下列问题:
(1)将图①中的条形统计图补充完整(画图并标注相应数据);
(2)图②中项目E对应的圆心角的度数为______°;
(3)根据抽样调查结果,请估计本校七年级800名学生中选择项目B(乒乓球)的人数.
【答案】(1)见解析
(2)72
(3)本校七年级800名学生中选择项目B(乒乓球)的人数约为240人
【详解】(1)解:总人数为,
D组人数为,
补图如下:
(2)解:,
故答案为:72;
(3)解:(人).
答:本校七年级800名学生中选择项目B(乒乓球)的人数约为240人.
43.(2024·江苏扬州·中考真题)2024年5月28日,神舟十八号航天员叶光富、李聪、李广苏密切协同,完成出舱活动,活动时长达8.5小时,刷新了中国航天员单次出舱活动时间纪录,进一步激发了青少年热爱科学的热情.某校为了普及“航空航天”知识,从该校1200名学生中随机抽取了200名学生参加“航空航天”知识测试,将成绩整理绘制成如下不完整的统计图表:
成绩统计表
组别 成绩x(分) 百分比
A组
B组
C组 a
D组
E组
成绩条形统计图
根据所给信息,解答下列问题:
(1)本次调查的成绩统计表中________%,并补全条形统计图;
(2)这200名学生成绩的中位数会落在________组(填A、B、C、D或E);
(3)试估计该校1200名学生中成绩在90分以上(包括90分)的人数.
【答案】(1)20,条形统计图见详解
(2)D
(3)300人
【详解】(1),
C组人数为:,
补全条形统计图如图所示:
故答案为:20
(2),

∴200名学生成绩的中位数会落在D组.
(3)(人)
估计该校1200名学生中成绩在90分以上(包括90分)的人数为300人.
44.(2024·江苏盐城·中考真题)阅读涵养心灵.某地区2023年9月就“初中生每天阅读时间”对七年级8000名学生进行了抽样调查(设每天阅读时间为,调查问卷设置了四个时间选项:A.;B.;C.;D.),并根据调查结果制作了如图1所示的条形统计图.2023年9月该地区出台系列激励措施,力推学生阅读习惯养成.为了检测这些措施的效果,2023年12月该地区又对七年级学生进行了一次抽样调查,并根据调查结果制作了如图2所示的扇形统计图.
9月份学生每天阅读时间条形统计图
12月份学生每天阅读时间扇形统计图
请根据提供的信息,解答下列问题.
(1)2023年9月份抽样调查的样本容量为________,该地区七年级学生“每天阅读时间不少于1小时”的人数约为________人;
(2)估算该地区2023年12月份“每天阅读时间不少于1小时”的七年级学生人数相对于9月份的增长率;(精确到)
(3)根据两次调查结果,对该地区出台相关激励措施的做法进行评价.
【答案】(1)800;7200
(2)
(3)见解析
【详解】(1)解:样本容量为:,
该地区七年级学生“每天阅读时间不少于1小时”的人数约为:人,
故答案为:800;7200;
(2),
12月份“每天阅读时间不少于1小时”的比例为:,
设9月份学生和12月份学生样本均为x,
∴,
∴增长率为:;
(3)该地区出台相关激励措施有明显的作用,督促大部分学生养成良好的阅读习惯.
45.(2024·江苏连云港·中考真题)为了解七年级男生体能情况,某校随机抽取了七年级20名男生进行体能测试,并对测试成绩(单位:分)进行了统计分析:
【收集数据】
100 94 88 88 52 79 83 64 83 87
76 89 91 68 77 97 72 83 96 73
【整理数据】
该校规定:为不合格,为合格,为良好,为优秀.(成绩用表示)
等次 频数(人数) 频率
不合格 1 0.05
合格 a 0.20
良好 10 0.50
优秀 5 b
合计 20 1.00
【分析数据】
此组数据的平均数是82,众数是83,中位数是c;
【解决问题】
(1)填空:__________,__________,__________;
(2)若该校七年级共有300名男生,估计体能测试能达到优秀的男生约有多少人?
(3)根据上述统计分析情况,写一条你的看法.
【答案】(1)4,0.25,83
(2)75人
(3)男生体能状况良好
【详解】(1)解:;

把20个数据按从小到大的顺序排列为:52,64,68,72,73,76,77,79,83,83,83,87,88,88,89,91,94,96,97,100,
最中间的两个数据为83,83,
所以,,
故答案为:4,0.25,83;
(2)解:(人)
答:估计体能测试能达到优秀的男生约有75人;
(3)解:从样本的平均数、中位数和众数可以看出,男生整体体能状况良好
46.(2023·江苏南京·中考真题)社会运转和日常生活离不开物流行业的发展,阅读以下统计图并回答问题.
2011~2022年中国社会物流总费用及占GDP比重统计图
(1)下列结论中,所有正确结论的序号是 .
①2011~2022年社会物流总费用占 GDP 比重总体呈先下降后稳定的趋势:
②2011~2016年社会物流总费用的波动比2017~2022年社会物流总费用的波动大;
③2012~2022 年社会物流总费用逐年增加,其中增加的幅度最大的一年是 2021年,
(2)请结合上图提供的信息,从不同角度写出两个与我国GDP 相关的结论.
【答案】(1)①③
(2)见解析
【详解】(1)由拆线统计图看出比重总体呈先下降后稳定的趋势,
故①正确;
∵2011 ~2016 年社会物流总费用的波动范围为:,
2017 ~2022年社会物流总费用的波动范围为:,
∴2011 ~2016 年社会物流总费用的波动比2017 ~2022年社会物流总费用的波动小,
故②错误;
2012~2022年社会物流总费用逐年增加,其中增加的幅度较大的几个年份:
2012年:,
2017年:,
2019年:,
2021年:,
2022年:,
∵,
∴其中增加的幅度最大的一年是 2021年,
故③正确.
故答案为: ①③.
(2)根据统计图可得,
①从2012年到2017年社会物流总费用平稳增长,占GDP的比重却逐年递减;说明我国GDP总量在逐年增长;
②从2017年到2022年社会物流总费用逐年增加,占GDP的比重却趋于稳定,变化不大。说明我国GDP总量在逐年增长.
47.(2023·江苏盐城·中考真题)盐城市大丰国家级麋鹿自然保护区在过去的37年间,将濒临灭绝的39头世界珍稀野生动物麋鹿发展到如今的7033头.
某校生物兴趣小组去实地调查,绘制出如下统计图.
(注:麋鹿总头数=人工驯养头数+野生头数)

解答下列问题:
(1)①在扇形统计图中,哺乳类所在扇形的圆心角度数为_________°;
②在折线统计图中,近6年野生麋鹿头数的中位数为_________头.
(2)填表:
年份 2017 2018 2019 2020 2021 2022
人工驯养麋鹿头数 3473 3531 3666 3861 _________ 3917
(3)结合以上的统计和计算,谈谈你对该保护区的建议或想法.
【答案】(1),
(2)
(3)见解析
【详解】(1)解:①在扇形统计图中,哺乳类所占的百分比为:,
∴哺乳类所在扇形的圆心角度数为:;
②在折线统计图中,近6年野生麋鹿头数按从小到大顺序排序为:

近6年野生麋鹿头数的中位数为,
故答案为:,;
(2)解:,
故答案为:;
(3)加强对野生麋鹿的保护的同时,提高人工驯养的技术.
48.(2023·江苏镇江·中考真题)香醋中有一种物质,其含量不同,风味就不同,各风味香醋中该种物质的含量如下表.
风味 偏甜 适中 偏酸
含量/ 71.2 89.8 110.9
某超市销售不同包装(塑料瓶装和玻璃瓶装)的以上三种风味的香醋,小明将该超市月份售出的香醋数量绘制成如下条形统计图.

已知月份共售出150瓶香醋,其中“偏酸”的香醋占.
(1)求出a,b的值.
(2)售出的玻璃瓶装香醋中该种物质的含量的众数为______,中位数为______.
(3)根据小明绘制的条形统计图,你能获得哪些信息?(写出一条即可)
【答案】(1)
(2)110.9,89.8
(3)见解析
【详解】(1)∵月份共售出150瓶香醋,其中“偏酸”的香醋占比,
∴售出“偏酸”的香醋的数量为(瓶).
∴,解得.
∵,即,
解得.
综上,.
(2)售出的玻璃瓶装香醋的数量为(瓶).
其中:风味偏甜的有20瓶,风味适中的有38瓶,风味偏酸的有42瓶,
∵售出的风味偏酸的数量最多,风味适中的数量居中,
∴售出的玻璃瓶装香醋中的该种物质的含量的众数为,中位数为,
故答案为:110.9,89.8.
(3)根据小明绘制的条形统计图可知,人们更喜欢风味偏酸的香醋(答案不唯一,合理即可).
49.(2023·江苏南通·中考真题)某校开展以"筑梦天宫、探秘苍穹"为主题的航天知识竞赛,赛后在七、八年级各随机抽取20名学生的竞赛成绩,进行整理、分析,得出有关统计图表.

(1)若该校八年级共有300名学生参赛,估计优秀等次的约有____________人;
(2)你认为七、八年级中哪个年级学生的竞赛成绩更好些 请从两个方面说明理由.
【答案】(1)90
(2)答案不唯一,见解析
【详解】(1)解:,
故答案为:90;
(2)解:答案不唯一,如:七年级学生的竞赛成绩更好些.
理由:七、八年级抽取的学生竞赛成绩的平均数相同,而七年级学生成绩的方差小,成绩更稳定;
七、八年级抽取的学生竞赛成绩的平均数相同,而七年级学生成绩的优秀及良好占比更高.
八年级学生的竞赛成绩更好些.
理由:七、八年级抽取的学生竞赛成绩的平均数相同,而八年级学生成绩的中位数高于七年级;
七、八年级抽取的学生竞赛成绩的平均数相同,而八年级学生成绩的众数高于七年级.
50.(2023·江苏宿迁·中考真题)为了解某校九年级学生周末活动情况,随机抽取了部分学生进行调查,并绘制了如图所示的两幅不完整的统计表和统计图.
学生参加周末活动人数统计表
活动名称 人数
A.课外阅读 40
B.社会实践 48
C.家务劳动 m
D.户外运动 n
E.其它活动 26

请结合图表中提供的信息,解答下列问题:
(1)________,________;
(2)扇形统计图中A对应的圆心角是________度;
(3)若该校九年级有800名学生,请估算该校九年级周末参加家务劳动的人数.
【答案】(1)24,62
(2)72
(3)估算该校九年级周末参加家务劳动的人数为96名
【详解】(1)解:抽取调查的学生总人数为(人),
则(人),
(人),
故答案为:24,62.
(2)解:,
即扇形统计图中对应的圆心角是72度,
故答案为:72.
(3)解:(名),
答:估算该校九年级周末参加家务劳动的人数为96名.
51.(2023·江苏泰州·中考真题)如图是我国2019~2022年汽车销售情况统计图.

根据图中信息,解答下列问题:
(1)2022年我国新能源汽车销售量约占该年各类汽车销售总量的_____________(精确到);
这4年中,我国新能源汽车销售量在各类汽车销售总量占比最高的年份是___________年;
(2)小明说:新能源汽车2022年的销售量超过前3年的总和,所以2022年新能源汽车销售量的增长率比2021年高.你同意他的说法吗?请结合统计图说明你的理由.
【答案】(1)26,2022年
(2)不同意.理由见详解
【详解】(1)2022年我国新能源汽车销售量约占该年各类汽车销售总量的占比为:,
2021年我国新能源汽车销售量约占该年各类汽车销售总量的占比为:,
2020年我国新能源汽车销售量约占该年各类汽车销售总量的占比为:,
2019年我国新能源汽车销售量约占该年各类汽车销售总量的占比为:,
这4年中,我国新能源汽车销售量在各类汽车销售总量占比最高的年份是2022年.
故答案为:26,2022年;
(2)不同意.理由如下:
2022年新能源汽车销售量的增长率为:,
2021年新能源汽车销售量的增长率为:,
年新能源汽车销售量的增长率比2021年低.
52.(2023·江苏无锡·中考真题)2023年5月30日,神舟十六号载人飞船成功发射,为大力弘扬航天精神,普及航天知识,激发学生探索和创新热情,某初中在全校开展航天知识竞赛活动现采用简单随机抽样的方法从每个年级抽取相同数量的学生答题成绩进行分析,绘制成下列图表,请根据图表提供的信息,解答下列问题:
学生参加航天知识竞赛成绩频数分布表
竞赛成绩x(组别) (A) (B) (C) (D) (E) (F)
频数 21 96 a 57 b 6
学生参加航天知识竞赛成绩统计表
年级 平均数 众数 中位数
七年级 82 81
八年级 82 82
九年级 83 80

(1)_________;_________%;
(2)请根据“学生参加航天知识竞赛成绩统计表”对本次竞赛中3个年级的总体情况做出评价,并说明理由.
【答案】(1)90;10
(2)七年级的平均分最高;八年级的中位数最大;九年级的众数最大
【详解】(1)解:∵抽取的总人数为(人),
∴C组的人数为(人),

故答案为:90,10;
(2)解:七年级的平均分最高;
八年级的中位数最大;
九年级的众数最大.(答案不唯一).
53.(2023·江苏徐州·中考真题)为了解某地区九年级学生的视力情况,从该地区九年级学生中抽查了部分学生,根据调查结果,绘制了如下两幅不完整的统计图.

根据以上信息,解决下列问题:
(1)此次调查的样本容量为 ;
(2)扇形统计图中对应圆心角的度数为 °;
(3)请补全条形统计图;
(4)若该地区九年级学生共有人,请估计其中视力正常的人数.
【答案】(1)450
(2)
(3)见解析
(4)人
【详解】(1)解:,
答:此次调查的样本容量为是,
故答案为.
(2)解:,
故答案为;
(3)解:
补全图形如下:

(4)解:(人)
答:九年级学生共有人,请估计其中视力正常的人数共有人.
54.(2023·江苏连云港·中考真题)为了解本校八年级学生的暑期课外阅读情况,某数学兴趣小组抽取了50名学生进行问卷调查.
(1)下面的抽取方法中,应该选择( )
A.从八年级随机抽取一个班的50名学生
B.从八年级女生中随机抽取50名学生
C.从八年级所有学生中随机抽取50名学生
(2)对调查数据进行整理,得到下列两幅尚不完整的统计图表:
暑期课外阅读情况统计表
阅读数量(本) 人数
0 5
1 25
2
3本及以上 5
合计 50

统计表中的__________,补全条形统计图;
(3)若八年级共有800名学生,估计八年级学生暑期课外阅读数量达到2本及以上的学生人数;
(4)根据上述调查情况,写一条你的看法.
【答案】(1)C
(2)15;见解析
(3)320人
(4)答案不唯一,见解析
【详解】(1)为了解本校八年级学生的暑期课外阅读情况,应该选择从八年级所有学生中随机抽取50名学生,这样抽取的样本具有广泛性和代表性,
故选:C;
(2);
故答案为:15;
补全条形统计图如图所示:

(3)(人)
答:八年级学生暑期课外阅读数量达到2本及以上的学生约为320人.
(4)本次调查大部分同学一周暑期课外阅读数量达不到3本,建议同学们多阅读,培养热爱读书的良好习惯(答案不唯一).
55.(2023·江苏苏州·中考真题)某初中学校为加强劳动教育,开设了劳动技能培训课程.为了解培训效果,学校对七年级320名学生在培训前和培训后各进行一次劳动技能检测,两次检测项目相同,评委依据同一标准进行现场评估,分成“合格”、“良好”、“优秀”3个等级,依次记为2分、6分、8分(比如,某同学检测等级为“优秀”,即得8分).学校随机抽取32名学生的2次检测等级作为样本,绘制成下面的条形统计图:

(1)这32名学生在培训前得分的中位数对应等级应为________________;(填“合格”、“良好”或“优秀”)
(2)求这32名学生培训后比培训前的平均分提高了多少?
(3)利用样本估计该校七年级学生中,培训后检测等级为“良好”与“优秀”的学生人数之和是多少?
【答案】(1)合格
(2)分
(3)人
【详解】(1)解:32个数据排在最中间是第16个,第17个,这两个数据的平均数即为中位数,
∴这32名学生在培训前得分的中位数对应等级应为合格;
(2)32名学生在培训前的平均分为:(分),
32名学生在培训后的平均分为:(分),
这32名学生培训后比培训前的平均分提高了(分);
(3)培训后检测等级为“良好”与“优秀”的学生人数之和是:
(人).
56.(2022·江苏南京·中考真题)某企业餐厅,有A、两家公司可选择,该企业现连续10个工作日选择A公司,接着连续10个工作日选择公司,记录送餐用时(单位:)如下表:
1 2 3 4 5 6 7 8 9 10
A公司送餐用时 26 26 30 25 27 29 24 28 30 25
公司送餐用时 20 18 21 16 34 32 15 14 35 15
根据上表数据绘制的折线统计图如图所示:

(1)根据上述信息,请你帮该企业选择合适的公司订餐,并简述理由;
(2)如果某工作日该企业希望送餐用时不超过,应选择哪家公司?请简述理由.
【答案】(1)选择A公司,理由见解析(答案不唯一)
(2)选择公司,理由见解析
【详解】(1)解:选择A公司;
理由如下:A公司送餐用时稳定,基本在之间,而公司送餐时间不稳定,忽快忽慢,不利于员工用餐;
选择公司.
理由如下:A公司平均用时,而公司平均用时,公司平均花时更短.(言之有理即可)
(2)解:选择公司.
理由如下:从各自10个工作日送餐情况看,A公司的送餐时间没有低于的,而公司虽然有4次超过30分钟,但是其余6次都不超过,所以选择公司.
57.(2022·江苏淮安·中考真题)某校计划成立学生体育社团,为了解学生对不同体育项目的喜爱情况,学校随机抽取了部分学生进行“我最喜爱的一个体育项目”问卷调查,规定每人必须并且只能在“篮球”“足球”“乒乓球”“健美操”“跑步”五个项目中选择一项,并根据统计结果绘制了两幅不完整的统计图.
请解答下列问题:
(1)在这次调查中,该校一共抽样调查了______名学生,扇形统计图中“跑步”项目所对应的扇形圆心角的度数是______°;
(2)请补全条形统计图;
(3)若该校共有1200名学生,试估计该校学生中最喜爱“篮球”项目的人数.
【答案】(1)200,72
(2)补全的条形统计图见解析
(3)估计该校学生中最喜爱“篮球”项目的有180名
【详解】(1)(名),
在扇形统计图中,“跑步”项目所对应的扇形圆心角的度数是,
故答案为:200,72;
(2)选择足球的学生有:(人),
补全的条形统计图如图所示:
(3)(名),
答:估计该校学生中最喜爱“篮球”项目的有180名.
58.(2022·江苏镇江·中考真题)某地交警在一个路口对某个时段来往的车辆的车速进行监测,统计数据如下表:
车速() 40 41 42 43 44 45
频数 6 8 15 3 2
其中车速为40、43(单位:)的车辆数分别占监测的车辆总数的12%、32%.
(1)求出表格中的值;
(2)如果一辆汽车行驶的车速不超过的10%,就认定这辆车是安全行驶.若一年内在该时段通过此路口的车辆有20000辆,试估计其中安全行驶的车辆数.
【答案】(1)16
(2)19200辆
【详解】(1)方法一:由题意得,

方法二:由题意得,
解得:;
(2)由题意知,安全行驶速度小于等于.
因为该时段监测车辆样本中安全行驶的车辆占总监测车辆的占比为,
所以估计其中安全行驶的车辆数约为:(辆)
59.(2022·江苏南通·中考真题)为了了解八年级学生本学期参加社会实践活动的天数情况,A,B两个县区分别随机抽查了200名八年级学生.根据调查结果绘制了统计图表,部分图表如下:
A,B两个县区的统计表
平均数 众数 中位数
A县区 3.85 3 3
B县区 3.85 4 2.5
(1)若A县区八年级共有约5000名学生,估计该县区八年级学生参加社会实践活动不少于3天的学生约为___________名;
(2)请对A,B两个县区八年级学生参加社会实践活动的天数情况进行比较,做出判断,并说明理由.
【答案】(1)3750
(2)见详解
【详解】(1)解:根据A县区统计图得,该县区八年级学生参加社会实践活动不少于3天的比例为:

∴该县区八年级学生参加社会实践活动不少于3天的学生约为:名,
故答案为:3750;
(2)∵A县区和B县区的平均活动天数均为3.85天,
∴A县区和B县区的平均活动天数相同;
∵A县区的中位数是3,B县区的中位数是2.5,
∴B县区参加社会实践活动小于3天的人数比A县区多,从中位数看,A县区要好;
∵A县区的众数是3,B县区的众数是4,
∴A县区参加社会实践人数最多的是3天,B县区参加社会实践人数最多的是4天,从众数看,B县区要好.
60.(2022·江苏盐城·中考真题)合理的膳食可以保证青少年体格和智力的正常发育.综合实践小组为了解某校学生膳食营养状况,从该校1380名学生中调查了100名学生的膳食情况,调查数据整理如下:
中国营养学会推荐的三大营养素供能比参考值
蛋白质 10%~15%
脂肪 20%~30%
碳水化合物 50%~65%
注:供能比为某物质提供的能量占人体所需总能量的百分比.
(1)本次调查采用___________的调查方法;(填“普查”或“抽样调查”)
(2)通过对调查数据的计算,样本中的蛋白质平均供能比约为14.6%,请计算样本中的脂肪平均供能比和碳水化合物平均供能比;
(3)结合以上的调查和计算,对照下表中的参考值,请你针对该校学生膳食状况存在的问题提一条建议.
【答案】(1)抽样调查
(2)样本中的脂肪平均供能比为38.59%,碳水化合物平均供能比为46.825%
(3)答案见解析
【详解】(1)解:由该校1380名学生中调查了100名学生的膳食情况,
可得:本次调查采用抽样的调查方法;
故答案为:抽样
(2)样本中所有学生的脂肪平均供能比为,
样本中所有学生的碳水化合物平均供能比为.
答:样本中的脂肪平均供能比为38.59%,碳水化合物平均供能比为46.825%.
(3)该校学生蛋白质平均供能比在合理的范围内,脂肪平均供能比高于参考值,碳水化合物供能比低于参考值,膳食不合理,营养搭配不均衡,建议增加碳水化合物的摄入量,减少脂肪的摄入量.(答案不唯一,建议合理即可)
61.(2022·江苏常州·中考真题)为减少传统塑料袋对生态环境的破坏,国家提倡使用可以在自然环境下(特定微生物、温度、湿度)较快完成降解的环保塑料袋.调查小组就某小区每户家庭1周内环保塑料袋的使用情况进行了抽样调查,使用情况为(不使用)、(1~3个)、(4~6个)、(7个及以上),以下是根据调查结果绘制的统计图的一部分.
(1)本次调查的样本容量是_____,请补全条形统计图;
(2)已知该小区有1500户家庭,调查小组估计:该小区1周内使用7个及以上环保塑料袋的家庭约有225户.调查小组的估计是否合理?请说明理由.
【答案】(1)100,图见解析
(2)合理,理由见解析
【详解】(1)解:本次调查的样本容量为:(户),
使用情况的户数为:(户),
占的比例为:,
的比例为:,
使用情况的户数为:(户),
补全条形统计图如下:
故答案为:100.
(2)解:合理,理由如下:
利用样本估计总体:占的比例为:,
(户),
调查小组的估计是合理的.
62.(2022·江苏泰州·中考真题)农业、工业和服务业统称为“三产”,2021年泰州市“三产”总值增长率在全省排名第一.观察下列两幅统计图,回答问题.
(1)2017—2021年农业产值增长率的中位数是 %﹔若2019年“三产”总值为5200亿元,则2020年服务业产值比2019年约增加 亿元(结果保留整数).
(2)小亮观察折线统计图后认为:这五年中,每年服务业产值都比工业产值高,你同意他的说法吗 请结合扇形统计图说明你的理由.
【答案】(1)2.8,96
(2)不同意,理由见解析
【详解】(1)解:∵2017—2021年农业产值增长率按照从小到大排列为:
2.3%,2.7%,2.8%,2.8%,3.0%,
∴中位数为2.8%,
2019年服务业产值为:5200×45%=2340(亿元),
2020年服务业产值比2019年约增加:2340×4.1%=95.94≈96(亿元);
故答案为:2.8,96
(2)解:不同意,理由是:从折线统计图看,每年服务业产值的增长率都比工业产值的增长率高,因为不知道每年的具体数量和占当年的百分比,所以这五年中,每年服务业产值都比工业产值高是错误的,例如:从扇形统计图看,2019年服务业产值占“三产”的比重为45%,工业产值占“三产”的比重为49%,服务业产值低于工业产值,
∴每年服务业产值都比工业产值高是错误的.
63.(2022·江苏无锡·中考真题)育人中学初二年级共有200名学生,2021年秋学期学校组织初二年级学生参加30秒跳绳训练,开学初和学期末分别对初二年级全体学生进行了摸底测试和最终测试,两次测试数据如下:
育人中学初二学生30秒跳绳测试成绩的频数分布表
跳绳个数(x) x≤50 50<x≤60 60<x≤70 70<x≤80 x>80
频数(摸底测试) 19 27 72 a 17
频数(最终测试) 3 6 59 b c
育人中学初二学生30秒跳绳最终测试成绩的扇形统计图
(1)表格中a= ;
(2)请把下面的扇形统计图补充完整;(只需标注相应的数据)
(3)请问经过一个学期的训练,该校初二年级学生最终测试30秒跳绳超过80个的人数有多少?
【答案】(1)65
(2)见解析
(3)50名
【详解】(1)解:a=200-19-27-72-17=65,
故答案为:65;
(2)解:x>80的人数占的百分比为:1-1.5%-3%-29.5%-41%=25%,
补充扇形统计图为:
(3)解:最终测试30秒跳绳超过80个的人数有:200×25%=50(名),
答:最终测试30秒跳绳超过80个的人数有50名.
64.(2022·江苏苏州·中考真题)某校九年级640名学生在“信息素养提升”培训前、后各参加了一次水平相同的测试,并以同一标准折算成“6分”、“7分”、“8分”、“9分”、“10分”5个成绩.为了解培训效果,用抽样调查的方式从中抽取了32名学生的2次测试成绩,并用划记法制成了如下表格:
培训前 成绩(分) 6 7 8 9 10
划记 正正 正 正
人数(人) 12 4 7 5 4
培训后 成绩(分) 6 7 8 9 10
划记 一 正 正正正
人数(人) 4 1 3 9 15
(1)这32名学生2次测试成绩中,培训前测试成绩的中位数是m,培训后测试成绩的中位数是n,则m______n;(填“>”、“<”或“=”)
(2)这32名学生经过培训,测试成绩为“6分”的百分比比培训前减少了多少?
(3)估计该校九年级640名学生经过培训,测试成绩为“10分”的学生增加了多少人?
【答案】(1)<
(2)测试成绩为“6分”的百分比比培训前减少了25%
(3)测试成绩为“10分”的学生增加了220人
【详解】(1)解:由频数分布表可得:培训前的中位数为:
培训后的中位数为:
所以
故答案为:;
(2)
答:测试成绩为“6分”的百分比比培训前减少了25%.
(3)培训前:,培训后:,

答:测试成绩为“10分”的学生增加了220人.
65.(2022·江苏宿迁·中考真题)为了解某校九年级学生开展“综合与实践”活动的情况,抽样调查了该校名九年级学生上学期参加“综合与实践”活动的天数,并根据调查所得的数据绘制了如下尚不完整的两幅统计图.根据图表信息,解答下列问题:
(1) , ;
(2)补全条形统计图;
(3)根据抽样调查的结果,请你估计该校九年级2000名学生中上学期参加“综合与实践”活动4天及以上的人数.
【答案】(1)200,30
(2)补全图形见解析
(3)1600人
【详解】(1)解:由题意可得:(人),
故答案为:200,30
(2)活动3天的人数为:(人),
补全图形如下:
(3)该校九年级2000名学生中上学期参加“综合与实践”活动4天及以上的人数为:
(人).
答:估计该校九年级2000名学生中上学期参加“综合与实践”活动4天及以上的有1600人.
66.(2022·江苏扬州·中考真题)某校初一年级有600名男生 ,为增强体质,拟在初一男生中开展引体向上达标测试活动.为制定合格标准,开展如下调查统计活动.
(1)A调查组从初一体育社团中随机抽取20名男生进行引体向上测试,B调查组从初一所有男生中随机抽取20名男生进行引体向上测试,其中_________(填“A”或“B”),调查组收集的测试成绩数据能较好地反映该校初一男生引体向上的水平状况;
(2)根据合理的调查方式收集到的测试成绩数据记录如下:
成绩/个 2 3 4 5 7 13 14 15
人数/人 1 1 1 8 5 1 2 1
这组测试成绩的平均数为_________个,中位数为__________个;
(3)若以(2)中测试成绩的中位数作为该校初一男生引体向上的合格标准,请估计该校初一有多少名男生不能达到合格标准.
【答案】(1)B
(2)7;5
(3)90名
【详解】(1)解:∵随机调查要具有代表性,
∴从初一所有男生中随机抽取20名男生进行引体向上测试,能较好地反映该校初一男生引体向上的水平状况,
故答案为:B;
(2)解:;
这组数据排序后,中位数应该是第10,11两个人成绩的平均数,而第10,11两人的成绩都是5,
∴这组测试成绩的中位数为,
故答案为:7;5
(3)解:以(2)中测试成绩的中位数5作为该校初一男生引体向上的合格标准,则这组测试成绩不合格的人数有3人,
∴不合格率为 ,
∴该校初一男生不能达到合格标准的人数为(名).
67.(2022·江苏连云港·中考真题)为落实国家“双减”政策,某校为学生开展了课后服务,其中在体育类活动中开设了四种运动项目:A乒乓球,B排球,C篮球,D跳绳.为了解学生最喜欢哪一种运动项目,随机抽取部分学生进行调查(每位学生仅选一种),并将调查结果制成如下尚不完整的统计图表.
问卷情况统计表:
运动项目 人数
A乒乓球 m
B排球 10
C篮球 80
D跳绳 70
(1)本次调查的样本容量是_______,统计表中m=_________;
(2)在扇形统计图中,“B排球”对应的圆心角的度数是_________;
(3)若该校共有2000名学生,请你估计该校最喜欢“A乒乓球”的学生人数.
【答案】(1)200,40
(2)18
(3)约为400人
【详解】(1)解:本次调查的样本容量是:80÷40%=200(人),
m=200-10-80-70=40;
故答案为:200,40;
(2)解:扇形统计图中B部分扇形所对应的圆心角是360°×=18°,
故答案为:18;
(3)解:(人),
估计该校最喜欢“A乒乓球”的学生人数约为400人.
题型三 数据分析
68.(2024·江苏常州·中考真题)某企业生产了2000个充电宝,为了解这批充电宝的使用寿命(完全充放电次数),从中随机抽取了20个进行检测,数据整理如下:
完全充放电次数t
充电宝数量/个 2 3 10 5
(1)本次检测采用的是抽样调查,试说明没有采用普查的理由;
(2)根据上述信息,下列说法中正确的是________(写出所有正确说法的序号);
①这20个充电宝的完全充放电次数都不低于300次;
②这20个充电宝的完全充放电次数t的中位数满足;
③这20个充电宝的完全充放电次数t的平均数满足.
(3)估计这批充电宝中完全充放电次数在600次及以上的数量.
【答案】(1)见解析
(2)①②
(3)500个
【详解】(1)解:对充电宝的使用寿命进行调查,对充电宝具有破坏性,故不能采用普查的方式.
(2)解:由统计表可知:这20个充电宝的完全充放电次数都不低于300次;故①正确;
将数据排序后,第10个和第11个数据均位于,故这20个充电宝的完全充放电次数t的中位数满足;故②正确;
由统计表的中的数据可知,的数据只有2个,故平均数一定大于400,故③错误;
故答案为:①②;
(3)解:(个).
69.(2023·江苏·中考真题)为了调动员工的积极性,商场家电部经理决定确定一个适当的月销售目标,对完成目标的员工进行奖励.家电部对20名员工当月的销售额进行统计和分析.
数据收集(单位:万元):
5.0 9.9 6.0 5.2 8.2 6.2 7.6 9.4 8.2 7.8
5.1 7.5 6.1 6.3 6.7 7.9 8.2 8.5 9.2 9.8
数据整理:
销售额/万元
频数 3 5 4 4
数据分析:
平均数 众数 中位数
7.44 8.2
问题解决:
(1)填空:_________,_________.
(2)若将月销售额不低于7万元确定为销售目标,则有_____名员工获得奖励.
(3)经理对数据分析以后,最终对一半的员工进行了奖励.员工甲找到经理说:“我这个月的销售额是7.5万元,比平均数7.44万元高,所以我的销售额超过一半员工,为什么我没拿到奖励?”假如你是经理,请你给出合理解释.
【答案】(1)4,7.7
(2)12
(3)7.5万元小于中位数7.7万元,有一半多的员工销售额比7.5万元高,故员工甲没拿到奖励
【详解】(1)解:该组数据中有4个数在7与8之间,故,
将20个数据按从小到大顺序排列,第10位和第11位分别是7.6,7.8,故中位数,
故答案为:4,7.7;
(2)解:月销售额不低于7万元的有:(人),
故答案为:12;
(3)解:7.5万元小于中位数7.7万元,有一半多的员工销售额比7.5万元高,故员工甲没拿到奖励.
70.(2023·江苏扬州·中考真题)某校为了普及环保知识,从七、八两个年级中各选出10名学生参加环保知识竞赛(满分100分),并对成绩进行整理分析,得到如下信息:

平均数 众数 中位数
七年级参赛学生成绩 85.5 m 87
八年级参赛学生成绩 85.5 85 n
根据以上信息,回答下列问题:
(1)填空:________,________;
(2)七、八年级参赛学生成绩的方差分别记为、,请判断___________(填“”“”或“”);
(3)从平均数和中位数的角度分析哪个年级参赛学生的成绩较好.
【答案】(1)
(2)
(3)见解析
【详解】(1)解:七年级的10个数据中,出现次数最多的是:80,
∴;
将八年级的10个数据进行排序:;
∴;
故答案为:;
(2)由折线统计图可知:七年级的成绩波动程度较大,
∵方差越小,数据越稳定,
∴;
故答案为:.
(3)七年级和八年级的平均成绩相同,但是七年级的中位数比八年级的大,所以七年级参赛学生的成绩较好.
71.(2022·江苏徐州·中考真题)如图,下列装在相同的透明密封盒内的古钱币,其密封盒上分别标有古钱币的尺寸及质量,例如:钱币“文星高照”密封盒上所标“”是指该枚古钱币的直径为,厚度为,质量为.已知这些古钱币的材质相同.
根据图中信息,解决下列问题.
(1)这5枚古钱币,所标直径的平均数是 ,所标厚度的众数是 ,所标质量的中位数是 g;
(2)由于古钱币无法从密封盒内取出,为判断密封盒上所标古钱币的质量是否有错,桐桐用电子秤测得每枚古钱币与其密封盒的总质量如下:
名称 文星高照 状元及第 鹿鹤同春 顺风大吉 连中三元
总质量/g 58.7 58.1 55.2 54.3 55.8
请你应用所学的统计知识,判断哪枚古钱币所标的质量与实际质量差异较大,并计算该枚古钱币的实际质量约为多少克.
【答案】(1)45.74,2.3,21.7;
(2)“鹿鹤同春”的实际质量约为21.0克.
【详解】(1)解:平均数:;
这5枚古钱币的厚度分别为:2.8mm,2.4mm,2.3mm,2.1mm,2.3mm,
其中2.3mm出现了2次,出现的次数最多,
∴这5枚古钱币的厚度的众数为2.3mm;
将这5枚古钱币的重量按从小到大的顺序排列为:13.0g,20.0g,21.7g,24.0g,24.4g,
∴这5枚古钱币质量的中位数为21.7g;
故答案为:45.74,2.3,21.7;
(2)
名称 文星高照 状元及第 鹿鹤同春 顺风大吉 连中三元
总质量/g 58.7 58.1 55.2 54.3 55.8
盒标质量 24.4 24.0 13.0 20.0 21.7
盒子质量 34.3 34.1 42.2 34.3 34.1
∴“鹿鹤同春”密封盒的质量异常,故“鹿鹤同春”所标质量与实际质量差异较大.
其余四个盒子质量的平均数为:,
55.2-34.2=21.0g
故“鹿鹤同春”的实际质量约为21.0克.
72.(2023·江苏·中考真题)为合理安排进、离校时间,学校调查小组对某一天八年级学生上学、放学途中的用时情况进行了调查.本次调查在八年级随机抽取了名学生,建立以上学途中用时为横坐标、放学途中用时为纵坐标的平面直角坐标系,并根据调查结果画出相应的点,如图所示:

(1)根据图中信息,下列说法中正确的是______(写出所有正确说法的序号):
①这名学生上学途中用时都没有超过;
②这名学生上学途中用时在以内的人数超过一半;
③这名学生放学途中用时最短为;
④这名学生放学途中用时的中位数为.
(2)已知该校八年级共有名学生,请估计八年级学生上学途中用时超过的人数;
(3)调查小组发现,图中的点大致分布在一条直线附近.请直接写出这条直线对应的函数表达式并说明实际意义.
【答案】(1)①②③
(2)
(3)直线的解析式为:;这条直线可近似反映该学校放学途中用时和上学途中用时的变化趋势.
【详解】(1)解:根据在坐标系中点的位置,可知:
这名学生上学途中所有用时都是没有超过的,故①说法正确;
这名学生上学途中用时在以内的人数为:人,超过一半,故②说法正确;
这名学生放学途中用时最段的时间为,故③说法正确;
这名学生放学途中用时的中位数是用时第和第的两名学生用时的平均数,在图中,用时第和第的两名学生的用时均小于,故这名学生放学途中用时的中位数也小于,即④说法错误;
故答案为:①②③.
(2)解:根据图中信息可知,上学途中用时超过的学生有1人,
故该校八年级学生上学途中用时超过的人数为(人).
(3)解:如图:

设直线的解析式为:,根据图象可得,直线经过点,,
将,代入,得:

解得:,
故直线的解析式为:;
则这条直线可近似反映该学校学生放学途中用时和上学途中用时的变化趋势.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
第6页(共65页)

展开更多......

收起↑

资源列表