资源简介 2025新北师大版七年级数学下学期期中检测试卷(考试时间:120分钟 试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。4.测试范围:北师大版七年级下册第一章~第四章第1节。5.难度系数:0.65。第一部分(选择题 共24分)一、选择题(本大题共8小题,每小题3分,满分24分.在每个小题给出的四个选项中,只有一项符合题目要求的)1.计算( )A. B. C. D.2.下列诗句所描述的事件中,是不可能事件的是( )A.手可摘星辰 B.黄河入海流 C.大漠孤烟直 D.鱼戏莲叶东3.华为麒麟990芯片采用了最新的0.000000007米(7纳米)的工艺制程,数0.000000007用科学记数法表示为( )A. B. C. D.4.已知,则n的值是( )A.1 B.2 C.3 D.45.用“垂线段最短”来解释的现象是( )A. 测量跳远成绩 B. 木板上弹墨线C. 两钉子固定木条 D. 弯曲河道改直6.如图,在四边形中,,连接,若,,则的度数为( )A. B. C. D.7.若的积中不含项,则满足的数量关系是( )A. B. C. D.8.如图,将大正方形的阴影部分裁剪下来重新拼成一个图形,利用等面积法可证明某些乘法公式,在给出的4 幅拼法中,不能够验证平方差公式 的是( )A. B. C. D. 第二部分(非选择题 共96分)二、填空题(本大题共5小题,每小题3分,满分15分)9.已知的三边分别为,,,且,,则第三边的长可以是 .(只写一个)10.如图,一个可以自由转动的转盘,被分成了5个相同的扇形,5个扇形分别标有数字“1”、“2”、“3”、“5”、“8”,任意转动转盘1次,指针指向偶数(指针恰好停留在分界线上,则重新转一次)的概率为 .(第10题图) (第10题图)11. 图1是一打孔器的实物图,图2是使用打孔器的侧面示意图,,使用打孔器时,,,分别移动到,,.此时,平分,若,则的度数为 .12.若是一个完全平方式,则k的值为 .13.如图,在中,延长至点,使得,延长至点,使得,延长至点,使得,连接、、,若,则为 .三、解答题(本大题共13小题,满分81分.解答应写出文字说明,证明过程或演算步骤)14.(5分)计算:.16.(5分)先化简,再求值:,其中,.17.(5分)如图,请用直尺和三角尺完成下列作图.(1)过点A作的垂线;(2)过点B作的平行线.18.(5分)如图,已知点A,B,D在一条直线上,,请填写的理由.解:因为,所以______(______),______(______).因为,所以(______).19.(5分)一个不透明的口袋中有红球和黑球共20个,这两种球除颜色外无其他差别,将球搅匀后,从口袋中随机摸出一个球,记下颜色后放回搅匀,经过大量重复试验后发现摸到黑球的频率逐渐稳定在0.3.估计其中黑球的个数.20.(5分)如图,已知点、在直线上,点在线段上,与交于点,,.,,求的度数.21.(6分)“草莓音乐节”组委会设置了甲,乙,丙三类门票,初一2班购买了甲票4张,乙票16张,丙票20张,这些票除票面内容不同外其他都相同,该班小尹同学从中随机抽取一张.(1)小尹同学抽到甲票的概率是多少?(2)小尹同学抽到甲票或乙票的概率是多少?22.(6分)已知,.(1)求的值;(2)求.23.(7分)如图,已知、分别是的中线和高,的周长比的周长大,且.(1)求的长;(2)求与的面积关系.24.(7分)如图,某中学校园内有一块长为,宽为的长方形空地,学校计划在中间留一块长为、宽为的小长方形地面用来修建一座雕像,然后给剩余部分种上花(阴影部分).(1)求种花的面积;(2)当,时.求种花部分的面积.25.(8分)如图,点是的中点,点在上,分别以、为边在的同侧作正方形和正方形,连接和.设,.(1)用,表示图中阴影部分的面积;(2)若,,求图中阴影部分的面积.26.(12分)【问题背景】如图,射线分别交直线,于点A,E,.【探索求证】(1)求证:;【问题解决】(2)如图2,G为射线上一动点,连接,若,探究,,之间的数量关系,并说明理由;(3)如图3,在(2)的条件下,连接,延长交射线于点H,N为线段上一动点.连接,若平分,平分,当时,求的值.参考答案(考试时间:120分钟 试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。4.测试范围:北师大版七年级下册第一章~第四章第1节。5.难度系数:0.65。第一部分(选择题 共24分)一、选择题(本大题共8小题,每小题3分,满分24分.在每个小题给出的四个选项中,只有一项符合题目要求的)1.计算( )A. B. C. D.【答案】B【详解】解:,故选:B2.下列诗句所描述的事件中,是不可能事件的是( )A.手可摘星辰 B.黄河入海流 C.大漠孤烟直 D.鱼戏莲叶东【答案】A【详解】解:A、手可摘星辰是不可能事件,故本选项符合题意;B、黄河入海流是必然事件,故本选项不符合题意;C、大漠孤烟直是随机事件,故本选项符合题意;D、鱼戏莲叶东是随机事件,故本选项不符合题意;故选:A3.华为麒麟990芯片采用了最新的0.000000007米(7纳米)的工艺制程,数0.000000007用科学记数法表示为( )A. B. C. D.【答案】C【详解】解:数0.000000007用科学记数法表示为.故选:C.4.已知,则n的值是( )A.1 B.2 C.3 D.4【答案】B【详解】解:,,,故选:B.5.用“垂线段最短”来解释的现象是( )A. 测量跳远成绩B. 木板上弹墨线C. 两钉子固定木条D. 弯曲河道改直【答案】A【详解】解:A、测量跳远成绩是利用了“垂线段最短”,故选项符合题意;B、木板上弹墨线是利用了“两点确定一条直线”,故选项不符合题意;C、两钉子固定木条是利用了“两点确定一条直线”,故选项不符合题意;D、把弯曲的河道改直,就能缩短路程是利用了“两点之间,线段最短”,故选项不符合题意;故选:A.6.如图,在四边形中,,连接,若,,则的度数为( )A. B. C. D.【答案】B【详解】解:∵,∴,∴,,设,∴,解得,∵,∴,∴故选:B.7.若的积中不含项,则满足的数量关系是( )A. B. C. D.【答案】C【详解】解:,∵的积中不含项,∴,∴,故选:.8.如图,将大正方形的阴影部分裁剪下来重新拼成一个图形,利用等面积法可证明某些乘法公式,在给出的4 幅拼法中,不能够验证平方差公式 的是( )A. B. C. D. 【答案】D【详解】解:A.原图阴影部分面积为,拼后新图是平行四边形,其中底为,底边上高为,则阴影部分面积为,则有,故可以验证;B.原图阴影部分面积为,拼后新图形中阴影部分是长方形,长为,宽为,阴影部分面积为,则有,故可以验证;C.原图阴影部分面积为,拼后新图是由两个相同的直角梯形组成的平行四边形,其底为,底边上高为,阴影部分面积为,则有,故可以验证;D.原图阴影部分面积为,拼后新图是由四个相同长方形组成的大长方形,长为,宽为,阴影部分面积为,则有,故不能验证.故选:D.第二部分(非选择题 共96分)二、填空题(本大题共5小题,每小题3分,满分15分)9.已知的三边分别为,,,且,,则第三边的长可以是 .(只写一个)【答案】3(答案不唯一)【详解】解:根据题意得:,即,∴第三边的长可以是3.故答案为:3(答案不唯一)10.如图,一个可以自由转动的转盘,被分成了5个相同的扇形,5个扇形分别标有数字“1”、“2”、“3”、“5”、“8”,任意转动转盘1次,指针指向偶数(指针恰好停留在分界线上,则重新转一次)的概率为 .【答案】/0.4【详解】解:由题意可知,共有5种等可能得情况,其中指针指向偶数的情况有2种,即概率为,故答案为:.11. 图1是一打孔器的实物图,图2是使用打孔器的侧面示意图,,使用打孔器时,,,分别移动到,,.此时,平分,若,则的度数为 .【答案】/28度【详解】解:∵,,∴,∴,平分,,∵,,故答案为:.12.若是一个完全平方式,则k的值为 .【答案】或5【详解】解:由题意得:,即,∴,解得,故答案为:或5.13.如图,在中,延长至点,使得,延长至点,使得,延长至点,使得,连接、、,若,则为 .【答案】【详解】解:如图,连接、、,,,,,,,,,,,,,故答案为:.三、解答题(本大题共13小题,满分81分.解答应写出文字说明,证明过程或演算步骤)14.(5分)计算:.【详解】解:(3分).(2分)15.(5分)利用整式乘法公式计算:【详解】解:(2分)(2分)(1分)16.(5分)先化简,再求值:,其中,.【详解】解:把,代入得:原式.17.(5分)如图,请用直尺和三角尺完成下列作图.(1)过点A作的垂线;(2)过点B作的平行线.【详解】(5分:垂线2分,平行线3分)(1)过点A作的垂线:(2分)步骤1:确定三角板的位置.将三角板的一条直角边与直线对齐,同时确保三角板的另一条直角边通过点A.步骤2:画出垂线.沿三角板的直角边从点A画出一条直线,这条直线即为过点A的的垂线.(2)过点B作的平行线:(3分)步骤1:确定三角板的位置.将三角板的一条直角边与直线对齐,同时确保三角板的另一条直角边通过点B.步骤2:移动三角板,使其保持与平行的状态.使用直尺辅助,将三角板沿着直线的方向移动,直至三角板的某一边通过点B.步骤3:画出平行线.沿三角板的直角边从点B画出一条直线,这条直线即为过点B的的平行线.18.(5分)如图,已知点A,B,D在一条直线上,,请填写的理由.解:因为,所以______(______),______(______).因为,所以(______).【详解】解:因为,所以(两直线平行,同位角相等),(两直线平行,内错角相等).因为,所以(等量代换).故答案为:;两直线平行,同位角相等;;两直线平行,内错角相等;等量代换(1空1分)19.(5分)一个不透明的口袋中有红球和黑球共20个,这两种球除颜色外无其他差别,将球搅匀后,从口袋中随机摸出一个球,记下颜色后放回搅匀,经过大量重复试验后发现摸到黑球的频率逐渐稳定在0.3.估计其中黑球的个数.【详解】解:经过大量重复试验后发现摸到黑球的频率逐渐稳定在0.3,估计摸到黑球的概率为0.3,(2分)个,估计其中黑球的个数为6个.(3分)20.(5分)如图,已知点、在直线上,点在线段上,与交于点,,.,,求的度数.【详解】证明:∵,∴,∴,(1分)又∵,∴,∴;(1分)∵,∴,(1分)又∵,∴,∴.(2分)21.(6分)“草莓音乐节”组委会设置了甲,乙,丙三类门票,初一2班购买了甲票4张,乙票16张,丙票20张,这些票除票面内容不同外其他都相同,该班小尹同学从中随机抽取一张.(1)小尹同学抽到甲票的概率是多少?(2)小尹同学抽到甲票或乙票的概率是多少?【详解】(1)解:因为小尹同学从中随机抽取一张共有(种)等可能的结果,(1分)所以小尹同学抽到甲票的概率是,答:小尹同学抽到甲票的概率是.(2分)(2)解:因为小尹同学从中随机抽取一张共有(种)等可能的结果,其中小尹同学抽到甲票或乙票的结果有(种),(1分)所以小尹同学抽到甲票或乙票的概率是,答:小尹同学抽到甲票或乙票的概率是.(2分)22.(6分)已知,.(1)求的值;(2)求.【详解】(1)解:∵,∴,即,(1分)∴;(2分)(2)解:∵,,∴,,∴,,(2分)∴.(1分)23.(7分)如图,已知、分别是的中线和高,的周长比的周长大,且.(1)求的长;(2)求与的面积关系.【详解】(1)解:是的中线,,(1分)的周长比的周长大,,,(2分),;(1分)(2)解:,,(1分)是的中线,,(1分).(1分)24.(7分)如图,某中学校园内有一块长为,宽为的长方形空地,学校计划在中间留一块长为、宽为的小长方形地面用来修建一座雕像,然后给剩余部分种上花(阴影部分).(1)求种花的面积;(2)当,时.求种花部分的面积.【详解】(1)解:种花面积为:(2分)(2分);(1分)(2)将,代入上式,得,答:种花部分的面积是.(2分)25.(8分)如图,点是的中点,点在上,分别以、为边在的同侧作正方形和正方形,连接和.设,.(1)用,表示图中阴影部分的面积;(2)若,,求图中阴影部分的面积.【详解】(1)∵点是的中点,∴,∵,,∴,(1分)∵阴影部分的面积为:正方形和正方形的面积和,减去的面积,再减去的面积,∴阴影部分的面积为:,(1分)∵,(1分),(1分)∴阴影部分的面积为:.(1分)(2)∵,,∴,(1分)∴,∴,(1分)∴阴影部分的面积为:.(1分)26.(12分)【问题背景】如图,射线分别交直线,于点A,E,.【探索求证】(1)求证:;【问题解决】(2)如图2,G为射线上一动点,连接,若,探究,,之间的数量关系,并说明理由;(3)如图3,在(2)的条件下,连接,延长交射线于点H,N为线段上一动点.连接,若平分,平分,当时,求的值.【详解】解:(1)∵,,∴,(1分)∴;(1分)(2)∵,∴,(1分)∵,∴,(1分)(3)由(1)知,∴,∴,(2分)∵平分,∴,(1分)∵平分,∴,(1分)∵,∴,(1分)∵,∴,(2分)∴.(1分) 展开更多...... 收起↑ 资源预览