资源简介 (共19张PPT)第一章 整式的乘除1 幂的乘除第1课时 同底数幂的乘法情 境 导 入第1课时 同底数幂的乘法光在真空中的速度大约是3×108 m/s,太阳系以外距离地球最近的恒星是比邻星,它发出的光到达地球大约需要4.22年.一年以3×107 s计算,比邻星与地球的距离约为多少千米?108×107 等于多少呢?3×108×3×107×4.22=37.98×(108×107)新 课 探 究(根据 .)(根据 .)乘法结合律幂的意义幂的意义第1课时 同底数幂的乘法1.计算下列各式:(1)(2)(3) (m,n都是正整数)你发现了什么?单击此处添加标题文本内容新课探究情境导入课堂小结2. 等于什么? 呢? (m,n都是正整数)3. 等于什么(m,n都是正整数)?为什么?同底数幂相乘,底数 ,指数 .不变相加(m,n 都是正整数).例1 计算:(1) (2)(3) (4)解:(1)(3)(2)(4)1.计算时先看底数是否相同小收获:2.指数如果知道奇偶,就可以判断正负3.指数是1的省略不写,计算时注意作为14.指数有同类项的要合并同类项等于什么?思考:例2 光在真空中的速度约为3×108 m/s,太阳光照射到地球大约需要5×102 s.地球距离太阳大约有多远?解:(m)地球距离太阳大约有 m.喷气式客机大约要20年问题:光在真空中的速度大约是3×108 m/s,太阳系以外距离地球最近的恒星是比邻星,它发出的光到达地球大约需要4.22年.一年以3×107 s 计算,比邻星与地球的距离约为多少米?= 37.98×1015= 3.798×1016(m)3×108× 3×107× 4.22= 37.98×(108 × 107 )同底数幂的运算可以逆用:由am.an=am+n,得am+n=am.an(由指数加法 化为同底数幂的乘法)例3 已知am=5,an=6,求am+n的值.解:am+n=am.an=5×6=30练一练a1+11(2) (-3)4×(-3)6 =(1) a·a11 =(-3)4+6=a12(3)×===×××4个 相乘=(-3)10= 310(4) b2m-3·bm =b2m-3+m=b3m-31.计算:练一练2.计算:(1) (a-b)2 ·(a-b) =(a-b)2+1 = (a-b)3整体( 2) (a-2b)3 ·(a-2b) 2 =不变=(a-2b)5(a-2b)3+2整体练一练3.计算:(4)(-a)5·(-a3 )(2)(-a)4·a2==(-a5 )·(-a3 ) = a8(1) (-3) m+2·(-3) m-4=(-3) m+2+m-4 = (-3) 2m-2= 32m-2a4·a2= a6(3)-a4 ·(-a)3== a4+3 =a7(5)-a3·(-a)4·(-a)5底数分别是-a,a化为相同 a偶数底数分别为a,-a化为相同 a=-a3·a4·(-a5)=a12-a4·(-a3 )小收获底数相反 相同=a6练一练4.已知10m=3,10n=2,则10m+n+2= .600课 堂 小 结(m,n 都是正整数).第1课时 同底数幂的乘法同底数幂相乘,底数 ,指数 .不变相加 展开更多...... 收起↑ 资源预览