山西省阳泉市平定县2025年中考一模数学试卷(pdf版,含答案)

资源下载
  1. 二一教育资源

山西省阳泉市平定县2025年中考一模数学试卷(pdf版,含答案)

资源简介

姓名」
准考证号
平定县2024一2025学年九年级教学质量监测试题


注意事项:
11
1本试卷分第I卷和第Ⅱ卷两部分.全卷共8页,满分120分,考试时间120分钟.
2答题前,考生务必将自己的姓名、准考证号填写在本试卷相应的位置
3答案全部在答题卡上完成,答在本试卷上无效,
4考试结束后,将答题卡交回,
第卷选择题(共30分)
-5.
一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有
一项符合题目要求,'请选出并在答题卡上将该项涂黑.)
山计算2行的陆果足
银好会径公头发河人:西祖《
A早2意期,臭B2时兰C二1
倍D.1
2.餐桌对于我们中国人有着非同一般的意义,它不仅体现了一个家庭的温度,还承载着家庭团
圆的欢声笑语。如左图为一张圆形木质饭桌,则其俯视图为
正面
(第2题)
3.我国是世界上最大的茶叶种植国,茶园面积最大、增速最快,同时也是世界上茶叶消费量最
大的国家.2024年我国茶叶产量为374万吨,比上年增产5.5%,强势卫冕世界第一.则数据374
万吨可用科学记数法表示为
:赋国便答·息卧明赶中界润
A.374×104吨
B.37.4x105吨C,-3.74×105吨D.374×105吨(
4.下列运算正确的是
图:洪浓全 ()
帕遥凤0数好海尚村贵色路罢00共华中合试5
A0(-6)÷(-)=2中是更食卷代是B.(2m)子÷(2m)2=m意是i55
辛途袋贺圆人西域砂计出张氏客器林西复春酸实器
C.2a3.3a2=6a6
D.-27+30=-3
数学试题第1页(共8页)
5.如图①所示,平整的地面上有一个不规则图案(图中阴影部分),为了解该图案的面积是多
少,小利采取了以下办法:用一个面积为200cm2的长方形,将不规则图案围起来,然后在适
当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长
方形区域外不计试验结果),他将若干次有效试验的结果绘制成了如图②所示的统计图,由此
估计不规则图案的面积大约为
A.80cm2
B.75cm2
C.70cm2
D.60cm2
0.4
小球落在不规则图案上的频率
0.35
■■
0.3…
60120180240300360420480实验次数
图0
(第5题)
图②
(第6题)
6.《千里江山图》是宋代王希孟的作品,如图,它的局部画面装裱前是一个长为2.4米,宽为
1.4米的矩形,装裱后,整幅图画宽与长的比是8:13,且四周边衬的宽度相等,则边衬的宽度
应是多少米?设边衬的宽度为x米,根据题意可列方程为
1.4-x-8
A.
B.1.4+2x8
1.4=2x8n1.4+x8
2.4-x13
2.4+2x13
C:242x13aD.
2.4+x13
7.童童的妈妈在网上销售装饰品,最近一周,童童妈妈每天销售某种装饰品的个数为:11,10,
11,13,11,13,15.关于这组数据,童童得出如下结果,其中错误的是,之
A.众数是11
B,平均数是12《
C.方差是18D.中位数是13
8.如图,将平行四边形ABCD沿对角线BD折叠,使点A落在点E处.若∠1=56°,∠2=42°
则∠A的度数为
A.108°
B.109
C.111
D.,110°
N
c2
D
00
M
B
(第8题)
(第9题y年
,翳个共(第10题)幕
9.如图,在平面直角坐标系中,
以坐标原点0(0,0),A(0,4),B(一3,0)为项点的
Rt△AOB,其两个锐角对应的外角角平分线相交于点D,且点D恰好在反比例函数y=的图
象上,则k的值为
A.36
B.-36
C.-48
D..-64
10.如图,在Rt△ABC中,∠C=90°,BC-3,AC-6,点O,D,E是AB边上的点,以点O为
圆心,DE长为直径的半圆O与AC相切于点M,与BC相切于点N,则图中阴影部分的面积为
A,5-π
B.9-2π
C.9-π0d
D,5
数学试题第2页(共8页)平定县 2024—2025 学年九年级教学质量监测试题
数学参考答案
一、选择题(本大题共 10个小题,每小题 3分,共 30分.)
题号 1 2 3 4 5 6 7 8 9 10
答案 A D C B C B D D B A
20
二、填空题(本大题共 5个小题,每小题 3分,共 15 (3)2000× =800(名)·································································· 4分分) 50
11. 6(m+1)2 12. 38 13. 2 3 答:估计此次竞赛该校获优异等级的学生人数为 800名;···························5分
(4)画树状图为:
14. 4 3 15. 9 3 5
三、解答题(本大题共 8个小题,共 75分.)
16. (1)解:原式=9+8+24-3.···························································4分
=41-3. ························································ 8分
=38. ············································································ 5分
(a 2)(a 2) 3(a 3) 因为共有 12种等可能的结果,······························································ 9分
(2)原式= 2 3 ················································· 8分(a 3) a 2 其中恰好抽到 A,C两人同时参赛的结果有 2种,所以恰好抽到 A,C两人同时参赛的概率
2 1
3(a 2) 3(a 3) 为 . ······················································································ 10分
= ······························································ 9分 12 6
a 3 a 3
15
= .··············································································10 19.解:(1)设商家购进 A款迷你小电扇 x台,B款迷你小电扇 y台,··········1分分
a 3
x y 100,
17. 解:(1) 根据题意,得 ························································· 3分
30x 40y 3350.
x 65,
解,得 ················································································· 4分
y 35.
如图,BE即为所求;··········································································· 3分
答:商家购进 A款迷你小电扇 65台,B款迷你小电扇 35台;····················· 5分
(2)①CD,②90,③两直线平行,内错角相等,④两角分别相等的两个三角形相似. (2)设该商家这次购进 A款迷你小电扇 a台,则购进 B款迷你小电扇(150-a)台,
······································································································· 7分 ······································································································· 6分
18. 解:(1)50,144;······································································ 2分
根据题意,得 30a+40(150-a)≤5200,··············································· 8分
(2)补全条形统计图如下:································································· 3分
数学试题答案第 1页 (共 6页) 数学试题答案第 2页 (共 6页)
解,得 a≥80.······················································································ 9分 ∴ac2=d. ∴y2=d-m.……………………………………………………………… 4分
答:该商家这次至少购进 A款迷你小电扇 80台.····································· 10分 ∴点 Q(c,d-m)在 y2=ax2-m上.
20.解:如图,延长 OB交 AC于点 D,····················································1分 ∴猜想 2正确;.…………………………………………………………………… 5分
3
任务三:AB的长为 .………………………………………………………………7分
4
22.(1)y=15-0.5(x-10)=-0.5x+20;(不化简不扣分)…………………… 3分
(2)解:w=xy+9(20-x)…………………………………………………………6分
(第 20题) =x(20-0.5x)+180-9x
由题意可知 BD⊥CA. =-0.5x2+11x+180.……………………………………………………………………7分
设 BC=x,则 BO=OA-BC=75-x.···························································2分
(写成一般式或顶点式都可以)
BD
在 Rt△CBD中,∵sin∠ACB= ,
BC (3)方法一:∵-0.5<0,
∴BD=BC·sin∠ACB=x·sin37°≈0.6x.························································· 3分 11∴当 x 11时,w有最大值.…………………………………………8分
2 0.5
∴DO=OB+BD≈75-x+0.6x=75-0.4x.····················································4分
当 x=11时,20-x=9.………………………………………………………………9分
DO
在 Rt△AOD中,∵cos∠AOD= ,
OA ∴每日加工 A款 11只,B款 9只,可使日销售利润最大.…………………… 10分
∴DO=OA·cos∠AOD=75·cos37°≈75 0.8=60.·············································5分 方法二:w=-0.5x2+11x+180=-0.5(x-11)2+240.5.
∴75-0.4x=60.……………………………………………………………………… 6分 ∵-0.5<0,
解,得 x=37.5.···················································································· 7分 ∴当 x=11时,w有最大值.……………………………………………………… 8分
∴BD≈0.6x=0.6 37.5=22.5(cm).
当 x=11时,20-x=9.……………………………………………………………… 9分
答:点 B到 AC的距离约为 22.5 cm.······················································· 8分
∴每日加工 A款 11只,B款 9只,可使日销售利润最大.…………………… 10分
21.解:任务一:方程思想;…………………………………………………………1分 23.解:(1)AC=BC.········································································· 1分
任务二:证明:设点 P(c,d)为二次函数 y1=ax2(a≠0)图象上的任意一点, 理由如下:
由旋转得点 C′在 AB上,∠BAC=∠BAB′.·················································· 2分
则该抛物线沿 y轴向下平移 m个单位后的对应点为 Q(c,d-m),……………2分 ∵B′D⊥AC,
将 x=c代入 y ∴∠CAB′=90°.2=ax2-m(a≠0,m>0),得 y2=ac2-m,………………………… 3分
∴∠BAC=∠BAB′=45°.·········································································· 3分
∵点 P(c,d)为二次函数 y1=ax2图象上的点, ∵∠ACB=90°,
数学试题答案第 3页 (共 6页) 数学试题答案第 4页 (共 6页)
∴∠ABC=45°. 又∵∠BB′E=∠AB′B,
∴AC=BC.···························································································4分 ∴△BB′E∽△AB′B.………………………………………………………………………10分
(2)AD=BC′.····················································································· 5分 BB B E
∴ .
理由如下: AB B B
由旋转得点 C′在 AB上,AB′=AB. BB AB BB
∴ .
∴∠ABB′=∠AB′B. AB B B
∵∠B′AD=∠ABB′, 5 1
∴AB= BB′.···············································································11分
∴∠B′AD=∠AB′B. 2
∴AD∥BB′.·························································································6分 ∵∠DAB′=∠C′BB′,∠ADB′=∠BC′B′,
∴∠BAC=∠ABB′. ∴△ADB′∽△BC′B′.············································································· 12分
∵∠ABB′=∠DAB′, AB AD
∴ .
由旋转,得∠BAC=∠BAB′, BB BC
1 又 AB′= AB.
∴∠DAB′=∠BAC=∠BAB′= ×180°=60°.
3 5 1 5 1
∴AD= ·BC′= x .································································· 13分
∴△ABB′是等边三角形. 2 2
∴AB′=BB′.··························································································7分
在△ADB′和△BC′B′中,
D BC B 90 ,

DAB C BB ,
注:如果考生的解法与本解答不同,可根据试题的主要考查内容参照评分标准制定相应的
AB BB , 评分细则后评阅.
∴△ADB′≌△BC′B′(AAS).
∴AD=BC′.··························································································8分
(3)如图所示,
由旋转,得点 C′在 AB上,∠BAC=∠BAB′.
∴∠ABB′=∠DAB′=∠BAC+∠BAB′=2∠BAB′.
由旋转,得 AB′=AB,
∴∠ABB′=∠AB′B=2∠BAB′.
∵∠BAB′+∠ABB′+∠AB′B=180°,
∴∠BAB′+2∠BAB′+2∠BAB′=180°.
∴∠BAB′=36°.················································ 9分
作 BE平分∠ABB′,交 AB′于点 E,
∴∠BAB′=∠EBB′=36°.
∴AE=BE=BB′.
∴B′E=AB′-AE=AB′-BE=AB′-BB′.
数学试题答案第 5页 (共 6页) 数学试题答案第 6页 (共 6页)

展开更多......

收起↑

资源列表