第3章 专题提升七 机械振动与机械波的综合问题(课件 学案 练习,共3份)鲁科版(2019)选择性必修 第一册

资源下载
  1. 二一教育资源

第3章 专题提升七 机械振动与机械波的综合问题(课件 学案 练习,共3份)鲁科版(2019)选择性必修 第一册

资源简介

专题提升七 机械振动与机械波的综合
问题
选择题1~8题,每小题8分,共64分。
基础对点练
题组一 波的图像与振动图像的综合
1.一简谐横波沿x轴正方向传播,周期为T,波长为λ。若在x=0处质点的振动图像如图所示,则该波在t=时刻的波形为(  )
A B C D
2.一列简谐横波沿x轴正方向传播,a、b、c、d为介质中沿波传播方向上四个质点的平衡位置。某时刻的波形如图甲所示,此后,若经过周期开始计时,则图乙描述的可能是(  )
a处质点的振动图像 b处质点的振动图像
c处质点的振动图像 d处质点的振动图像
3.如图甲为一列简谐横波在t=0.2 s时刻的波形图,P、Q为介质中的两个质点,图乙为质点P的振动图像,则(  )
简谐横波沿x轴负方向传播
简谐横波的波速为0.25 m/s
t=0.5 s时,质点Q的加速度大于质点P的加速度
t=0.7 s时,质点Q距平衡位置的距离小于质点P距平衡位置的距离
题组二 波的周期性及多解问题
4.如图所示,一列简谐横波向右传播,P、Q两质点平衡位置相距0.15 m。当P运动到上方最大位移处时,Q刚好运动到下方最大位移处,则这列波的波长可能是(  )
0.60 m 0.20 m 0.15 m 0.10 m
5.如图所示,实线为一列简谐横波在某一时刻的波形曲线,经过0.3 s后,其波形曲线如图中虚线所示。若波是沿x轴正方向传播的(周期大于0.3 s),则该波的速度大小及周期分别为(  )
0.5 m/s 0.4 s m/s 0.4 s
0.5 m/s 1.2 s m/s 1.2 s
6.一列沿x轴正方向传播的简谐横波,t=0时刻的波形如图中实线所示,t=0.2 s时刻的波形如图中虚线所示,则(  )
t=0.2 s时质点P的运动方向向右
波的周期可能为0.27 s
波的频率可能为1.25 Hz
波的传播速度可能为20 m/s
题组三 Δt后波形图的画法
7.如图,一列简谐横波沿x轴负方向传播,实线和虚线分别表示t1=0和t2=0.75 s时的波形图。若该波的周期T>0.75 s,则t3=1 s时的波形图为(  )
A B C D
8.如图为一列简谐横波在某时刻的波形图,已知图中质点b的起振时刻比质点a超前了0.4 s,则以下说法正确的是(  )
这列波的波速为10 m/s
这列波沿x轴正方向传播
这列波的周期为0.4 s
再经过0.3 s,P质点的位移为负,振动方向向上
综合提升练
9.(12分)坐标原点O处有一波源从t=0时刻开始做简谐运动,t=0.6 s时波刚好传播到x=2.4 m处,此时的波形如图所示。
(1)(6分)写出波源的振动方程;
(2)(6分)求平衡位置x=1.0 m处的质点P经过多长时间第1次到达波峰。
10.(12分)(2024·广东肇庆市期末)一列沿x轴正向传播的简谐波在t=0时的波形如图所示,且波恰好传播到x=3 m处;t=0.75 s时,x=2 m处的质点位于波峰处。求:
(1)(4分)该波的波长和周期;
(2)(4分)该波的波速;
(3)(4分)波速最小时,x=3 m处质点的振动方程。
培优加强练
11.(12分)(2024·江西新余市高二统考期末)如图所示,甲为某一简谐横波在t=0时刻的图像,x=2 m处的质点P的振动图像如图乙所示。
(1)(4分)写出该波振幅和周期;
(2)(4分)求该波的传播方向和波速v;
(3)(4分)求 s时质点P的位置坐标。
专题提升七 机械振动与机械波的综合问题
1.A [由振动图像可知,x=0处的质点在t=时刻处在平衡位置,且正向下运动;该简谐横波沿着x轴正方向传播,根据“上下坡法”可知,只有A图中x=0处的质点正通过平衡位置向下运动,符合要求,故A正确,B、C、D错误。]
2.B [因横波沿x轴正方向传播,经周期振动到平衡位置的质点为平衡位置在b、d处的质点,该时刻平衡位置在b处的质点的振动方向沿y轴负方向,平衡位置在d处的质点的振动方向沿y轴正方向,故题图乙可能为平衡位置在b处的质点的振动图像,故B正确。]
3.D [由题图乙知,质点P在0.2 s时沿y轴负方向振动,根据题图甲可知,简谐横波沿x轴正方向传播,故A错误;由题图甲可知,波长为2 m,由题图乙可知,周期为0.4 s,则波速为v==5 m/s,故B错误;t=0.5 s时,即由题图甲再经过T,质点P处于波峰,而质点Q并没有处于最大位移处,所以质点Q的加速度小于质点P的加速度,故C错误;t=0.7 s时,即由题图甲再经过T,质点P处于波谷,而质点Q并没有处于最大位移处,所以质点Q距平衡位置的距离小于质点P距平衡位置的距离,故D正确。]
4.D [由题意可知,P位于波峰时,Q位于波谷,故两点平衡位置间距满足0.15 m=+nλ(n=0,1,2,…),所以波长λ= m(n=0,1,2,…),当n=0时,λ=0.30 m;当n=1时,λ=0.10 m,故选项D正确。]
5.A [由图可得λ=20 cm,因为波沿x轴正方向传播,则T+nT=0.3 s(n=0,1,2,…),即T= s(n=0,1,2,…),又因为周期大于0.3 s,所以T=0.4 s,则波速为v== m/s=0.5 m/s,故A正确。]
6.C [t=0.2 s时质点P的运动方向向上(y轴正方向),A错误;波长λ=24 m,t=T=0.2 s,T= s(n=0,1,2,…),B错误;f= Hz(n=0,1,2,…),n=0时,f=1.25 Hz,C正确;波速v==30(4n+1) m/s(n=0,1,2,…),D错误。]
7.A [由题图可判定Δt=t2-t1=0.75 s=,解得T=1 s,由t3-t1=1 s=T,可知,t3时刻的波形图和t1时刻相同,A正确。]
8.D [图中质点b的起振时刻比质点a超前了0.4 s,说明质点b先振动,质点a后振动,这列波沿x轴负方向传播,故B错误;图中质点b的起振时刻比质点a超前了0.4 s,有T=0.4 s,这列波的周期为T=0.8 s,故C错误;这列波的波速为v==5 m/s,故A错误;根据同侧法可知,图中P质点向下振动,有0.2 s=T≤0.3 s≤0.4 s=T,可知再经过0.3 s,P质点位于平衡位置下侧向上振动,故P质点的位移为负,振动方向向上,故D正确。]
9.(1)y=10sincm或y=-10sincm (2)0.1 s
解析 (1)该波传播的周期为T=0.6 s
所以ω==π rad/s
该波的振幅为A=10 cm
所以波源的振动方程为
y=Asin(ωt+φ)=-10sincm或
y=10sincm。
(2)波的传播速度为v==4 m/s
所以平衡位置在x=1.0 m处的质点P第1次到达波峰的时间为t== s=0.1 s。
10.(1)2 m  s(n=0,1,2,3,…)
(2) m/s(n=0,1,2,3,…) (3)y=0.2sin(2πt)m
解析 (1)由波形图知,波长为λ=2 m
t=0.75 s时,x=2 m处的质点从平衡位置运动到波峰处,则0.75 s=T(n=0,1,2,3,…)
可得T= s(n=0,1,2,3,…)。
(2)波的传播速度为v=,可得
v= m/s(n=0,1,2,3,…)。
(3)t=0时刻波已传播到x=3 m处,波速最小为v=2 m/s
可得T==1 s
x=3 m处质点的振动方程为y=Asin t=0.2sin(2πt)m。
11.(1)3 cm 4 s (2)沿x轴正方向 2 m/s (3)(2 m,1.5 cm)
解析 (1)由图可知该波振幅和周期的大小分别为
A=3 cm,T=4 s。
(2)由质点P的振动图像可以看出,0时刻质点P向上振动,根据上下坡法可知,该波沿x轴正方向传播。
由图甲知λ=8 m,所以波速 v=,v=2 m/s。
(3)质点P的振动方程为y=3sin(ωt)cm
由ω=得y=3sincm
则t= s时,y=1.5 cm,横坐标不变,所以质点P的坐标为(2 m,1.5 cm)。专题提升七 机械振动与机械波的综合
问题
学习目标 1.理解振动与波动的联系与区别。2.理解波的图像与振动图像的联系与区别。3.理解波的周期性和多解性,能分析波的综合问题。
提升一 振动图像与波的图像的综合
振动图像与波的图像的比较
振动图像 波的图像
不同 图像
研究对象 某个振动质点 所有质点
研究内容 某质点位移随时间的变化规律 某时刻所有质点的空间分布规律
图像变化 随时间延伸 随时间推移
一个完整图像所占横坐标的距离 表示一个周期T 表示一个波长λ
比喻 单人舞的录像 抓拍的集体舞照片
相同点及联系 图像形状 正弦曲线
可获得的信息 质点振动的振幅、位移、加速度的方向
联系 质点的振动是组成波动的基本要素
例1 (鲁科版教材P72例题改编)艺术体操表演中,运动员抖动彩带的一端,彩带随之波浪翻卷可简化为简谐波。如图甲所示为运动员表演过程中某时刻的波形图,此时刻记为t=0,M是平衡位置x=8 m的质点,图乙为质点M的振动图像,则(  )
A.该简谐波沿x轴正方向传播
B.该简谐波的传播速度为0.25 m/s
C.质点M在5 s内通过的路程为200 cm
D.质点M在5 s内沿x轴方向移动了20 m
例2 如图为一列简谐横波在t=0.1 s时刻的波形图,已知该波沿x轴正方向传播,波速v=20 m/s,则质点P的振动图像为(  )
分析振动图像与波的图像的综合问题,主要有以下两个方面。
(1)由振动图像确定波的周期(质点振动周期),由波的图像确定波长,进而计算波速。
(2)先在振动图像中确定与波的图像对应时刻质点的振动方向,然后根据波的图像确定波的传播方向。
注意:分清波的图像与哪一时刻对应,振动图像与哪一质点对应。  
提升二 Δt后波形图的画法
1.简谐运动在介质中传播形成简谐波,其图像均为正弦式曲线。
2.波的传播特点
(1)波传播的是振动的形式和能量,振动质点不随波迁移。
(2)沿波的传播方向,各质点的起振方向相同,重复波源的振动。
3.波的传播速度:v==λf,且v=。
4.波的图像具有周期性、重复性的特点,即每隔整数倍个周期波形完全相同。
例3 如图甲为某波在t=1.0 s时的图像,图乙为参与该波动P质点的振动图像。
(1)求该波的波速;
(2)画出再经过Δt=3.5 s时的波形。
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
波形图的画法
1.平移法:算出波在Δt时间内传播的距离s=vΔt,把波形沿波的传播方向平移s。如果s较大,可化为s=nλ+s′,由于波的空间周期性,可以去整留零,只需平移s′即可,平移波形后一定要注意把图像补画完整。
2.特殊点法:找出波形图一个波形中相邻的几个特殊点(如波峰、波谷、平衡位置等点),画出这些特殊点在Δt时刻的位置,然后用正、余弦曲线连起来画出波形图,如果Δt较长,可先表示为Δt=nT+Δt′。由于波的时间的周期性,可以去整留零,只需画出特殊点在Δt′时刻的波形图。特殊点法适用于特殊时间,Δt或Δt′必须为T的整数倍才好确定特殊点的位置来画波形。特殊点法画波形图较为简单易行。  
提升三 波的周期性及多解问题
1.周期性
(1)时间的周期性:时间间隔t与周期T的关系不明确。
(2)空间的周期性:波传播距离s与波长λ的关系不明确。
2.双向性
(1)传播方向的双向性:波的传播方向不确定。
(2)振动方向的双向性:质点振动方向不确定。
3.隐含性
在波动问题中往往只给出完整波形的一部分,或给出几个特殊点,而其余信息均处于隐含状态。这样,波形就有多种情况,造成波动问题的多解性,具体可能从以下四个方面出现:
(1)质点达到最大位移处,则有正向和负向最大位移处两种可能。
(2)质点由平衡位置起振,则起振方向有向y轴正方向和向y轴负方向两种可能。
(3)只给出波速不指明波的传播方向时,应考虑波沿x轴正方向和沿x轴负方向传播的可能。
(4)只给出两时刻的波形图,则有多次重复出现的可能。
例4 (2023·海南卷,4)如图所示分别是一列机械波在传播方向上相距6 m的两个质点P、Q的振动图像,下列说法正确的是(  )
A.该波的周期是5 s
B.该波的波速是3 m/s
C.4 s时P质点向上振动
D.4 s时Q质点向上振动
例5 一列简谐横波在x轴上传播,已知t1=0时波形如图中实线所示,t2=0.2 s时的波形如图中虚线所示(横轴上所标数据对应实线与横轴交点)。
(1)若波向x轴负向传播,求该波的波速;
(2)用T表示该简谐波的周期,若3T<(t2-t1)<4T,且波向x轴正向传播,求x=6 m处的质点从t1到t2的时间内通过的路程;
(3)若该波的波速为110 m/s,试通过计算判断该波的传播方向。
 
 
 
 
 
 
 
 
 
多解问题的分析方法
1.首先考虑传播方向的双向性:如果题目未说明波的传播方向或没有其他条件暗示,应首先按波传播方向的可能性进行讨论。
2.对设定的传播方向,首先确定t和T(或确定s和λ)的关系,一般先确定最简单的情况,即一个周期内(或一个波长内)的情况,然后在此基础上加nT(或nλ)。
3.应注意题目是否有限制条件,如有的题目限制波的传播方向,或限制时间t大于或小于一个周期等。所以解题时应综合考虑,加强多解意识,认真分析题意。  
专题提升七 机械振动与机械波的综合问题
提升一
例1 C [由图乙可知,t=0时刻,质点M向上振动,根据“上下坡”法结合图甲可知,波沿x轴负方向传播,故A错误;由图可知λ=8 m,T=2 s,所以波的传播速度为v==4 m/s,故B错误;由于5 s=2T+,所以质点M在5 s内通过的路程为s=2×4A+2A=10A=200 cm,故C正确;质点只在平衡位置上下振动,并不会随波迁移,故D错误。]
例2 D [根据v=可知振动周期T=0.2 s,A、C错误;由于波沿x轴正方向传播,因此在t=0.1 s时刻,P点通过平衡位置向y轴正方向运动,D正确,B错误。]
提升二
例3 (1)4 m/s,沿x轴负方向 (2)见解析图
解析 (1)由题图甲得波长λ=4 m,由题图乙得周期T=1.0 s,所以波速v==4 m/s。
由题图乙可知1.0 s时质点P向y轴负方向振动,故波沿x轴负方向传播。
(2)法一 平移法
题图甲中的波沿x轴负方向传播,传播距离s=vΔt=4×3.5 m=14 m=λ,所以只需将波形沿x轴负方向平移λ=2 m即可,如图(a)所示。
法二 特殊点法
如图(b)所示,在图中取两特殊质点a、b,因Δt=3.5 s=3T,则取,找出a、b两质点振动后的位置a′、b′,过a′、b′画出正弦曲线即可。
提升三
例4 C [由题图可知,该波的周期T=4 s,A错误;由P、Q两个质点的振动图像可知,P、Q两个质点振动方向相反,则P、Q间距离为λ=6 m(n=0,1,2,…),则波速v== m/s(n=0,1,2,3,…),B错误;由质点的振动图像可知,4 s时P质点向上振动,Q质点向下振动,C正确,D错误。]
例5 (1)(40n+10)m/s(n=0,1,2,…) (2)3 m (3)沿x轴正方向
解析 (1)若波向x轴负向传播,由图像知在t=t2-t1
内波向左传播的距离为s=nλ+λ=(8n+2)m(n=0,1,2…)
则波速为v== m/s=(40n+10)m/s(n=0,1,2,…)。
(2)若3T<(t2-t1)<4T且波向x轴正向传播,t1=0时x=6 m处的质点向下振动,在t内,该质点振动了3T,通过的路程为s′=×4A=15×0.2 m=3 m。
(3)已知波速v=110 m/s,故在t内波传播的距离为s=vt=22 m=2λ,所以波沿x轴正方向传播。(共41张PPT)
专题提升七 机械振动与机械波的综合问题
第3章 机械波
1.理解振动与波动的联系与区别。
2.理解波的图像与振动图像的联系与区别。
3.理解波的周期性和多解性,能分析波的综合问题。
学习目标
目 录
CONTENTS
提升
01
课后巩固训练
02
提升
1
提升二 Δt后波形图的画法
提升一 振动图像与波的图像的综合
提升三 波的周期性及多解问题
提升一 振动图像与波的图像的综合
振动图像与波的图像的比较
C
例1 (鲁科版教材P72例题改编)艺术体操表演中,运动员抖动彩带的一端,彩带随之波浪翻卷可简化为简谐波。如图甲所示为运动员表演过程中某时刻的波形图,此时刻记为t=0,M是平衡位置x=8 m的质点,图乙为质点M的振动图像,则(  )
A.该简谐波沿x轴正方向传播
B.该简谐波的传播速度为0.25 m/s
C.质点M在5 s内通过的路程为200 cm
D.质点M在5 s内沿x轴方向移动了20 m
D
例2 如图为一列简谐横波在t=0.1 s时刻的波形图,已知该波沿x轴正方向传播,波速v=20 m/s,则质点P的振动图像为(  )
分析振动图像与波的图像的综合问题,主要有以下两个方面。
(1)由振动图像确定波的周期(质点振动周期),由波的图像确定波长,进而计算波速。
(2)先在振动图像中确定与波的图像对应时刻质点的振动方向,然后根据波的图像确定波的传播方向。
注意:分清波的图像与哪一时刻对应,振动图像与哪一质点对应。  
提升二 Δt后波形图的画法
例3 如图甲为某波在t=1.0 s时的图像,图乙为参与该波动P质点的振动图像。
(1)求该波的波速;
(2)画出再经过Δt=3.5 s时的波形。
答案 (1)4 m/s,沿x轴负方向 (2)见解析图
解析 (1)由题图甲得波长λ=4 m,由题图乙得周期T=1.0 s,
(2)法一 平移法
提升三 波的周期性及多解问题
1.周期性
(1)时间的周期性:时间间隔t与周期T的关系不明确。
(2)空间的周期性:波传播距离s与波长λ的关系不明确。
2.双向性
(1)传播方向的双向性:波的传播方向不确定。
(2)振动方向的双向性:质点振动方向不确定。
3.隐含性
在波动问题中往往只给出完整波形的一部分,或给出几个特殊点,而其余信息均处于隐含状态。这样,波形就有多种情况,造成波动问题的多解性,具体可能从以下四个方面出现:
(1)质点达到最大位移处,则有正向和负向最大位移处两种可能。
(2)质点由平衡位置起振,则起振方向有向y轴正方向和向y轴负方向两种可能。
(3)只给出波速不指明波的传播方向时,应考虑波沿x轴正方向和沿x轴负方向传播的可能。
(4)只给出两时刻的波形图,则有多次重复出现的可能。
C
例4 (2023·海南卷,4)如图所示分别是一列机械波在传播方向上相距6 m的两个质点P、Q的振动图像,下列说法正确的是(  )
A.该波的周期是5 s
B.该波的波速是3 m/s
C.4 s时P质点向上振动
D.4 s时Q质点向上振动
例5 一列简谐横波在x轴上传播,已知t1=0时波形如图中实线所示,t2=0.2 s时的波形如图中虚线所示(横轴上所标数据对应实线与横轴交点)。
(1)若波向x轴负向传播,求该波的波速;
(2)用T表示该简谐波的周期,若3T<(t2-t1)<4T,且波向x轴正向传播,求x=6 m处的质点从t1到t2的时间内通过的路程;
(3)若该波的波速为110 m/s,试通过计算判断该波的传播方向。
答案 (1)(40n+10)m/s(n=0,1,2,…) (2)3 m (3)沿x轴正方向
解析 (1)若波向x轴负向传播,由图像知在t=t2-t1
多解问题的分析方法
1.首先考虑传播方向的双向性:如果题目未说明波的传播方向或没有其他条件暗示,应首先按波传播方向的可能性进行讨论。
2.对设定的传播方向,首先确定t和T(或确定s和λ)的关系,一般先确定最简单的情况,即一个周期内(或一个波长内)的情况,然后在此基础上加nT(或nλ)。
3.应注意题目是否有限制条件,如有的题目限制波的传播方向,或限制时间t大于或小于一个周期等。所以解题时应综合考虑,加强多解意识,认真分析题意。
课后巩固训练
2
基础对点练
A
B
A.a处质点的振动图像 B.b处质点的振动图像
C.c处质点的振动图像 D.d处质点的振动图像
D
3.如图甲为一列简谐横波在t=0.2 s时刻的波形图,P、Q为介质中的两个质点,图乙为质点P的振动图像,则(  )
A.简谐横波沿x轴负方向传播
B.简谐横波的波速为0.25 m/s
C.t=0.5 s时,质点Q的加速度
大于质点P的加速度
D.t=0.7 s时,质点Q距平衡位置的距离小于质点P距平衡位置的距离
D
题组二 波的周期性及多解问题
4.如图所示,一列简谐横波向右传播,P、Q两质点平衡位置相距0.15 m。当P运动到上方最大位移处时,Q刚好运动到下方最大位移处,则这列波的波长可能是(  )
A.0.60 m B.0.20 m
C.0.15 m D.0.10 m
A
5.如图所示,实线为一列简谐横波在某一时刻的波形曲线,经过0.3 s后,其波形曲线如图中虚线所示。若波是沿x轴正方向传播的(周期大于0.3 s),则该波的速度大小及周期分别为(  )
C
6.一列沿x轴正方向传播的简谐横波,t=0时刻的波形如图中实线所示,t=0.2 s时刻的波形如图中虚线所示,则(  )
A.t=0.2 s时质点P的运动方向向右
B.波的周期可能为0.27 s
C.波的频率可能为1.25 Hz
D.波的传播速度可能为20 m/s
A
题组三 Δt后波形图的画法
7.如图,一列简谐横波沿x轴负方向传播,实线和虚线分别表示t1=0和t2=0.75 s时的波形图。若该波的周期T>0.75 s,则t3=1 s时的波形图为(  )
D
8.如图为一列简谐横波在某时刻的波形图,已知图中质点b的起振时刻比质点a超前了0.4 s,则以下说法正确的是(  )
A.这列波的波速为10 m/s
B.这列波沿x轴正方向传播
C.这列波的周期为0.4 s
D.再经过0.3 s,P质点的位移为负,振动方向向上
9.坐标原点O处有一波源从t=0时刻开始做简谐运动,t=0.6 s
时波刚好传播到x=2.4 m处,此时的波形如图所示。
(1)写出波源的振动方程;
(2)求平衡位置x=1.0 m处的质点P经过多长时间第1次到达波峰。
综合提升练
10.(2024·广东肇庆市期末)一列沿x轴正向传播的简谐波在t=0时的波形如图所示,且波恰好传播到x=3 m处;t=0.75 s时,x=2 m处的质点位于波峰处。求:
(1)该波的波长和周期;
(2)该波的波速;
(3)波速最小时,x=3 m处质点的振动方程。
培优加强练
11.(2024·江西新余市高二统考期末)如图所示,甲为某一简谐横波在t=0时刻的图像,x=2 m处的质点P的振动图像如图乙所示。
解析 (1)由图可知该波振幅和周期的大小分别为A=3 cm,T=4 s。
(2)由质点P的振动图像可以看出,0时刻质点P向上振动,根据上下坡法可知,该波沿x轴正方向传播。

展开更多......

收起↑

资源列表