资源简介 专题一、费马点最值问题费马点皮耶·德·费马,17 世纪法国数学家,有“业余数学家之王”的美誉,之所以叫业余并非段位不够,而是因为其主职是律师,兼职搞搞数学,费马在解析几何、微积分等领域都有卓越的贡献,除此之外,费马广为人知的是以其名字命名的“费马小定理”“费马大定理”等。今天的问题不是费马提出来的,而是他解决的,故而叫费马点.基础模型:问题:P是△ABC(最大内角小于120°)内一点,当点P在何处时,PA+PB+PC的和最小结论:当PA+PB+PC的和最小时,点P满足∠APB=∠BPC=∠APC=120°证明:如图,将△CBP绕点C逆时针旋转60°得到△CFE,连接PE,BF∴,,,。∵ 。∴, 均为等边三角形。∴ 。∴。∴当 四点共线时, 的值最小,最小值为 的长。此时 。。。∴ 。提升模型:问题:P是△ABC(最大内角等于120°)内一点,P在何处时,PA+PB+PC的和最小结论:当PA+PB+PC的和最小时,点P与最大角顶点重合证明:如图,在 中,令 ,在 内取一点 ,连接 ,将 绕点 逆时针旋转至 ,使得 三点共线。∴ ,∴ ,∴ ∠ECP = 180° - ∠ECF - ∠PCA = 180° - ∠PCB - ∠PCA = 180° -∠ACB ≤ 60°,在三角形中, 由于小角对小边,∴ EP ≤ PC,∴ PB + PC + PA ≥ EF + EP + PA ≥ FA.∴ 当 P 点与 C 点重合时, PB + PC + PA 的值最小, 即 C 点为费马点.经典题目:如图,四边形ABCD是菱形,AB=4,且∠ABC=∠ABE=60°,G为对角线BD(不含B点)上任意一点,将△ABG绕点B逆时针旋转60°得到△EBF,当AG+BG+CG取最小值时EF的长( )A. B. C. D.如图,在中,,,.若点P是内一点,则的最小值为 .如图,已知矩形ABCD,AB=4,BC=6,点M为矩形内一点,点E为BC边上任意一点,则MA+MD+ME的最小值为 .如图,在Rt△ABC中,∠BAC=90°,AB=AC,点P是AB边上一动点,作PD⊥BC于点D,线段AD上存在一点Q,当QA+QB+QC的值取得最小值,且AQ=2时,则PD= .如图,△ABC中,∠BAC=30°且AB=AC,P是底边上的高AH上一点.若AP+BP+CP的最小值为2,则BC= .问题背景:如图,将绕点逆时针旋转60°得到,与交于点,可推出结论:问题解决:如图,在中,,,.点是内一点,则点到三个顶点的距离和的最小值是如图,点是边长为的正方形内一点,连接,点在线段上运动,连接,则的最小值是 .在正方形ABCD中,点E为对角线AC(不含点A)上任意一点,AB=;(1)如图1,将△ADE绕点D逆时针旋转90°得到△DCF,连接EF;①把图形补充完整(无需写画法); ②求的取值范围;(2)如图2,求BE+AE+DE的最小值. 如图,在△ABC中,∠BAC=90°,AB=AC=1,P是△ABC内一点,求PA+PB+PC的最小值.【问题背景】17世纪有着“业余数学家之王”美誉的法国律师皮耶·德·费马,提出一个问题:求作三角形内的一个点,使它到三角形三个顶点的距离之和最小后来这点被称之为“费马点”.如图,点是内的一点,将绕点逆时针旋转60°到,则可以构造出等边,得,,所以的值转化为的值,当,,,四点共线时,线段的长为所求的最小值,即点为的“费马点”.(1)【拓展应用】如图1,点是等边内的一点,连接,,,将绕点逆时针旋转60°得到.①若,则点与点之间的距离是______;②当,,时,求的大小;(2)如图2,点是内的一点,且,,,求的最小值.参考答案1.D【分析】根据“两点之间线段最短”,当G点位于BD与CE的交点处时,AG+BG+CG的值最小,即等于EC的长.【详解】解:如图,∵将△ABG绕点B逆时针旋转60°得到△EBF,∴BE=AB=BC,BF=BG,EF=AG,∴△BFG是等边三角形.∴BF=BG=FG,.∴AG+BG+CG=FE+GF+CG.根据“两点之间线段最短”,∴当G点位于BD与CE的交点处时,AG+BG+CG的值最小,即等于EC的长,过E点作EF⊥BC交CB的延长线于F,∴∠EBH=180°-120°=60°,∴∠BEH=30°,∵BC=4,∴BE=4,∴BH=2,EH=2,在Rt△EHC中,∵EH2+HC2=EC2,∴EC=4.∵∠CBE=120°,∴∠BEF=30°,∵∠EBF=∠ABG=30°,∴EF=BF=FG,∴EF=CE=,故选:D.【点睛】本题考查了旋转的性质,菱形的性质,等边三角形的性质,轴对称最短路线问题,正确的作出辅助线是解题的关键.2.【分析】根据题意,首先以点A为旋转中心,顺时针旋转△APB到△AP′B′,旋转角是60°,作出图形,然后根据旋转的性质和全等三角形的性质、等边三角形的性质,可以得到PA+PB+PC=PP′+P′B′+PC,再根据两点之间线段最短,可以得到PA+PB+PC的最小值就是CB′的值,然后根据勾股定理可以求得CB′的值,从而可以解答本题.【详解】解:以点A为旋转中心,顺时针旋转△APB到△AP′B′,旋转角是60°,连接BB′、PP′,,如图所示,则∠PAP′=60°,AP=AP′,PB=P′B′,∴△APP′是等边三角形,∴AP=PP′,∴PA+PB+PC=PP′+P′B′+PC,∵PP′+P′B′+PC≥CB′,∴PP′+P′B′+PC的最小值就是CB′的值,即PA+PB+PC的最小值就是CB′的值,∵∠BAC=30°,∠BAB′=60°,AB==2,∴∠CAB′=90°,AB′=2,AC=AB cos∠BAC=2×cos30°=,∴CB′=,故答案为:.【点睛】本题考查旋转的性质、等边三角形的性质、最短路径问题、勾股定理,解答本题的关键是作出合适的辅助线,得出PA+PB+PC的最小值就是CB′的值,其中用到的数学思想是数形结合的思想.3.【分析】将△AMD绕点A逆时针旋转60°得到△AM′D′,则MD=M′D′,△ADD′和△AMM′均为等边三角形,推出AM=MM′可得MA+MD+ME=D′M+MM′+ME,共线时最短;由于点E也为动点,可得当D′E⊥BC时最短,此时易求得D′E=DG+GE的值;【详解】解:将△AMD绕点A逆时针旋转60°得到△AM′D′,由性质的性质可知:MD=M′D′,△ADD′和△AMM′均为等边三角形,∴AM=MM′,∴MA+MD+ME=D′M+MM′+ME,∴D′M、MM′、ME共线时最短,由于点E也为动点,∴当D′E⊥BC时最短,此时易求得D′E=D′G+GE=∴MA+MD+ME的最小值为,故答案为:【点睛】本题考查轴对称、旋转变换、矩形的性质,等边三角形的判定和性质等知识,解题的关键是添加常用辅助线,构造等边三角形解决问题,用转化的思想思考问题,属于中考填空题中的压轴题.4.【分析】如图1,将△BQC绕点B顺时针旋转60°得到△BNM,连接QN,当点A,点Q,点N,点M共线时,QA+QB+QC值最小,此时,如图2,连接MC,证明AM垂直平分BC,证明AD=BD,此时P与D重合,设PD=x,则DQ=x-2,构建方程求出x可得结论.【详解】解:如图1,将△BQC绕点B顺时针旋转60°得到△BNM,连接QN,∴BQ=BN,QC=NM,∠QBN=60°,∴△BQN是等边三角形,∴BQ=QN,∴QA+QB+QC=AQ+QN+MN,∴当点A,点Q,点N,点M共线时,QA+QB+QC值最小,此时,如图2,连接MC∵将△BQC绕点B顺时针旋转60°得到△BNM,∴BQ=BN,BC=BM,∠QBN=60°=∠CBM,∴△BQN是等边三角形,△CBM是等边三角形,∴∠BQN=∠BNQ=60°,BM=CM,∵BM=CM,AB=AC,∴AM垂直平分BC,∵AD⊥BC,∠BQD=60°,∴BD=QD,∵AB=AC,∠BAC=90°,AD⊥BC,∴AD=BD,此时P与D重合,设PD=x,则DQ=x-2,∴x=,∴x=3+,∴PD=3+.故答案为:.【点睛】本题主要考查了等腰直角三角形的性质,旋转的性质,等边三角形的判定和性质,解题的关键是正确运用等边三角形的性质解决问题,学会构建方程解决问题.5.【分析】如图将△ABP绕点A顺时针旋转60°得到△AMG.连接PG,CM.首先证明当M,G,P,C共线时,PA+PB+PC的值最小,最小值为线段CM的长,想办法求出AC的长即可解决问题.【详解】如图将△ABP绕点A顺时针旋转60°得到△AMG.连接PG,CM.∵AB=AC,AH⊥BC,∴∠BAP=∠CAP,∵PA=PA,∴△BAP≌△CAP(SAS),∴PC=PB,∵MG=PB,AG=AP,∠GAP=60°,∴△GAP是等边三角形,∴PA=PG,∴PA+PB+PC=CP+PG+GM,∴当M,G,P,C共线时,PA+PB+PC的值最小,最小值为线段CM的长,∵AP+BP+CP的最小值为2,∴CM=2,∵∠BAM=60°,∠BAC=30°,∴∠MAC=90°,∴AM=AC=2,作BN⊥AC于N.则BN=AB=1,AN=,CN=2-,∴BC=.故答案为.【点睛】本题考查轴对称-最短问题,等腰三角形的性质,等边三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用两点之间线段最短解决问题6.【分析】如图,将△MOG绕点M逆时针旋转60°,得到△MPQ,易知△MOP为等边三角形,继而得到点O到三顶点的距离为:ON+OM+OG=ON+OP+PQ,由此可以发现当点N、O、P、Q在同一条直线上时,有ON+OM+OG最小,此时,∠NMQ=75°+60°=135°,过Q作QA⊥NM交NM的延长线于A,利用勾股定理进行求解即可得.【详解】如图,将△MOG绕点M逆时针旋转60°,得到△MPQ,显然△MOP为等边三角形,∴,OM+OG=OP+PQ,∴点O到三顶点的距离为:ON+OM+OG=ON+OP+PQ,∴当点N、O、P、Q在同一条直线上时,有ON+OM+OG最小,此时,∠NMQ=75°+60°=135°,过Q作QA⊥NM交NM的延长线于A,则∠MAQ=90°,∴∠AMQ=180°-∠NMQ=45°,∵MQ=MG=4,∴AQ=AM=MQ cos45°=4,∴NQ=,故答案为.【点睛】本题考查了旋转的性质,最短路径问题,勾股定理,解直角三角形等知识,综合性较强,有一定的难度,正确添加辅助线是解题的关键.7./【分析】如图所示,将绕点顺时针旋转得到,连接,过点作,交于点,则,,,可证是等边三角形,得到,当点四点共线且时,取得最小值,即可求解.【详解】解:如图所示,将绕点顺时针旋转得到,连接,过点作,交于点,则,,∴,∴,,∴是等边三角形,∴,∴,当点四点共线且时,取得最小值,∵四边形是正方形,边长为,绕点顺时针旋转得到,∴,,∴,∴,∴,∴的最小值是,故答案为: .【点睛】本题考查了正方形的性质,旋转的性质,等边三角形的判定和性质,含30度角的直角三角形的性质,勾股定理的运用,将绕点顺时针旋转得到,得到是解题的关键.8.(1)①补图见解析;②;(2)【分析】(1)①根据要求画出图形即可;②首先证明∠ECF=90°,设AE=CF=x,EF2=y,则EC=4 x,在Rt△ECF中,利用勾股定理即可解决问题;(2)如图2中,将△ABE绕点A顺时针旋转60°得到△AFG,连接EG,DF.作FH⊥AD于H.根据两点之间线段最短可得DF≤FG+EG+DE,BE=FG,推出AE+BE+DE的最小值为线段DF的长;【详解】(1)①如图△DCF即为所求; ②∵四边形ABCD是正方形,∴BC=AB=2,∠B=90°,∠DAE=∠ADC=45°,∴AC==AB=4,∵△ADE绕点D逆时针旋转90°得到△DCF,∴∠DCF=∠DAE=45°,AE=CF,∴∠ECF=∠ACD+∠DCF=90°,设AE=CF=x,EF2=y,则EC=4 x,∴y=(4 x)2+x2=2x2 8x+160(0<x≤4).即y=2(x 2)2+8,∵2>0,∴x=2时,y有最小值,最小值为8,当x=4时,y最大值=16,∴8≤EF2≤16.(2)如图中,将△ABE绕点A顺时针旋转60°得到△AFG,连接EG,DF.作FH⊥AD于H. 由旋转的性质可知,△AEG是等边三角形,∴AE=EG,∵DF≤FG+EG+DE,BE=FG,∴AE+BE+DE的最小值为线段DF的长.在Rt△AFH中,∠FAH=30°,AB==AF,∴FH=AF=,AH==,在Rt△DFH中,DF==,∴BE+AE+ED的最小值为.【点睛】本题考查作图 旋转变换,正方形的性质,勾股定理,两点之间线段最短等知识,解题的关键是学会构建二次函数解决最值问题,学会利用旋转法添加辅助线,学会用转化的思想思考问题,属于中考常考题型.9.+【分析】以点A为旋转中心,将△ABP顺时针旋转60°得到△AMN,连接BN.根据△PAM、△ABN都是等边三角形,可得PA+PB+PC=CP+PM+MN;根据当C、P、M、N四点共线时,由CA=CB,NA=NB可得CN垂直平分AB,进而求得PA+PB+PC的最小值.【详解】证明:如图所示,以点A为旋转中心,将△ABP顺时针旋转60°得到△AMN,连接BN.由旋转可得,△AMN≌△ABP,∴MN=BP,PA=AM,∠PAM=60°=∠BAN,AB=AN,∴△PAM、△ABN都是等边三角形,∴PA=PM,∴PA+PB+PC=PM+MN+PC;(3)当AC=BC=1时,AB=2,当C、P、M、N四点共线时,由CA=CB,NA=NB可得CN垂直平分AB,∴AQ=AB==CQ,NQ=,此时CN=CP+PM+MN=PA+PB+PC=+10.(1)①3;②150°;(2)【分析】(1)①根据旋转的性质即可求出的值;②先证△ABP≌,利用全等的性子求出对应的边长,通过勾股定理的逆定理得到,即可求出的大小;(2)将△APC绕C点顺时针旋转60°得到,先求出,然后证明为等边三角形,当B、P、、四点共线时,和最小,用勾股定理求出的值即可.【详解】(1)①如图,将绕A逆时针旋转60°,则,,∴为等边三角形,;②∵△ABC为等边三角形,∴AB=AC,∠BAP+∠PAC=60°,又∵是等边三角形,∴∠PAC+=60°,∴∠BAP=,在△ABP与中,,∴△ABP≌(SAS),∴∴,,,又∵旋转,∴;(2)如图,将△APC绕C点顺时针旋转60°得到,则,在中,,,,又∵,,,过作⊥BC交BC的延长线于点D,则,,(30°所对的直角边等于斜边的一半),,,为等边三角形,当B、P、、四点共线时,和最小,在中,,,∴的最小值为.【点睛】本题考查了旋转变换,全等三角形的判定和性质,解题的关键在于能够添加辅助线构造全等三角形解决问题. 展开更多...... 收起↑ 资源预览