资源简介 中小学教育资源及组卷应用平台【重难点突破】中考数学压轴题解题模型精讲与真题演练专题17 手拉手相似模型模型解读 1常见类型讲解 11、任意三角形 22、直角三角形 23、等边三角形与等腰直角三角形 2真题演练 3巩固练习 4压轴真题强化 5手拉手相似模型(手拉手旋转型)定义:如果将一个三角形绕着它的项点旋转并放大或缩小(这个顶点不变),我们称这样的图形变换为旋转相似变换,这个顶点称为旋转相似中心,所得的三角形称为原三角形的旋转相似三角形。1、任意三角形如图,∠BAC=∠DAE=,;结论:△ADE∽△ABC,△ABD∽△ACE;.2、直角三角形如图,,(即△COD∽△AOB);结论:△AOC∽△BOD;,AC⊥BD,.3、等边三角形与等腰直角三角形如图,M为等边三角形ABC和DEF的中点;结论:△BME∽△CMF;.如图,△ABC和ADE是等腰直角三角形;结论:△ABD∽△ACE.(2022·山东烟台·中考真题)(1)【问题呈现】如图1,△ABC和△ADE都是等边三角形,连接BD,CE.求证:BD=CE.(2)【类比探究】如图2,△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°.连接BD,CE.请直接写出的值.(3)【拓展提升】如图3,△ABC和△ADE都是直角三角形,∠ABC=∠ADE=90°,且==.连接BD,CE.①求的值;②延长CE交BD于点F,交AB于点G.求sin∠BFC的值.(2021·四川乐山·中考真题)在等腰△ABC中,AB=AC,点D是BC边上一点(不与点B、C重合),连结AD.(1)如图1,若∠C=60°,点D关于直线AB的对称点为点E,连结AE,DE,则∠BDE= ;(2)若∠C=60°,将线段AD绕点A顺时针旋转60°得到线段AE,连结BE.①在图2中补全图形;②探究CD与BE的数量关系,并证明;(3)如图3,若=k,且∠ADE=∠C.试探究BE、BD、AC之间满足的数量关系,并证明.某校数学活动小组探究了如下数学问题:(1)问题发现:如图1,中,,.点P是底边BC上一点,连接AP,以AP为腰作等腰,且,连接CQ、则BP和CQ的数量关系是______;(2)变式探究:如图2,中,,.点P是腰AB上一点,连接CP,以CP为底边作等腰,连接AQ,判断BP和AQ的数量关系,并说明理由;(3)问题解决:如图3,在正方形ABCD中,点P是边BC上一点,以DP为边作正方形DPEF,点Q是正方形DPEF两条对角线的交点,连接CQ.若正方形DPEF的边长为,,求正方形ABCD的边长.一、单选题1.(2023·四川宜宾·中考真题)如图,和是以点为直角顶点的等腰直角三角形,把以为中心顺时针旋转,点为射线、的交点.若,.以下结论:①;②;③当点在的延长线上时,;④在旋转过程中,当线段最短时,的面积为.其中正确结论有( ) A.1个 B.2个 C.3个 D.4个二、填空题2.(2023·四川遂宁·中考真题)如图,以的边、为腰分别向外作等腰直角、,连结、、,过点的直线分别交线段、于点、,以下说法:①当时,;②;③若,,,则;④当直线时,点为线段的中点.正确的有 .(填序号) 三、解答题3.(2024·山东泰安·中考真题)如图1,在等腰中,,,点,分别在,上,,连接,,取中点,连接.(1)求证:,;(2)将绕点顺时针旋转到图2的位置.①请直接写出与的位置关系:___________________;②求证:.4.(2024·四川成都·中考真题)数学活动课上,同学们将两个全等的三角形纸片完全重合放置,固定一个顶点,然后将其中一个纸片绕这个顶点旋转,来探究图形旋转的性质.已知三角形纸片和中,,,.【初步感知】(1)如图1,连接,,在纸片绕点旋转过程中,试探究的值.【深入探究】(2)如图2,在纸片绕点旋转过程中,当点恰好落在的中线的延长线上时,延长交于点,求的长.【拓展延伸】(3)在纸片绕点旋转过程中,试探究,,三点能否构成直角三角形.若能,直接写出所有直角三角形的面积;若不能,请说明理由.5.(2023·黑龙江齐齐哈尔·中考真题)综合与实践数学模型可以用来解决一类问题,是数学应用的基本途径.通过探究图形的变化规律,再结合其他数学知识的内在联系,最终可以获得宝贵的数学经验,并将其运用到更广阔的数学天地. (1)发现问题:如图1,在和中,,,,连接,,延长交于点.则与的数量关系:______,______;(2)类比探究:如图2,在和中,,,,连接,,延长,交于点.请猜想与的数量关系及的度数,并说明理由;(3)拓展延伸:如图3,和均为等腰直角三角形,,连接,,且点,,在一条直线上,过点作,垂足为点.则,,之间的数量关系:______;(4)实践应用:正方形中,,若平面内存在点满足,,则______.6.(2024·江西·中考真题)综合与实践如图,在中,点D是斜边上的动点(点D与点A不重合),连接,以为直角边在的右侧构造,,连接,.特例感知(1)如图1,当时,与之间的位置关系是______,数量关系是______;类比迁移(2)如图2,当时,猜想与之间的位置关系和数量关系,并证明猜想.拓展应用(3)在(1)的条件下,点F与点C关于对称,连接,,,如图3.已知,设,四边形的面积为y.①求y与x的函数表达式,并求出y的最小值;②当时,请直接写出的长度.21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)第4页(共8页)中小学教育资源及组卷应用平台【重难点突破】中考数学压轴题解题模型精讲与真题演练专题17 手拉手相似模型模型解读 1常见类型讲解 11、任意三角形 22、直角三角形 23、等边三角形与等腰直角三角形 2真题演练 3巩固练习 6压轴真题强化 8手拉手相似模型(手拉手旋转型)定义:如果将一个三角形绕着它的项点旋转并放大或缩小(这个顶点不变),我们称这样的图形变换为旋转相似变换,这个顶点称为旋转相似中心,所得的三角形称为原三角形的旋转相似三角形。1、任意三角形如图,∠BAC=∠DAE=,;结论:△ADE∽△ABC,△ABD∽△ACE;.2、直角三角形如图,,(即△COD∽△AOB);结论:△AOC∽△BOD;,AC⊥BD,.3、等边三角形与等腰直角三角形如图,M为等边三角形ABC和DEF的中点;结论:△BME∽△CMF;.如图,△ABC和ADE是等腰直角三角形;结论:△ABD∽△ACE.(2022·山东烟台·中考真题)(1)【问题呈现】如图1,△ABC和△ADE都是等边三角形,连接BD,CE.求证:BD=CE.(2)【类比探究】如图2,△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°.连接BD,CE.请直接写出的值.(3)【拓展提升】如图3,△ABC和△ADE都是直角三角形,∠ABC=∠ADE=90°,且==.连接BD,CE.①求的值;②延长CE交BD于点F,交AB于点G.求sin∠BFC的值.【答案】(1)见解析(2)(3)①;②【详解】(1)证明:∵△ABC和△ADE都是等边三角形,∴AD=AE,AB=AC,∠DAE=∠BAC=60°,∴∠DAE﹣∠BAE=∠BAC﹣∠BAE,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴BD=CE;(2)解:∵△ABC和△ADE都是等腰直角三角形,,∠DAE=∠BAC=45°,∴∠DAE﹣∠BAE=∠BAC﹣∠BAE,∴∠BAD=∠CAE,∴△BAD∽△CAE,;(3)解:①,∠ABC=∠ADE=90°,∴△ABC∽△ADE,∴∠BAC=∠DAE,,∴∠CAE=∠BAD,∴△CAE∽△BAD,;②由①得:△CAE∽△BAD,∴∠ACE=∠ABD,∵∠AGC=∠BGF,∴∠BFC=∠BAC,∴sin∠BFC.(2021·四川乐山·中考真题)在等腰△ABC中,AB=AC,点D是BC边上一点(不与点B、C重合),连结AD.(1)如图1,若∠C=60°,点D关于直线AB的对称点为点E,连结AE,DE,则∠BDE= ;(2)若∠C=60°,将线段AD绕点A顺时针旋转60°得到线段AE,连结BE.①在图2中补全图形;②探究CD与BE的数量关系,并证明;(3)如图3,若=k,且∠ADE=∠C.试探究BE、BD、AC之间满足的数量关系,并证明.【答案】(1)30°;(2)①见解析;②;见解析;(3),见解析【详解】解:(1)∵,∴△ABC是等边三角形∴∠B=60°∵点关于直线的对称点为点∴AB⊥DE,∴故答案为:;(2)①补全图如图2所示;②与的数量关系为:;证明:∵,.∴为正三角形,又∵绕点顺时针旋转,∴,,∵,,∴,∴,∴.(3)连接.∵,,∴.∴.又∵,∴,∴.∵,∴,∴,∴,∴,.∵,∴.又∵,∴.某校数学活动小组探究了如下数学问题:(1)问题发现:如图1,中,,.点P是底边BC上一点,连接AP,以AP为腰作等腰,且,连接CQ、则BP和CQ的数量关系是______;(2)变式探究:如图2,中,,.点P是腰AB上一点,连接CP,以CP为底边作等腰,连接AQ,判断BP和AQ的数量关系,并说明理由;(3)问题解决:如图3,在正方形ABCD中,点P是边BC上一点,以DP为边作正方形DPEF,点Q是正方形DPEF两条对角线的交点,连接CQ.若正方形DPEF的边长为,,求正方形ABCD的边长.【答案】(1)(2)(3)6【详解】(1)解:∵是等腰直角三角形,,在中,,,∴,,∴.在和中, ,∴,∴;(2)解:结论:,理由如下:∵是等腰直角三角形,中,,,∴,.∵,∴,∴,∴,∴;(3)解:连接,如图所示,∵四边形与四边形是正方形,与交于点,∴和都是等腰直角三角形,∴,.∵,∴,∴,∴.∵,∴.在中,,设,则,又∵正方形的边长为,∴,∴,解得(舍去),.∴正方形的边长为6.一、单选题1.(2023·四川宜宾·中考真题)如图,和是以点为直角顶点的等腰直角三角形,把以为中心顺时针旋转,点为射线、的交点.若,.以下结论:①;②;③当点在的延长线上时,;④在旋转过程中,当线段最短时,的面积为.其中正确结论有( ) A.1个 B.2个 C.3个 D.4个【答案】D【详解】解:∵和是以点为直角顶点的等腰直角三角形,∴,∴,∴,∴,,故①正确;设,∴,∴,∴,故②正确;当点在的延长线上时,如图所示 ∵,,∴∴∵,.∴,∴∴,故③正确;④如图所示,以为圆心,为半径画圆, ∵,∴当在的下方与相切时,的值最小,∴四边形是矩形,又,∴四边形是正方形,∴,∵,∴,在中,∴取得最小值时,∴故④正确,故选:D.二、填空题2.(2023·四川遂宁·中考真题)如图,以的边、为腰分别向外作等腰直角、,连结、、,过点的直线分别交线段、于点、,以下说法:①当时,;②;③若,,,则;④当直线时,点为线段的中点.正确的有 .(填序号) 【答案】①②④【详解】解:①当时,是等边三角形,∴∴∵等腰直角、,∴∴∴;故①正确;②∵等腰直角、,∴,∴∴∴;故②正确;④如图所示,作直线于点, 过点作于点,过点作于点, ∵,∴,又,∴又∵,∴同理得,,∴,,,∵,,,∴,∴,即是的中点,故④正确,∴,设,则在中,在中,∴∴解得:∴,∴,∴∴在中,∴,故③错误故答案为:①②④.三、解答题3.(2024·山东泰安·中考真题)如图1,在等腰中,,,点,分别在,上,,连接,,取中点,连接.(1)求证:,;(2)将绕点顺时针旋转到图2的位置.①请直接写出与的位置关系:___________________;②求证:.【答案】(1)见解析(2)①;②见解析【详解】(1)证明:在和中,,,,,,.是斜边的中点,,,,.,,.;(2)解:①;理由如下:延长到点,使,连接,延长到,使,连接并延长交于点.,,,,,,,,,,.,.在和中,,,,,.是中点,是中点,是中位线,.,,.,.故答案为:;②证明: ∵,,,.4.(2024·四川成都·中考真题)数学活动课上,同学们将两个全等的三角形纸片完全重合放置,固定一个顶点,然后将其中一个纸片绕这个顶点旋转,来探究图形旋转的性质.已知三角形纸片和中,,,.【初步感知】(1)如图1,连接,,在纸片绕点旋转过程中,试探究的值.【深入探究】(2)如图2,在纸片绕点旋转过程中,当点恰好落在的中线的延长线上时,延长交于点,求的长.【拓展延伸】(3)在纸片绕点旋转过程中,试探究,,三点能否构成直角三角形.若能,直接写出所有直角三角形的面积;若不能,请说明理由.【答案】(1)的值为;(2);(3)直角三角形的面积为4或16或12或.【详解】(1)∵,,.∴,∴,,∴即,∵∴,∴.(2)连接,延长交于点Q,根据(1)得,∴,∵是中线∴,∴,∵,∴即,∴,∴,∵,∴,∴,∴四边形是平行四边形,∵∴四边形矩形,∴,∴,∴,∴,设,则,∵,∴,∴,∵,∴,解得;∴,,∵,∴,∴,∴,∴,解得.(3)如图,当与重合时,此时,此时是直角三角形,故;如图,当在的延长线上时,此时,此时是直角三角形,故;如图,当时,此时是直角三角形,过点A作于点Q,∵,∴,∵,,,∴四边形是矩形,∴,∴,故;如图,当时,此时是直角三角形,过点A作于点Q,交于点N,∴,,∴,∴,,∵,∴,∴,∴,∴,∴,∵,∴,∴,解得;故.综上,直角三角形的面积为4或16或12或.5.(2023·黑龙江齐齐哈尔·中考真题)综合与实践数学模型可以用来解决一类问题,是数学应用的基本途径.通过探究图形的变化规律,再结合其他数学知识的内在联系,最终可以获得宝贵的数学经验,并将其运用到更广阔的数学天地. (1)发现问题:如图1,在和中,,,,连接,,延长交于点.则与的数量关系:______,______;(2)类比探究:如图2,在和中,,,,连接,,延长,交于点.请猜想与的数量关系及的度数,并说明理由;(3)拓展延伸:如图3,和均为等腰直角三角形,,连接,,且点,,在一条直线上,过点作,垂足为点.则,,之间的数量关系:______;(4)实践应用:正方形中,,若平面内存在点满足,,则______.【答案】(1),(2),,证明见解析(3)(4)或【详解】(1)解:∵,∴,又∵,,∴,∴,设交于点, ∵∴,故答案为:,.(2)结论:,;证明:∵,∴,即,又∵,,∴∴,∵,,∴,∴,(3),理由如下,∵,∴,即,又∵和均为等腰直角三角形∴,∴,∴,在中,,∴,∴;(4)解:如图所示, 连接,以为直径,的中点为圆心作圆,以点为圆心,为半径作圆,两圆交于点,延长至,使得,则是等腰直角三角形, ∵,∴,∵,∴∴,∴,∵,在中,,∴∴过点作于点,设,则,在中,,在中,∴∴解得:,则,设交于点,则是等腰直角三角形,∴在中,∴∴又,∴∴∴,∴∴,在中,,∴,综上所述,或故答案为:或.6.(2024·江西·中考真题)综合与实践如图,在中,点D是斜边上的动点(点D与点A不重合),连接,以为直角边在的右侧构造,,连接,.特例感知(1)如图1,当时,与之间的位置关系是______,数量关系是______;类比迁移(2)如图2,当时,猜想与之间的位置关系和数量关系,并证明猜想.拓展应用(3)在(1)的条件下,点F与点C关于对称,连接,,,如图3.已知,设,四边形的面积为y.①求y与x的函数表达式,并求出y的最小值;②当时,请直接写出的长度.【答案】(1),(2)与之间的位置关系是,数量关系是;(3)①y与x的函数表达式,当时,的最小值为;②当时,为或.【详解】解:(1)∵,∴,,∵,∴,,∴;∴,,∴,∴,∴与之间的位置关系是,数量关系是;(2)与之间的位置关系是,数量关系是;理由如下:∵,∴,,∵,∴;∴,,∴,∴,∴与之间的位置关系是,数量关系是;(3)由(1)得:,,,∴,都为等腰直角三角形;∵点F与点C关于对称,∴为等腰直角三角形;,∴四边形为正方形,如图,过作于,∵,,∴,,当时,∴,∴,如图,当时,此时,同理可得:,∴y与x的函数表达式为,当时,的最小值为;②如图,∵,正方形,记正方形的中心为,∴,连接,,,∴,∴在上,且为直径,∴,过作于,过作于,∴,,∴,∴,∴正方形面积为,∴,解得:,,经检验都符合题意,如图,综上:当时,为或.21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)第26页(共26页) 展开更多...... 收起↑ 资源列表 中考数学重难点突破-专题17 手拉手相似模型-原卷版.docx 中考数学重难点突破-专题17 手拉手相似模型-解析版.docx