资源简介 中小学教育资源及组卷应用平台中小学教育资源及组卷应用平台2025年九年级中考数学压轴题训练:二次函数实际问题应用题1.随着国家乡村振兴政策的推进,凤凰村农副产品越来越丰富.为增加该村村民收入,计划定价销售某土特产,他们把该土特产(每袋成本10元)进行4天试销售,日销量y(袋)和每袋售价x(元)记录如下:时间 第一天 第二天 第三天 第四天x/元 15 20 25 30y/袋 25 20 15 10若试销售和正常销售期间,日销量y与每袋售价x的一次函数关系相同,解决下列问题:(1)求日销量y关于每袋售价x的函数关系式;(2)请你帮村民设计,每袋售价定为多少元,才能使这种土特产每日销售的利润最大?并求出最大利润.(利润销售额成本)2.“尔滨”火了,带动了黑龙江省的经济发展,农副产品也随之畅销全国.某村民在网上直播推销某种农副产品,在试销售的天中,第天且为整数)的售价为(元千克).当时,;当时,.销量(千克)与的函数关系式为,已知该产品第天的售价为元千克,第天的售价为元千克,设第天的销售额为(元).(1) ,_____;(2)写出第天的销售额与之间的函数关系式;(3)求在试销售的天中,共有多少天销售额超过元?3.每年5月的第三个星期日为全国助残日,今年的主题是“科技助残,共享美好生活”,康宁公司新研发了一批便携式轮椅计划在该月销售,根据市场调查,每辆轮椅盈利200元时,每天可售出60辆;单价每降低10元,每天可多售出4辆.公司决定在成本不变的情况下降价销售,但每辆轮椅的利润不低于180元,设每辆轮椅降价x元,每天的销售利润为y元.(1)求y与x的函数关系式;每辆轮椅降价多少元时,每天的销售利润最大?最大利润为多少元?(2)全国助残日当天,公司共获得销售利润12160元,请问这天售出了多少辆轮椅?4.2024年“五一”假期期间,阆中古城景区某特产店销售A,B两类特产.A类特产进价50元/件,B类特产进价60元/件.已知购买1件A类特产和1件B类特产需132元,购买3件A类特产和5件B类特产需540元.(1)求A类特产和B类特产每件的售价各是多少元?(2)A类特产供货充足,按原价销售每天可售出60件.市场调查反映,若每降价1元,每天可多售出10件(每件售价不低于进价).设每件A类特产降价x元,每天的销售量为y件,求y与x的函数关系式,并写出自变量x的取值范围.(3)在(2)的条件下,由于B类特产供货紧张,每天只能购进100件且能按原价售完.设该店每天销售这两类特产的总利润为w元,求w与x的函数关系式,并求出每件A类特产降价多少元时总利润w最大,最大利润是多少元?(利润=售价-进价)5.某酒店有两种客房、其中种间,种间.若全部入住,一天营业额为元;若两种客房均有间入住,一天营业额为元.(1)求两种客房每间定价分别是多少元?(2)酒店对种客房调研发现:如果客房不调价,房间可全部住满;如果每个房间定价每增加元,就会有一个房间空闲;当种客房每间定价为多少元时,种客房一天的营业额最大,最大营业额为多少元?6.某品牌大米远近闻名,深受广大消费者喜爱,某超市每天购进一批成本价为每千克4元的该大米,以不低于成本价且不超过每千克7元的价格销售.当每千克售价为5元时,每天售出大米;当每千克售价为6元时,每天售出大米,通过分析销售数据发现:每天销售大米的数量与每千克售价(元)满足一次函数关系.(1)请直接写出y与x的函数关系式;(2)超市将该大米每千克售价定为多少元时,每天销售该大米的利润可达到1800元?(3)当每千克售价定为多少元时,每天获利最大?最大利润为多少?7.电商平台销售某款儿童组装玩具,进价为每件100元,在销售过程中发现,每周的销售量y(件)与每件玩具售价x(元)之间满足一次函数关系(其中,且x为整数).当每件玩具售价为120元时,每周的销量为80件;当每件玩具售价为140元时,每周的销量为40件.(1)求y与x之间的函数关系式;(2)当每件玩具售价为多少元时,电商平台每周销售这款玩具所获的利润最大?最大周利润是多少元?8.某公司的化工产品成本为元/千克.销售部门规定:一次性销售千克以内时,以元/千克的价格销售;一次性销售不低于千克时,每增加千克降价元.考虑到降价对利润的影响,一次性销售不低于千克时,均以某一固定价格销售.一次性销售利润(元)与一次性销售量(千克)的函数关系如图所示. (1)当一次性销售千克时利润为多少元?(2)求一次性销售量在之间时的最大利润;(3)当一次性销售多少千克时利润为元?9.加强劳动教育,落实五育并举.孝礼中学在当地政府的支持下,建成了一处劳动实践基地.2023年计划将其中的土地全部种植甲乙两种蔬菜.经调查发现:甲种蔬菜种植成本y(单位;元/)与其种植面积x(单位:)的函数关系如图所示,其中;乙种蔬菜的种植成本为50元/. (1)当___________时,元/;(2)设2023年甲乙两种蔬菜总种植成本为W元,如何分配两种蔬菜的种植面积,使W最小?(3)学校计划今后每年在这土地上,均按(2)中方案种植蔬菜,因技术改进,预计种植成本逐年下降,若甲种蔬菜种植成本平均每年下降,乙种蔬菜种植成本平均每年下降,当a为何值时,2025年的总种植成本为元?10.“端午节”吃粽子是中国传统习俗,在“端午节”来临前,某超市购进一种品牌粽子,每盒进价是40元,并规定每盒售价不得少于50元,日销售量不低于350盒,根据以往销售经验发现,当每盒售价定为50元时,日销售量为500盒,每盒售价每提高1元,日销售量减少10盒,设每盒售价为x元,日销售量为p盒.(1)当时,__________;(2)当每盒售价定为多少元时,日销售利润W(元)最大?最大利润是多少?(3)小强说:“当日销售利润最大时,日销售额不是最大,”小红说:“当日销售利润不低于8000元时,每盒售价x的范围为.”你认为他们的说法正确吗?若正确,请说明理由;若不正确,请直接写出正确的结论.11.为了振兴乡村经济,增加村民收入,某村委会干部带领村民在网上直播推销农产品,在试销售的30天中,第x天(且x为整数)的售价p(元/千克)与x的函数关系式(且x为整数),销量q(千克)与x的函数关系式为,已知第5天售价为50元/千克,第10天售价为40元/千克,设第x天的销售额为W元(1)___________, ___________;(2)求第x天的销售额W元与x之间的函数关系式;(3)在试销售的30天中,销售额超过1000元的共有多少天?12.丹东是我国的边境城市,拥有丰富的旅游资源.某景区研发一款纪念品,每件成本为30元,投放景区内进行销售,规定销售单价不低于成本且不高于54元,销售一段时间调研发现,每天的销售数量y(件)与销售单价x(元/件)满足一次函数关系,部分数据如下表所示:销售单价x(元/件) … 35 40 45 …每天销售数量y(件) … 90 80 70 …(1)直接写出y与x的函数关系式;(2)若每天销售所得利润为1200元,那么销售单价应定为多少元?(3)当销售单价为多少元时,每天获利最大?最大利润是多少元?13.某超市采购了两批同样的冰墩墩挂件,第一批花了6600元,第二批花了8000元,第一批每个挂件的进价是第二批的1.1倍,且第二批比第一批多购进50个.(1)求第二批每个挂件的进价;(2)两批挂件售完后,该超市以第二批每个挂件的进价又采购一批同样的挂件,经市场调查发现,当售价为每个60元时,每周能卖出40个,若每降价1元,每周多卖10个,由于货源紧缺,每周最多能卖90个,求每个挂件售价定为多少元时,每周可获得最大利润,最大利润是多少?14.某商场销售一种进价为30元/个的商品,当销售价格x(元/个)满足40<x<80时,其销售量y(万个)与x之间的关系式为y=﹣x+9.同时销售过程中的其它开支为50万元.(1)求出商场销售这种商品的净利润z(万元)与销售价格x函数解析式,销售价格x定为多少时净利润最大,最大净利润是多少?(2)若净利润预期不低于17.5万元,试求出销售价格x的取值范围;若还需考虑销售量尽可能大,销售价格x应定为多少元?15.2022年在中国举办的冬奥会和残奥会令世界瞩目,冬奥会和残奥会的吉祥物冰墩墩和雪容融家喻户晓,成为热销产品,某商家以每套34元的价格购进一批冰墩墩和雪容融套件,若该产品每套的售价是48元时,每天可售出200套;若每套售价提高2元,则每天少卖4套.(1)设冰墩墩和雪容融套件每套售价定为x元时,求该商品销售量y与x之间的函数关系式;(2)求每套售价定为多少元时,每天销售套件所获利润W最大,最大利润是多少元?16.为推进“书香社区”建设,某社区计划购进一批图书.已知购买2本科技类图书和3本文学类图书需154元,购买4本科技类图书和5本文学类图书需282元.(1)科技类图书与文学类图书的单价分别为多少元?(2)为了支持“书香社区”建设,助推科技发展,商家对科技类图书推出销售优惠活动(文学类图书售价不变):购买科技类图书超过40本但不超过50本时,每增加1本,单价降低1元;超过50本时,均按购买50本时的单价销售.社区计划购进两种图书共计100本,其中科技类图书不少于30本,但不超过60本.按此优惠,社区至少要准备多少购书款?17.为了落实劳动教育,某学校邀请农科院专家指导学生进行小番茄的种植,经过试验,其平均单株产量y千克与每平方米种植的株数x(,且x为整数)构成一种函数关系.每平方米种植2株时,平均单株产量为4千克;以同样的栽培条件,每平方米种植的株数每增加1株,单株产量减少0.5千克.(1)求y关于x的函数表达式.(2)每平方米种植多少株时,能获得最大的产量?最大产量为多少千克?18.某商家正在热销一种商品,其成本为30元/件,在销售过程中发现随着售价增加,销售量在减少.商家决定当售价为60元/件时,改变销售策略,此时售价每增加1元需支付由此产生的额外费用150元.该商品销售量y(件)与售价x(元/件)满足如图所示的函数关系,(其中,且x为整数)(1)直接写出y与x的函数关系式;(2)当售价为多少时,商家所获利润最大,最大利润是多少?19.某药店选购了一批消毒液,进价为每瓶10元,在销售过程中发现销售量y(瓶)与每瓶售价x(元)之间存在一次函数关系(其中,且x为整数),当每瓶消毒液售价为12元时,每天销售量为90瓶;当每瓶消毒液售价为15元时,每天销售量为75瓶;(1)求y与x之间的函数关系式;(2)设该药店销售该消毒液每天的销售利润为w元,当每瓶消毒液售价为多少元时,药店销售该消毒液每天销售利润最大.20.如今我国的大棚(如图1)种植技术已十分成熟.小明家的菜地上有一个长为16米的蔬菜大棚,其横截面顶部为抛物线型,大棚的一端固定在离地面高1米的墙体处,另一端固定在离地面高2米的墙体处,现对其横截面建立如图2所示的平面直角坐标系.已知大棚上某处离地面的高度(米)与其离墙体的水平距离(米)之间的关系满足,现测得,两墙体之间的水平距离为6米.图2(1)直接写出,的值;(2)求大棚的最高处到地面的距离;(3)小明的爸爸欲在大棚内种植黄瓜,需搭建高为米的竹竿支架若干,已知大棚内可以搭建支架的土地平均每平方米需要4根竹竿,则共需要准备多少根竹竿?中小学教育资源及组卷应用平台中小学教育资源及组卷应用平台《2025年九年级中考数学压轴题训练:二次函数实际问题应用题》参考答案1.(1)日销量y关于每袋售价x的函数关系式为(2)每袋售价定为25元时,这种土特产日销售的利润最大,最大利润为225元【分析】本题考查了一次函数和二次函数的应用,解题的关键是理解题意,正确找出等量关系.(1)设日销售量y(袋)和每袋售价x(元)的函数关系式为()代入数据,利用待定系数法即可求解;(2)设每袋土特产的售价定为x元,则日销量为袋,成本为,总利润为W元,根据销售利润销售每袋土特产的利润每日的销售量,得到与的函数关系式,再根据二次函数的性质求解即可.【详解】(1)解:设()将,代入,得解得,∴日销量y关于每袋售价x的函数关系式为;(2)解:设每袋土特产的售价定为x元,则日销量为袋,成本为,总利润为W元,(),当时,W最大,最大值为225答:每袋售价定为25元时,这种土特产日销售的利润最大,最大利润为225元.2.(1),(2)(3)在试销售的天中,共有天销售额超过元【分析】本题考查了一次函数与二次函数的综合应用;(1)待定系数法求解析式,即可求解;(2)根据销售额等于销量乘以售价,分段列出函数关系式,即可求解;(3)根据题意,根据,列出方程,解方程,即可求解.【详解】(1)解:依题意,将,代入,∴解得:∴故答案为:,.(2)解:依题意,当时,当时,∴(3)解:依题意,当时,当时,解得:为正整数,∴第天至第天,销售额超过元(天)答:在试销售的天中,共有天销售额超过元3.(1),每辆轮椅降价20元时,每天的利润最大,为元(2)这天售出了64辆轮椅【分析】本题考查二次函数的实际应用,正确的列出函数关系式,是解题的关键:(1)根据总利润等于单件利润乘以销量,列出二次函数关系式,再根据二次函数的性质求最值即可;(2)令,得到关于的一元二次方程,进行求解即可.【详解】(1)解:由题意,得:;∵每辆轮椅的利润不低于180元,∴,∴,∵,∴当时,随的增大而增大,∴当时,每天的利润最大,为元;答:每辆轮椅降价20元时,每天的利润最大,为元;(2)当时,,解得:(不合题意,舍去);∴(辆);答:这天售出了64辆轮椅.4.(1)A类特产的售价为60元/件,B类特产的售价为72元/件(2)()(3)A类特产每件售价降价2元时,每天销售利润最犬,最大利润为1840元【分析】本题主要考查一元一次方程的应用、函数关系式和二次函数的性质,根据题意设每件A类特产的售价为x元,则每件B类特产的售价为元,进一步得到关于x的一元一次方程求解即可;根据降价1元,每天可多售出10件列出函数关系式,结合进价与售价,且每件售价不低于进价得到x得取值范围;结合(2)中A类特产降价x元与每天的销售量y件,得到A类特产的利润,同时求得B类特产的利润,整理得到关于x的二次函数,利用二次函数的性质求解即可.【详解】(1)解:设每件A类特产的售价为x元,则每件B类特产的售价为元.根据题意得.解得.则每件B类特产的售价(元).答:A类特产的售价为60元/件,B类特产的售价为72元/件.(2)由题意得∵A类特产进价50元/件,售价为60元/件,且每件售价不低于进价∴.答:().(3).∴当时,w有最大值1840.答:A类特产每件售价降价2元时,每天销售利润最大,最大利润为1840元.5.(1)种客房每间定价为元,种客房每间定价为为元;(2)当种客房每间定价为元时,种客房一天的营业额最大,最大营业额为元.【分析】()设种客房每间定价为元,种客房每间定价为为元,根据题意,列出方程组即可求解;()设种客房每间定价为元,根据题意,列出与的二次函数解析式,根据二次函数的性质即可求解;本题考查了二元一次方程组的应用,二次函数的应用,根据题意,正确列出二元一次方程组和二次函数解析式是解题的关键.【详解】(1)解:设种客房每间定价为元,种客房每间定价为为元,由题意可得,,解得,答:种客房每间定价为元,种客房每间定价为为元;(2)解:设种客房每间定价为元,则,∵,∴当时,取最大值,元,答:当种客房每间定价为元时,种客房一天的营业额最大,最大营业额为元.6.(1)(2)6元(3)当每千克售价定为7元时,每天获利最大,最大利润为2550元【分析】(1)根据题意可得,该函数经过点,y与x的函数关系式为,将代入,求出k和b的值,即可得出y与x的函数关系式;(2)根据总利润=每千克利润×销售量,列出方程求解即可;(3)设利润为w,根据总利润=每千克利润×销售量,列出w关于x的函数表达式,再根据二次函数的性质, 即可解答.【详解】(1)解∶ 根据题意可得,该函数经过点,设y与x的函数关系式为,将代入得:,解得:,∴y与x的函数关系式为,(2)解;根据题意可得:,∴,整理得:,解得:,∵售价不低于成本价且不超过每千克7元,∴每千克售价定为6元时,利润可达到1800元;(3)解:设利润为w,,∵,函数开口向下,∴当时,w随x的增大而增大,∵,∴当时,w有最大值,此时,∴当每千克售价定为7元时,每天获利最大,最大利润为2550元.【点睛】本题主要考查了求一次函数解析式,一元二次方程的实际应用,二次函数的实际应用,解题的关键是熟练掌握用待定系数法求解函数解析式的方法和步骤,正确理解题意,根据题意找出等量关系,列出方程和函数关系式,熟练掌握二次函数的性质.7.(1)(其中,且x为整数)(2)当每件玩具售价为130元时,电商平台每周销售这款玩具所获的利润最大,最大周利润是1800元【分析】(1)设y与x之间的函数关系式为,利用待定系数法求解即可;(2)设每周销售这款玩具所获的利润为W,列出W关于x的二次函数关系式,化为顶点式即可求解.【详解】(1)解:设y与x之间的函数关系式为,由已知得,解得,因此y与x之间的函数关系式为(其中,且x为整数);(2)解:设每周销售这款玩具所获的利润为W,由题意得,,W关于x的二次函数图象开口向上,,且x为整数,当时,W取最大值,最大值为1800,即当每件玩具售价为130元时,电商平台每周销售这款玩具所获的利润最大,最大周利润是1800元.【点睛】本题考查一次函数与二次函数的实际应用,列出周利润W关于x的二次函数关系式是解题的关键.8.(1)当一次性销售千克时,利润为元;(2)一次性销售量在之间时的最大利润为元;(3)当一次性销售为或或千克时,利润为元.【分析】()用销售量利润计算即可;()根据一次性销售不低于千克时,每增加千克降价元求出每千克利润,再乘以销售量即可列出函数解析式,再根据函数的性质求最值;()分一次性销售量在之间和一次性销售不低于千克两种情况列方程求解即可;本题考查了二次函数和一次函数的应用,根据等量关系列出函数解析式是解题的关键.【详解】(1)解:根据题意,当时,,∴当一次性销售千克时,利润为元;(2)解:设一次性销售量在之间时,每千克利润为,∴,,,,∵,,∴当时,有最大值,最大值为,∴一次性销售量在之间时的最大利润为元;(3)解:当时,,∴,当一次性销售量在之间时,由题意得,,解得;当一次性销售不低于千克时,每千克利润为元,由题意得,,解得;∴当一次性销售为或或千克时,利润为元.9.(1)(2)当甲种蔬菜的种植面积为,乙种蔬菜的种植面积为时,W最小;(3)当a为时,2025年的总种植成本为元.【分析】(1)求出当时,设甲种蔬菜种植成本y(单位;元/)与其种植面积x(单位:)的函数关系式为,当时,,求出当时的x的值即可;(2)当时,,由二次函数性质得到当时,有最小值,最小值为,当时,由一次函数性质得到当时,有最小值,最小值为,比较后即可得到方案;(3)根据2025年的总种植成本为元列出一元二次方程,解方程即可得到答案.【详解】(1)解:当时,设甲种蔬菜种植成本y(单位;元/)与其种植面积x(单位:)的函数关系式为,把点代入得,,解得,∴当时,,当时,,∴当时,,解得,即当时,元/;故答案为:;(2)解:当时,,∵,∴抛物线开口向上,∴当时,有最小值,最小值为,当时,,∵,∴随着x的增大而减小,∴当时,有最小值,最小值为,综上可知,当甲种蔬菜的种植面积为,乙种蔬菜的种植面积为时,W最小;(3)由题意可得,解得(不合题意,舍去),∴当a为时,2025年的总种植成本为元.【点睛】此题考查了二次函数的应用、一元二次方程的应用、一次函数的应用等知识,读懂题意,正确列出函数解析式和方程是解题的关键.10.(1)(2)当每盒售价定为65元时,日销售利润W(元)最大,最大利润是元.(3)他们的说法正确,理由见解析【分析】(1)根据每盒售价定为50元时,日销售量为500盒,每盒售价每提高1元,日销售量减少10盒,列式计算即可;(2)根据销售量乘以每盒的利润得到,根据二次函数的性质即可得到答案;(3)设日销售额为元,则,根据二次函数的性质即可判断当日销售利润最大时,日销售额不是最大,即可判断小强的说法;当时,由,解得,由抛物线开口向下,得到当时,,即可判断小红的说法.【详解】(1)解:当时,(盒),故答案为:(2)由题意得,,又∵,即,解得,∵,∴当时,W最大,最大值为,∴当每盒售价定为65元时,日销售利润W(元)最大,最大利润是元.(3)他们的说法正确,理由如下:设日销售额为元,则,∵,∴当时,最大,最大值为,∴当时,最大,此时为,即小强的说法正确;当时,,解得,∵抛物线开口向下,∴当时,∵,∴当日销售利润不低于元时,每盒售价x的范围为.故小红的说法错误.【点睛】此题考查了二次函数的应用,根据题意正确列出函数解析式是基础,熟练掌握二次函数的性质和正确计算是解题的关键.11.(1),(2)时,,当时,(3)7天【分析】(1)利用待定系数法求待定系数;(2)根据“销售额=售价×销售量”列出函数关系式,(3)利用二次函数和一次函数的性质分析求解.【详解】(1)解:∵第5天售价为50元/千克,第10天售价为40元/千克,∴,解得,故答案为:,;(2)解:由题意当时,,当时,,(3)解:由题意当时,,∵,∴当时,最大为,当时,,由时,解得,又∵x为整数,且,∴当时,随的增大而增大,∴第至天,销售额超过1000元,共7天.【点睛】本题考查一次函数的应用,二次函数的应用,理解题意,分段分析函数解析式,掌握一次函数和二次函数的性质是解题关键.12.(1)y=﹣2x+160(2)销售单价应定为50元(3)当销售单价为54元时,每天获利最大,最大利润1248元【分析】(1)设每天的销售数量y(件)与销售单价x(元/件)之间的关系式为y=kx+b,用待定系数法可得y=﹣2x+160;(2)根据题意得(x﹣30) (﹣2x+160)=1200,解方程并由销售单价不低于成本且不高于54元,可得销售单价应定为50元;(3)设每天获利w元,w=(x﹣30) (﹣2x+160)=﹣2x2+220x﹣4800=﹣2(x﹣55)2+1250,由二次函数性质可得当销售单价为54元时,每天获利最大,最大利润,1248元.【详解】(1)解:设每天的销售数量y(件)与销售单价x(元/件)之间的关系式为y=kx+b,把(35,90),(40,80)代入得:,解得,∴y=﹣2x+160;(2)根据题意得:(x﹣30) (﹣2x+160)=1200,解得x1=50,x2=60,∵规定销售单价不低于成本且不高于54元,∴x=50,答:销售单价应定为50元;(3)设每天获利w元,w=(x﹣30) (﹣2x+160)=﹣2x2+220x﹣4800=﹣2(x﹣55)2+1250,∵﹣2<0,对称轴是直线x=55,而x≤54,∴x=54时,w取最大值,最大值是﹣2×(54﹣55)2+1250=1248(元),答:当销售单价为54元时,每天获利最大,最大利润,1248元.【点睛】本题考查一次函数,一元二次方程和二次函数的应用,解题的关键是读懂题意,列出函数关系式和一元二次方程.13.(1)第二批每个挂件的进价为40元(2)当每个挂件售价定为58元时,每周可获得最大利润,最大利润是1080元【分析】(1)设第二批每个挂件的进价为x元,则第一批每个挂件的进价为1.1x元,根据题意列出方程,求解即可;(2)设每个售价定为y元,每周所获利润为w元,则可列出w关于y的函数关系式,再根据“每周最多能卖90个”得出y的取值范围,根据二次函数的性质可得出结论.【详解】(1)设第二批每个挂件的进价为x元,则第一批每个挂件的进价为1.1x元,根据题意可得,,解得x=40.经检验,x=40是原分式方程的解,且符合实际意义,∴1.1x=44.∴第二批每个挂件的进价为40元.(2)设每个售价定为y元,每周所获利润为w元,根据题意可知,w=(y﹣40)[40+10(60﹣y)]=﹣10+1440,∵﹣10>0,∴当x≥52时,y随x的增大而减小,∵40+10(60﹣y)≤90,∴y≥55,∴当y=55时,w取最大,此时w=﹣10+1440=1350.∴当每个挂件售价定为55元时,每周可获得最大利润,最大利润是1350元.【点睛】本题综合考查分式方程和二次函数的应用,根据题意列出函数关系式是解题关键.14.(1)z=﹣+12x﹣320,当x=60时,z最大,最大利润为40(2)45≤x≤75,x=45时,销售量最大【分析】(1)根据总利润=单价利润×销量﹣40,可得 z 与x的函数解析式,再求出时,z最大,代入即可.(2)当 z =17.5时,解方程得出x的值,再根据函数的增减性和开口方向得出 x的范围,结合 y 与 x的函数关系式,从而解决问题.【详解】(1)由题可知:z=y(x﹣30)﹣50=(﹣)(x﹣30)﹣50=﹣+12x﹣320,∴当时,z最大,∴最大利润为:﹣=40;(2)当z=17.5时,17.5=﹣+12x﹣320,∴x1=45,x2=75,∵净利润预期不低于17.5万元,且a<0,∴45≤x≤75,∵y=﹣x+9.y随x的增大而减小,∴x=45时,销售量最大.【点睛】本题主要考查了二次函数的实际应用,二次函数的性质,一次函数的性质等知识,正确列出 z 关于x的函数的解析式是解题的关键.15.(1);(2)每套售价为91元时,每天销售套件所获利润最大,最大利润是6498元.【分析】(1)根据 “该产品每套的售价是48元时,每天可售出200套;若每套售价提高2元,则每天少卖4套.”列出函数关系式,即可求解;(2)根据利润等于每件的利润乘以销售量,可得到函数关系式,再利用二次函数的性质,即可求解.【详解】(1)解:根据题意,得与x之间的函数关系式是.(2)解:根据题意,得∴抛物线开口向下,W有最大值当时,答:每套售价为91元时,每天销售套件所获利润最大,最大利润是6498元.【点睛】本题主要考查了一次函数的应用,二次函数的实际应用,明确题意,准确得到等量关系是解题的关键.16.(1)科技类图书的单价为38元,文学类图书的单价为26元.(2)社区至少要准备2700元购书款.【分析】(1)设科技类图书的单价为x元,文学类图书的单价为y元,然后根据题意可列出方程组进行求解;(2)设社区需要准备w元购书款,购买科技类图书m本,则文学类图书有(100-m)本,由(1)及题意可分当时,当时及当时,进而问题可分类求解即可.【详解】(1)解:设科技类图书的单价为x元,文学类图书的单价为y元,由题意得:,解得:;答:科技类图书的单价为38元,文学类图书的单价为26元.(2)解:设社区需要准备w元购书款,购买科技类图书m本,则文学类图书有(100-m)本,由(1)可得:①当时,则有:,∵12>0,∴当m=30时,w有最小值,即为;②当时,则有:,∵-1<0,对称轴为直线,∴当时,w随m的增大而减小,∴当m=50时,w有最小值,即为;③当时,此时科技类图书的单价为(元),则有,∵2>0,∴当m=51时,w有最小值,即为;综上所述:社区至少要准备2700元的购书款.【点睛】本题主要考查二元一次方程组的应用、一次函数与二次函数的应用,解题的关键是找准等量关系,注意分类讨论.17.(1)(,且x为整数)(2)每平方米种植5株时,能获得最大的产量,最大产量为12.5千克【分析】(1)由每平方米种植的株数每增加1株,单株产量减少0.5千克,即可得求得解析式;(2)设每平方米小番茄产量为W千克,由产量=每平方米种植株数×单株产量即可列函数关系式,由二次函数性质可得答案.【详解】(1)解:∵每平方米种植的株数每增加1株,单株产量减少0.5千克,∴(,且x为整数);(2)解:设每平方米小番茄产量为W千克,.∴当时,w有最大值12.5千克.答:每平方米种植5株时,能获得最大的产量,最大产量为12.5千克.【点睛】本题考查二次函数的应用,解题的关键是读懂题意,列出函数关系式.18.(1);(2)当售价为70元时,商家所获利润最大,最大利润是4500元【分析】(1)利用待定系数法分段求解函数解析式即可;(2)分别求出当时与当时的销售利润解析式,利用二次函数的性质即可求解.【详解】解:(1)当时,设,将和代入,可得,解得,即;当时,设,将和代入,可得,解得,即;∴;(2)当时,销售利润,当时,销售利润有最大值,为4000元;当时,销售利润,该二次函数开口向上,对称轴为,当时位于对称轴右侧,当时,销售利润有最大值,为4500元;∵,∴当售价为70元时,商家所获利润最大,最大利润是4500元.【点睛】本题考查一次函数的应用、二次函数的性质,根据图象列出解析式是解题的关键.19.(1);(2)当每瓶消毒液售价为20元时,药店销售该消毒液每天销售利润最大,最大为500元.【分析】(1)设y与x之间的函数关系式,根据题意列出方程组,解方程组即可求解;(2)根据题意得出每天的销售利润w元与每瓶售价x(元)之间的二次函数解析式,利用二次函数的性质即可求解.【详解】(1)设y与x之间的函数关系式,由题意可得,,解得, ,∴y与x之间的函数关系式;(2)由题意可得,w=(x-10)(-5x+150)=(,且x为整数),当时,,∴当每瓶消毒液售价为20元时,药店销售该消毒液每天销售利润最大,最大为500元.答:当每瓶消毒液售价为20元时,药店销售该消毒液每天销售利润最大,最大为500元.【点睛】本题考查了二次函数的应用,正确求得每天的销售利润w元与每瓶售价x(元)之间的二次函数解析式是解决问题的关键.20.(1),;(2)米;(3)352【分析】(1)根据题意,可直接写出点A点B坐标,代入,求出b、c即可;(2)根据(1)中函数解析式直接求顶点坐标即可;(3根据,先求得大棚内可以搭建支架的土地的宽,再求得需搭建支架的面积,最后根据每平方米需要4根竹竿计算即可.【详解】解:(1)由题意知点A坐标为,点B坐标为,将A、B坐标代入得:解得:,故,;(2)由,可得当时,有最大值,即大棚最高处到地面的距离为米;(3)由,解得,,又因为,可知大棚内可以搭建支架的土地的宽为(米),又大棚的长为16米,故需要搭建支架部分的土地面积为(平方米)共需要(根)竹竿.【点睛】本题主要考查根据待定系数法求函数解析式,根据函数解析式求顶点坐标,以及根据函数值确定自变量取值范围,掌握此题的关键是熟练掌握二次函数图像的性质. 展开更多...... 收起↑ 资源预览