2026届高考物理一轮复习:第三章 第2讲 牛顿第二定律的基本应用(课件 讲义,共2份)

资源下载
  1. 二一教育资源

2026届高考物理一轮复习:第三章 第2讲 牛顿第二定律的基本应用(课件 讲义,共2份)

资源简介

第2讲 牛顿第二定律的基本应用
学习目标 1.会用牛顿第二定律分析计算物体的瞬时加速度。 2.掌握动力学两类基本问题的求解方法。 3.知道超重和失重现象,并会对相关的实际问题进行分析。
1.
2.
3.
4.
1.思考判断
(1)已知物体受力情况,求解运动学物理量时,应先根据牛顿第二定律求解加速度。(√)
(2)运动物体的加速度可根据运动速度、位移、时间等信息求解,所以加速度由运动情况决定。(×)
(3)加速度大小等于g的物体一定处于完全失重状态。(×)
(4)减速上升的升降机内的物体,物体对地板的压力大于物体的重力。(×)
(5)加速上升的物体处于超重状态。(√)
(6)物体处于超重或失重状态时其重力并没有发生变化。(√)
(7)根据物体处于超重或失重状态,可以判断物体运动的速度方向。(×)
2.(人教版必修第一册P110“思考与讨论”改编)某同学在一个力传感器上进行下蹲和站起的动作,在动作过程中力传感器的示数随时间的变化情况如图所示,则该同学在超重状态下加速度的最大值约为(  )
A.6 m/s2     B.5 m/s2
C.4 m/s2 D.3 m/s2
答案 C
考点一 瞬时问题的两类模型
两类模型
例1 (2024·湖南卷,3)如图,质量分别为4m、3m、2m、m的四个小球A、B、C、D,通过细线或轻弹簧互相连接,悬挂于O点,处于静止状态,重力加速度为g。若将B、C间的细线剪断,则剪断瞬间B和C的加速度大小分别为(  )
A.g,1.5g B.2g,1.5g
C.2g,0.5g D.g,0.5g
答案 A
解析 细线剪断前,对B、C、D整体受力分析,由力的平衡条件有A、B间轻弹簧的弹力FAB=6mg,对D受力分析,有C、D间轻弹簧的弹力FCD=mg;细线剪断瞬间,由牛顿第二定律对B有FAB-3mg=3maB,对C有2mg+FCD=2maC,联立解得aB=g,aC=1.5g,A正确。
衔接教材 (人教版必修第一册P114B组T1)如图,两个质量相同的小球A和B之间用轻弹簧连接,然后用细绳悬挂起来,剪断细绳的瞬间,A和B的加速度分别是多少
衔接分析 教材练习题第1题和湖南卷第3题都考查了绳、弹簧的瞬时问题,利用牛顿第二定律分析,外界条件突变时弹簧类瞬时加速度,课本练习题中是两球、一弹簧,2024湖南卷是四球、两弹簧,提高了难度,考查整体法与隔离法等方法的应用。
跟踪训练
1.(2025·八省联考山陕青宁卷,6)如图,质量均为m的两个相同小球甲和乙用轻弹簧连接,并用轻绳L1、L2固定,处于静止状态,L1水平,L2与竖直方向的夹角为60°,重力加速度大小为g。则(  )
A.L1的拉力大小为mg
B.L2的拉力大小为3mg
C.若剪断L1,该瞬间小球甲的加速度大小为g
D.若剪断L1,该瞬间小球乙的加速度大小为g
答案 C
解析 对甲、乙整体受力分析可知,L1的拉力大小为T1=2mgtan 60°=2mg,L2的拉力大小为T2==4mg,故A、B错误;若剪断L1,该瞬间弹簧的弹力不变,则小球乙受到的合力仍为零,加速度为零;对甲分析,由牛顿第二定律可知加速度a=g,故C正确,D错误。
考点二 动力学的两类基本问题
1.解决动力学两类基本问题的思路
2.解题关键
(1)做好两类分析:受力分析和运动过程分析。
(2)搭建两个桥梁:联系运动和力的桥梁——加速度,联系各物理过程的桥梁——连接点的速度。
例2 (2025·辽宁沈阳模拟)如图所示为设计的一种高楼新型逃生通道,当楼房发生火灾时,人可以通过该通道滑到地面。通道的长度可以适当调节。若某次将通道调节后使其全长为28 m,通道入口搭建在距地面高16.8 m的窗口。在通道中,人双臂双腿并拢下滑时只受到底面的摩擦力,大小为重力的0.4倍,当速度过快时,张开双臂双腿增加了人与侧壁的摩擦,受到摩擦力为并拢时的两倍。若人在通道中刚开始双臂双腿并拢由静止加速下滑,之后某时刻张开双臂双腿减速直到离开通道,人的运动可视为直线,不计空气阻力,g=10 m/s2,求:
(1)人双臂双腿并拢下滑时的加速度大小;
(2)为了确保安全,人滑到底端时的速度不能超过4 m/s,人在通道中下滑的最大速度和最短时间。
答案 (1)2 m/s2 (2)8 m/s 6 s
解析 (1)当双臂双腿并拢加速下滑时,设加速度大小为a1,根据几何关系有sin θ==0.6
根据牛顿第二定律有mgsin θ-0.4mg=ma1
解得a1=2 m/s2。
(2)当张开双臂双腿减速下滑时,设加速度大小为a2,根据牛顿第二定律有
2×0.4mg-mgsin θ=ma2
解得a2=2 m/s2
设人的最大速度为vm,人滑到低端的速度为v,则有=l,t=
代入数值联立解得vm=8 m/s,t=6 s。
例3 钢架雪车比赛的一段赛道如图所示,长12 m水平直道AB与长20 m的倾斜直道BC在B点平滑连接,斜道与水平面的夹角为15°。运动员从A点由静止出发,推着雪车匀加速到B点时速度大小为8 m/s,紧接着快速俯卧到车上沿BC匀加速下滑,如图所示,到C点共用时5.0 s。若雪车(包括运动员)可视为质点,始终在冰面上运动,其总质量为110 kg,sin 15°=0.26,g=10 m/s2,求雪车(包括运动员):
(1)在直道AB上的加速度大小;
(2)在C点的速度大小;
(3)在斜道BC上运动时受到的阻力大小。
答案 (1) m/s2 (2)12 m/s (3)66 N
解析 (1)设雪车从A→B的加速度大小为a1,运动时间为t1,根据匀变速直线运动的规律有
=2a1lAB,vB=a1t1
解得a1= m/s2,t1=3 s。
(2)由题知雪车从A→C全程的运动时间t0=5 s
设雪车从B→C的加速度大小为a2、运动时间为t2,故t2=t0-t1,根据匀变速直线运动的规律有
lBC=vBt2+a2
vC=vB+a2t2
代入数据解得a2=2 m/s2,vC=12 m/s。
(3)设雪车在BC上运动时受到的阻力大小为f,根据牛顿第二定律有mgsin 15°-f=ma2
代入数据解得f=66 N。
动力学问题的解题步骤
跟踪训练
2.(多选)(2025·陕西安康模拟)如图所示,一辆货车以72 km/h的速度沿平直公路匀速行驶,车斗内载有一个质量为500 kg的长方体货箱,货箱的前后两侧各被一条沿水平方向的绳子分别固定在车斗前后的栏板上,每根绳子的长度均为2 m且绳子能承受的最大张力均为1 000 N。已知货箱与车斗底板间的动摩擦因数μ=0.5,最大静摩擦力等于滑动摩擦力,不计绳子的重力,重力加速度g取10 m/s2,两条绳子在同一与货箱侧面垂直的水平线上。若前方突遇紧急情况要求货车刹车后必须在25 m内停下来,货车的刹车过程可视为匀减速直线运动,下列说法正确的是(  )
A.货车加速度大小的最小值为8 m/s2
B.货箱将首先与车斗前栏板相撞
C.货箱将首先与车斗后栏板相撞
D.刹车过程货箱能够相对车斗静止
答案 AB
解析 根据题意知货车的初速度v=72 km/h=20 m/s,设货车减速过程的最小加速度为a0,由运动学公式有v2=2a0x0,解得a0=8 m/s2,故A正确;长方体货箱在刹车过程中受到向后的摩擦力和后方绳子的拉力,若货箱与车相对静止,由牛顿第二定律有FT+μmg=ma0,解得FT=1 500 N>1 000 N,所以后方绳子会断裂,绳子断裂后货箱只受滑动摩擦力,加速度大小a=5 m/s2,由v2=2ax可知,货箱减速为零时运动的距离x=40 m>(25+2) m,所以货箱首先会与车斗前栏板相撞,故B正确,C、D错误。
考点三 超重与失重现象
对超重和失重的理解
(1)不论超重、失重或完全失重,物体的重力都不变,只是“视重”改变。
(2)在完全失重的状态下,一切由重力产生的物理现象都会完全消失。
(3)尽管物体的加速度方向不是竖直方向,但只要其加速度在竖直方向上有分量,物体就会处于超重或失重状态。
角度 超、失重现象的图像问题
例4 (2025·江苏江阴模拟)在沿竖直方向运行的电梯中,把物体置于放在水平面的台秤上,台秤与力传感器相连,当电梯从静止开始加速上升,然后又匀速运动一段时间,最后停止运动时,与传感器相连的电脑荧屏上显示出传感器的示数与时间的关系图像如图所示,g取10 m/s2。下列说法正确的是(  )
A.18~20 s过程中,物体的重力先变小后变大
B.该物体的质量为5 kg
C.电梯在超重时最大加速度大小约为16.67 m/s2
D.电梯在失重时最大加速度大小约为6.67 m/s2
答案 D
解析 18~20 s过程中,物体的重力保持不变,故A错误;匀速运动时,根据受力平衡可得F=mg=30 N,解得该物体的质量为m=3 kg,故B错误;0~4 s内电梯处于超重状态,根据牛顿第二定律可得Fmax-mg=mam,解得最大加速度大小为am= m/s2=6.67 m/s2,故C错误;18~22 s内电梯处于失重状态,根据牛顿第二定律可得mg-Fmin=mam',解得最大加速度大小为am'= m/s2=6.67 m/s2,故D正确。
角度 超、失重现象的分析和计算
例5 (2024·全国甲卷,22)学生小组为了探究超重和失重现象,将弹簧测力计挂在电梯内,测力计下端挂一物体。已知当地重力加速度大小为9.8 m/s2。
(1)电梯静止时测力计示数如图所示,读数为    N(结果保留1位小数)。
(2)电梯上行时,一段时间内测力计的示数为4.5 N,则此段时间内物体处于    (选填“超重”或“失重”)状态,电梯加速度大小为    m/s2(结果保留1位小数)。
答案 (1)5.0 (2)失重 1.0
解析 (1)根据弹簧测力计的读数规则可知,其读数为5.0 N。
(2)根据(1)问结合力的平衡条件可知,mg=5.0 N,电梯上行时,测力计示数为4.5 N总结提升 判断超重和失重的方法
从受力的 角度判断 当物体所受向上的拉力(或支持力)大于重力时,物体处于超重状态;小于重力时,物体处于失重状态;等于零时,物体处于完全失重状态
从加速度的 角度判断 当物体具有向上的加速度时,物体处于超重状态;具有向下的加速度时,物体处于失重状态;向下的加速度等于重力加速度时,物体处于完全失重状态
从速度变化 的角度判断 ①物体向上加速或向下减速时,超重 ②物体向下加速或向上减速时,失重
跟踪训练
3.(2025·八省联考云南卷,6)某同学站在水平放置于电梯内的电子秤上,电梯运行前电子秤的示数如图甲所示。电梯竖直上升过程中,某时刻电子秤的示数如图乙所示,则该时刻电梯(重力加速度g取10 m/s2)(  )
A.做减速运动,加速度大小为1.05 m/s2
B.做减速运动,加速度大小为0.50 m/s2
C.做加速运动,加速度大小为1.05 m/s2
D.做加速运动,加速度大小为0.50 m/s2
答案 D
解析 由题意可知,该同学处于超重状态,加速度方向向上,根据牛顿第二定律有F-mg=ma,可得a= m/s2=0.50 m/s2,则电梯向上加速运动,故D正确。
A级 基础对点练
对点练1 瞬时问题的两类模型
1.(多选)(2025·贵州贵阳诊断性联考)如图所示,可视为质点的小球用轻质细绳OA和OB悬挂静止在O点,绳OA与竖直方向的夹角为θ,绳OB水平。重力加速度为g,下列说法正确的是(  )
A.剪断绳OB瞬间,小球的加速度大小为gtan θ
B.剪断绳OB瞬间,小球的加速度大小为gsin θ
C.剪断绳OA瞬间,小球的加速度为零
D.剪断绳OA瞬间,小球的加速度为g
答案 BD
解析 剪断绳OB瞬间,小球即将开始绕A点做圆周运动,沿切线方向可得mgsin θ=ma,解得a=gsin θ,故A错误,B正确;剪断OA瞬间,小球将绕B点开始做圆周运动,此时切线方向的加速度大小为g,故C错误,D正确。
2.(2024·浙江宁波模拟)蜘蛛网是由部分种类的蜘蛛吐丝所编成的网状物,如图所示,竖直平面内蜘蛛网上A、B、C三点的连线构成正三角形,三根蜘蛛丝a、b、c(可视为弹性绳)的延长线均过三角形的中心,蜘蛛丝c沿竖直方向,且c中有张力。蜘蛛静止在蜘蛛网(不计重力)中央,下列说法正确的是(  )
A.a中张力大于b中张力
B.a中张力大于c中张力
C.若c突然断开,则蜘蛛仍能保持静止
D.若c突然断开,则断后瞬间蜘蛛的加速度竖直向下
答案 B
解析 以网和蜘蛛为研究对象,受力分析如图所示,由平衡条件有Tasin θ=Tbsin θ,可得Ta=Tb,故A错误;在竖直方向上有Tacos θ+Tbcos θ=mg+Tc,由几何关系可知θ=60°,可得Ta=mg+Tc>Tc,若c突然断开,蜘蛛受到的合力竖直向上,有向上的加速度,故B正确,C、D错误。
3.如图所示,质量为2 kg的物体A静止于竖直的轻弹簧上,质量为3 kg的物体B用细线悬挂,A、B间相互接触但无压力,重力加速度g=10 m/s2。某时刻将细线剪断,则细线剪断瞬间(  )
A.B对A的压力大小为12 N B.弹簧弹力大小为50 N
C.B的加速度大小为10 m/s2 D.A的加速度为零
答案 A
解析 原来A处于平衡状态,有F弹=mAg=20 N,细线剪断瞬间,弹簧的弹力不会发生突变,故B错误;细线剪断瞬间,A、B一起加速下降,由于原来A平衡,则整体受到的合力等于B的重力,由牛顿第二定律可得mBg=(mA+mB)a,解得A、B共同的加速度a=6 m/s2,故C、D错误;对B由牛顿第二定律可得mBg-FN=mBa,解得B受到的支持力为FN=12 N,由牛顿第三定律可知,B对A的压力大小为12 N,故A正确。
对点练2 动力学的两类基本问题
4.(2024·湖南郴州模拟)2024年2月初,湖南省多地出现冻雨天气,路面、桥面结冰导致行车过程刹车时不能及时停住的事故时有发生。小刚分析,直线行车时刹车将车轮抱死但不能短距离停车是因为车身较轻,摩擦力不大导致,若行车时车上多乘坐几个人,刹车时速度相同,轮胎及路面等其他条件相同的前提下,车轮抱死刹车直线滑行距离与空载时对比(  )
A.多坐乘客时,摩擦力大,刹车距离更短
B.空载时惯性小,刹车距离更短
C.空载和满载乘客时刹车距离相同
D.由于乘载的重量具体值未知,无法判断
答案 C
解析 根据题意,由牛顿第二定律有μmg=ma,由运动学公式有v2=2ax,可得x=,在v、μ一定的情况下x一定,与重量无关,故C正确。
5.(2025·河南开封模拟)农用无人机喷洒农药可以极大地提高农民的工作效率,为了防止无人机在作业中与障碍物发生碰撞,在某次测试中,无人机以标准起飞质量m=44 kg起飞,以安全飞行速度v0=8 m/s水平向着障碍物飞行,沿距雷达发现s=10.5 m处的障碍物后,无人机立即调整推力方向,做匀减速直线运动,结果无人机悬停在距离障碍物l=2.5 m处,飞行过程中可将无人机看成质点,重力加速度g取10 m/s2,忽略空气阻力,则无人机在匀减速直线运动过程中受到的推力大小为(  )
A.88 N B.176 N
C.88 N D.176 N
答案 A
解析 无人机做匀变速直线运动,有0-=2a(s-l),解得无人机的加速度a=-4 m/s2,对无人机进行受力分析,无人机受重力和推力,则推力大小F==88 N,故A正确。
6.(多选)(2025·广东汕头模拟)如图所示,球筒中静置着一个羽毛球。小明左手拿着球筒,右手迅速拍打筒的上端,使筒获得向下的初速度并与左手发生相对运动,最后羽毛球(视为质点)从筒口上端出来,已知球筒质量为M=90 g(不含球的质量),羽毛球质量为m=5 g,球筒与手之间的滑动摩擦力为Ff1=2.6 N,球与筒之间的滑动摩擦力为Ff2=0.1 N,球头离筒的上端距离为d=9 cm,重力加速度g取10 m/s2,空气阻力忽略不计,当球筒获得一个向下的初速度后(  )
A.静置时,羽毛球的摩擦力为0.1 N
B.拍打球筒后瞬间,羽毛球受到向上的摩擦力
C.拍打球筒后瞬间,羽毛球的加速度为30 m/s2
D.仅拍打一次,羽毛球恰能出来,则筒的初速度为3 m/s
答案 CD
解析 羽毛球静置时,根据平衡条件有Ff=mg=5×10-3×10 N=0.05 N,故A错误;拍打球筒后瞬间,球筒相对于羽毛球向下运动,则羽毛球对球筒的摩擦力方向向上,根据牛顿第三定律可知,球筒对羽毛球的摩擦力方向向下,故B错误;拍打球筒后瞬间,对羽毛球由牛顿第二定律有mg+Ff2=ma1,解得a1=30 m/s2,故C正确;仅拍打一次,羽毛球恰能出来,则羽毛球与球筒恰好达到共速,设球筒的加速度为a2,筒的初速度为v,对球筒由牛顿第二定律有Ff1+Ff2-Mg=Ma2,解得a2=20 m/s2,球筒做匀减速运动,羽毛球做匀加速运动,有v-a2t=a1t,vt-a2t2-a1t2=d,代入数据解得v=3 m/s,故D正确。
对点练3 超重和失重现象
7.(多选)(2025·山东潍坊质检)智能手机安装适当的软件后,可随时测量手机的加速度大小。某同学手持这样一部手机,站在水平地面上,完成一次下蹲后又起立的运动,得到其加速度随时间的变化关系如图所示。设竖直向上为正方向,下列关于该同学的说法正确的是(  )
A.由a到c的过程中处于失重状态
B.c点时重心最低
C.e点时处于起立过程且速度最小
D.由e到f的过程中地面对其支持力小于重力
答案 AD
解析 由a到c的过程中加速度为负,即加速度向下,所以该同学处于失重状态,故A正确;c点时该同学的加速度为0,c点后该手机处于超重状态,说明c点时还未到最低点,故B错误;e点之前该同学为超重状态,之后为失重状态,所以e点时该同学处于起立过程且速度最大,故C错误;由e到f的过程该同学处于失重状态,地面对其支持力小于重力,故D正确。
8.如图所示,某同学抱着箱子做蹲起运动研究超重和失重现象,在箱内的顶部和底部均安装有压力传感器。两质量均为2 kg的物块用轻弹簧连接分别抵住传感器。当该同学抱着箱子静止时,箱子顶部的压力传感器示数F1=10 N。重力加速度g取10 m/s2。不计空气阻力,则(  )
A.箱子静止时,底部压力传感器示数F2=30 N
B.当F1'=5 N时,箱子处于失重状态,人可能抱着箱子下蹲
C.当F1″=15 N时,箱子处于超重状态,人可能抱着箱子向上站起
D.若箱子保持竖直从高处自由释放,运动过程中两个压力传感器的示数均为30 N
答案 D
解析 当箱子静止时,对两物块和弹簧组成的系统受力分析可知2mg+F1=F2,得底部压力传感器示数F2=50 N,对上面物块有mg+F1=F弹,得F弹=30 N,故A错误;当F1'=5 N时,对上面物块有mg+F1'F弹,加速度方向向下,箱子处于失重状态,故C错误;当箱子自由下落时处于完全失重状态,两个物块所受合力均为mg,弹簧长度没变,所以两个压力传感器的示数均为F弹=30 N,故D正确。
B级 综合提升练
9.在某平直的铁路上,一列以90 m/s的速度行驶的高速列车某时刻开始关闭发动机,列车在阻力作用下做匀减速运动进站,经5 min后恰好停在该车站。在该车站停留一段时间,随后匀加速驶离该车站,加速运动8.1 km后速度恢复到90 m/s。列车总质量M=8.0×105 kg,运动中所受阻力恒定。求:
(1)列车做匀减速运动的加速度大小;
(2)列车所受阻力大小;
(3)列车驶离车站加速运动过程中牵引力的大小。
答案 (1)0.3 m/s2 (2)2.4×105 N (3)6.4×105 N
解析 (1)列车做匀减速运动的加速度大小a1==0.3 m/s2。
(2)根据牛顿第二定律得Ff=Ma1=2.4×105 N。
(3)匀加速运动过程有v2=2a2x2
根据牛顿第二定律有F-Ff=Ma2
联立解得F=6.4×105 N。
10.(2025·陕西宝鸡模拟)大功率火箭一般采取多级推进技术,以提高发射速度。某中学的物理兴趣小组同学制作了一个两级推进火箭模型进行试验。已知火箭质量为m,提供的推动力恒定且为F=3mg,火箭先经过一级推动力推进时间t后,丢弃掉质量为的一级箭体,再由二级推动力继续推动剩余质量为的火箭,推动力仍为F=3mg,火箭飞行时间t后结束推进。重力加速度恒定且为g,不考虑燃料消耗引起的质量变化,不计空气阻力,求:
(1)火箭上升过程的最大速度;
(2)火箭上升的最大高度。
答案 (1)7gt (2)30gt2
解析 (1)设一级推动火箭时间t内的加速度为a1,末速度为v1,二级推动火箭时间t内的加速度为a2,末速度为v2,由牛顿第二定律可得a1==2g,则v1=a1t=2gt
a2==5g
所以火箭上升的最大速度为v2=v1+a2t=7gt。
(2)设一级推动时间t内火箭上升的高度为h1,二级推动时间t内火箭上升的高度为h2,结束推动后火箭继续上升高度为h3,由匀变速直线运动规律可得
h1=t=gt2,h2=t=gt2
失去推力后,火箭向上做匀减速运动,加速度大小为g,末速度为0,所以有=2gh3
可得h3=gt2
所以火箭上升的最大高度为h=h1+h2+h3=30gt2。
C级 培优加强练
11.(2024·福建福州模拟)滑块以一定的初速度沿倾角为θ、动摩擦因数为μ的粗糙斜面从底端上滑,到达最高点B后返回到底端,A点为途中的一点。利用频闪仪分别对上滑和下滑过程进行拍摄,频闪照片示意图分别如图甲、乙所示。若滑块与斜面间动摩擦因数处处相同,不计空气阻力。对比甲、乙两图,下列说法正确的是(  )
A.滑块上滑和返回过程的运动时间相等
B.滑块运动加速度大小之比为a甲∶a乙=16∶9
C.滑块过A点时的速度大小之比为v甲∶v乙=3∶4
D.μ=tan θ
答案 B
解析 根据牛顿第二定律可知,上滑过程和下滑过程分别满足mgsin θ+Ff=ma甲,mgsin θ-Ff=ma乙,设频闪时间间隔为T,图甲表示上滑过程,时间间隔为3T,图乙表示下滑过程,时间间隔为4T,即滑块上滑和返回过程的运动时间不相等,故A错误;把上滑过程逆向看成初速度为零的匀加速直线运动,由x=at2可知,加速度大小之比a甲∶a乙=∶=16∶9,故B正确;利用逆向思维,滑块在A、B两点间运动时,根据位移公式有xAB=a甲t甲'2=a乙t乙'2,则t甲'∶t乙'=∶=3∶4,即图甲与图乙中滑块在A、B两点间运动时间之比为3∶4,由v=at知v甲∶v乙=4∶3,故C错误;根据加速度比有(gsin θ+μgcos θ)∶(gsin θ-μgcos θ)=16∶9,解得μ=tan θ,故D错误。(共58张PPT)
第2讲 牛顿第二定律的基本应用
第三章 运动和力的关系
会用牛顿第二定律分析计算物体的瞬时加速度。
掌握动力学两类基本问题的求解方法。
知道超重和失重现象,并会对相关的实际问题进行分析。
学习目标
目 录
CONTENTS
夯实必备知识
01
研透核心考点
02
提升素养能力
03
夯实必备知识
1
速度
1.

不能
运动
2.
受力
加速度
牛顿第二定律
大于
3.
向上
小于
向下
等于0
g
无关
4.
不等于
1.思考判断
(1)已知物体受力情况,求解运动学物理量时,应先根据牛顿第二定律求解加速度。( )
(2)运动物体的加速度可根据运动速度、位移、时间等信息求解,所以加速度由运动情况决定。( )
(3)加速度大小等于g的物体一定处于完全失重状态。( )
(4)减速上升的升降机内的物体,物体对地板的压力大于物体的重力。( )
(5)加速上升的物体处于超重状态。( )
(6)物体处于超重或失重状态时其重力并没有发生变化。( )
(7)根据物体处于超重或失重状态,可以判断物体运动的速度方向。( )

×
×
×


×
C
2.(人教版必修第一册P110“思考与讨论”改编)某同学在一个力传感器上进行下蹲和站起的动作,在动作过程中力传感器的示数随时间的变化情况如图所示,则该同学在超重状态下加速度的最大值约为(  )
A.6 m/s2     B.5 m/s2
C.4 m/s2 D.3 m/s2
研透核心考点
2
考点二 动力学的两类基本问题
考点一 瞬时问题的两类模型
考点三 超重与失重现象
考点一 瞬时问题的两类模型
两类模型
例1 (2024·湖南卷,3)如图,质量分别为4m、3m、2m、m的四个小球A、B、C、D,通过细线或轻弹簧互相连接,悬挂于O点,处于静止状态,重力加速度为g。若将B、C间的细线剪断,则剪断瞬间B和C的加速度大小分别为(  )
A.g,1.5g B.2g,1.5g C.2g,0.5g D.g,0.5g
A
解析 细线剪断前,对B、C、D整体受力分析,由力的平衡条件有A、B间轻弹簧的弹力FAB=6mg,对D受力分析,有C、D间轻弹簧的弹力FCD=mg;细线剪断瞬间,由牛顿第二定律对B有FAB-3mg=3maB,对C有2mg+FCD=2maC,联立解得aB=g,aC=1.5g,A正确。
衔接教材 (人教版必修第一册P114B组T1)如图,两个质量相同的小球A和B之间用轻弹簧连接,然后用细绳悬挂起来,剪断细绳的瞬间,A和B的加速度分别是多少
衔接分析 教材练习题第1题和湖南卷第3题都考查了绳、弹簧的瞬时问题,利用牛顿第二定律分析,外界条件突变时弹簧类瞬时加速度,课本练习题中是两球、一弹簧,2024湖南卷是四球、两弹簧,提高了难度,考查整体法与隔离法等方法的应用。
1.(2025·八省联考山陕青宁卷,6)如图,质量均为m的两个相同小球甲和乙用轻弹簧连接,并用轻绳L1、L2固定,处于静止状态,L1水平,L2与竖直方向的夹角为60°,重力加速度大小为g。则(  )
跟踪训练
C
A.L1的拉力大小为mg
B.L2的拉力大小为3mg
C.若剪断L1,该瞬间小球甲的加速度大小为g
D.若剪断L1,该瞬间小球乙的加速度大小为g
解析 对甲、乙整体受力分析可知,L1的拉力大小为T1=2mgtan 60°=2mg,L2的拉力大小为T2==4mg,故A、B错误;若剪断L1,该瞬间弹簧的弹力不变,则小球乙受到的合力仍为零,加速度为零;对甲分析,由牛顿第二定律可知加速度a=g,故C正确,D错误。
考点二 动力学的两类基本问题
1.解决动力学两类基本问题的思路
2.解题关键
(1)做好两类分析:受力分析和运动过程分析。
(2)搭建两个桥梁:联系运动和力的桥梁——加速度,联系各物理过程的桥梁——连接点的速度。
例2 (2025·辽宁沈阳模拟)如图所示为设计的一种高楼新型逃生通道,当楼房发生火灾时,人可以通过该通道滑到地面。通道的长度可以适当调节。若某次将通道调节后使其全长为28 m,通道入口搭建在距地面高16.8 m的窗口。在通道中,人双臂双腿并拢下滑时只受到底面的摩擦力,大小为重力的0.4倍,当速度过快时,张开双臂双腿增加了人与侧壁的摩擦,受到摩擦力为并拢时的两倍。若人在通道中刚开始双臂双腿并拢由静止加速下滑,之后某时刻张开双臂双腿减速直到离开通道,人的运动可视为直线,不计空气阻力,g=10 m/s2,求:
(1)人双臂双腿并拢下滑时的加速度大小;
解析 当双臂双腿并拢加速下滑时,设加速度大小为a1,根据几何关系有sin θ==0.6
根据牛顿第二定律有mgsin θ-0.4mg=ma1
解得a1=2 m/s2。
答案 2 m/s2 
(2)为了确保安全,人滑到底端时的速度不能超过4 m/s,人在通道中下滑的最大速度和最短时间。
解析 当张开双臂双腿减速下滑时,设加速度大小为a2,根据牛顿第二定律有2×0.4mg-mgsin θ=ma2
解得a2=2 m/s2
设人的最大速度为vm,人滑到低端的速度为v,则有=l,t=
代入数值联立解得vm=8 m/s,t=6 s。
答案 8 m/s 6 s
例3 钢架雪车比赛的一段赛道如图所示,长12 m水平直道AB与长20 m的倾斜直道BC在B点平滑连接,斜道与水平面的夹角为15°。运动员从A点由静止出发,推着雪车匀加速到B点时速度大小为8 m/s,紧接着快速俯卧到车上沿BC匀加速下滑,如图所示,到C点共用时5.0 s。若雪车(包括运动员)可视为质点,始终在冰面上运动,其总质量为110 kg,sin 15°=0.26,g=10 m/s2,求雪车(包括运动员):
(1)在直道AB上的加速度大小;
解析 设雪车从A→B的加速度大小为a1,运动时间为t1,根据匀变速直线运动的规律有
=2a1lAB,vB=a1t1
解得a1= m/s2,t1=3 s。
答案  m/s2
(2)在C点的速度大小;
解析 由题知雪车从A→C全程的运动时间t0=5 s
设雪车从B→C的加速度大小为a2、运动时间为t2,故t2=t0-t1,根据匀变速直线运动的规律有
lBC=vBt2+a2
vC=vB+a2t2
代入数据解得a2=2 m/s2,vC=12 m/s。
答案 12 m/s 
(3)在斜道BC上运动时受到的阻力大小。
解析 设雪车在BC上运动时受到的阻力大小为f,根据牛顿第二定律有mgsin 15°-f=ma2
代入数据解得f=66 N。
答案 66 N
动力学问题的解题步骤
2.(多选)(2025·陕西安康模拟)如图所示,一辆货车以72 km/h的速度沿平直公路匀速行驶,车斗内载有一个质量为500 kg的长方体货箱,货箱的前后两侧各被一条沿水平方向的绳子分别固定在车斗前后的栏板上,每根绳子的长度均为2 m且绳子能承受的最大张力均为1 000 N。已知货箱与车斗底板间的动摩擦因数μ=0.5,最大静摩擦力等于滑动摩擦力,不计绳子的重力,重力加速度g取10 m/s2,两条绳子在同一与货箱侧面垂直的水平线上。若前方突遇紧急情况要求货车刹车后必须在25 m内停下来,货车的刹车过程可视为匀减速直线运动,下列说法正确的是(  )
跟踪训练
AB
A.货车加速度大小的最小值为8 m/s2
B.货箱将首先与车斗前栏板相撞
C.货箱将首先与车斗后栏板相撞
D.刹车过程货箱能够相对车斗静止
解析 根据题意知货车的初速度v=72 km/h=20 m/s,设货车减速过程的最小加速度为a0,由运动学公式有v2=2a0x0,解得a0=8 m/s2,故A正确;长方体货箱在刹车过程中受到向后的摩擦力和后方绳子的拉力,若货箱与车相对静止,由牛顿第二定律有FT+μmg=ma0,解得FT=1 500 N>1 000 N,所以后方绳子会断裂,绳子断裂后货箱只受滑动摩擦力,加速度大小a=5 m/s2,由v2=2ax可知,货箱减速为零时运动的距离x=40 m>(25+2) m,所以货箱首先会与车斗前栏板相撞,故B正确,C、D错误。
对超重和失重的理解
(1)不论超重、失重或完全失重,物体的重力都不变,只是“视重”改变。
(2)在完全失重的状态下,一切由重力产生的物理现象都会完全消失。
(3)尽管物体的加速度方向不是竖直方向,但只要其加速度在竖直方向上有分量,物体就会处于超重或失重状态。
考点三 超重与失重现象
角度  超、失重现象的图像问题
例4 (2025·江苏江阴模拟)在沿竖直方向运行的电梯中,把物体置于放在水平面的台秤上,台秤与力传感器相连,当电梯从静止开始加速上升,然后又匀速运动一段时间,最后停止运动时,与传感器相连的电脑荧屏上显示出传感器的示数与时间的关系图像如图所示,g取10 m/s2。下列说法正确的是(  )
D
A.18~20 s过程中,物体的重力先变小后变大
B.该物体的质量为5 kg
C.电梯在超重时最大加速度大小约为16.67 m/s2
D.电梯在失重时最大加速度大小约为6.67 m/s2
解析 18~20 s过程中,物体的重力保持不变,故A错误;匀速运动时,根据受力平衡可得F=mg=30 N,解得该物体的质量为m=3 kg,故B错误;0~4 s内电梯处于超重状态,根据牛顿第二定律可得Fmax-mg=mam,解得最大加速度大小为am= m/s2=
6.67 m/s2,故C错误;18~22 s内电梯处于失重状态,根据牛顿第二定律可得mg-Fmin=mam',解得最大加速度大小为am'= m/s2=6.67 m/s2,故D正确。
角度  超、失重现象的分析和计算
例5 (2024·全国甲卷,22)学生小组为了探究超重和失重现象,将弹簧测力计挂在电梯内,测力计下端挂一物体。已知当地重力加速度大小为9.8 m/s2。
(1)电梯静止时测力计示数如图所示,读数为    N(结果保留1位小数)。
解析 根据弹簧测力计的读数规则可知,其读数为5.0 N。
答案 5.0
(2)电梯上行时,一段时间内测力计的示数为4.5 N,则此段时间内物体处于    (选填“超重”或“失重”)状态,电梯加速度大小为    m/s2(结果保留1位小数)。
解析 根据(1)问结合力的平衡条件可知,mg=5.0 N,电梯上行时,测力计示数为4.5 N答案 失重 1.0
总结提升 判断超重和失重的方法
从受力的 角度判断 当物体所受向上的拉力(或支持力)大于重力时,物体处于超重状态;小于重力时,物体处于失重状态;等于零时,物体处于完全失重状态
从加速度的 角度判断 当物体具有向上的加速度时,物体处于超重状态;具有向下的加速度时,物体处于失重状态;向下的加速度等于重力加速度时,物体处于完全失重状态
从速度变化 的角度判断 ①物体向上加速或向下减速时,超重
②物体向下加速或向上减速时,失重
3.(2025·八省联考云南卷,6)某同学站在水平放置于电梯内的电子秤上,电梯运行前电子秤的示数如图甲所示。电梯竖直上升过程中,某时刻电子秤的示数如图乙所示,则该时刻电梯(重力加速度g取10 m/s2)(  )
跟踪训练
D
A.做减速运动,加速度大小为1.05 m/s2
B.做减速运动,加速度大小为0.50 m/s2
C.做加速运动,加速度大小为1.05 m/s2
D.做加速运动,加速度大小为0.50 m/s2
解析 由题意可知,该同学处于超重状态,加速度方向向上,根据牛顿第二定律有F-mg=ma,可得a= m/s2=0.50 m/s2,则电梯向上加速运动,故D正确。
提升素养能力
3
A级 基础对点练
BD
对点练1 瞬时问题的两类模型
1.(多选)(2025·贵州贵阳诊断性联考)如图所示,可视为质点的小球用轻质细绳OA和OB悬挂静止在O点,绳OA与竖直方向的夹角为θ,绳OB水平。重力加速度为g,下列说法正确的是(  )
A.剪断绳OB瞬间,小球的加速度大小为gtan θ
B.剪断绳OB瞬间,小球的加速度大小为gsin θ
C.剪断绳OA瞬间,小球的加速度为零
D.剪断绳OA瞬间,小球的加速度为g
解析 剪断绳OB瞬间,小球即将开始绕A点做圆周运动,沿切线方向可得mgsin θ=ma,解得a=gsin θ,故A错误,B正确;剪断OA瞬间,小球将绕B点开始做圆周运动,此时切线方向的加速度大小为g,故C错误,D正确。
B
2.(2024·浙江宁波模拟)蜘蛛网是由部分种类的蜘蛛吐丝所编成的网状物,如图所示,竖直平面内蜘蛛网上A、B、C三点的连线构成正三角形,三根蜘蛛丝a、b、c(可视为弹性绳)的延长线均过三角形的中心,蜘蛛丝c沿竖直方向,且c中有张力。蜘蛛静止在蜘蛛网(不计重力)中央,下列说法正确的是(  )
A.a中张力大于b中张力
B.a中张力大于c中张力
C.若c突然断开,则蜘蛛仍能保持静止
D.若c突然断开,则断后瞬间蜘蛛的加速度竖直向下
解析 以网和蜘蛛为研究对象,受力分析如图所示,由平衡条件有Tasin θ=Tbsin θ,可得Ta=Tb,故A错误;在竖直方向上有Tacos θ+Tbcos θ=mg+Tc,由几何关系可知θ=60°,可得Ta=mg+Tc>Tc,若c突然断开,蜘蛛受到的合力竖直向上,有向上的加速度,故B正确,C、D错误。
A
3.如图所示,质量为2 kg的物体A静止于竖直的轻弹簧上,质量为3 kg的物体B用细线悬挂,A、B间相互接触但无压力,重力加速度g=10 m/s2。某时刻将细线剪断,则细线剪断瞬间(  )
A.B对A的压力大小为12 N B.弹簧弹力大小为50 N
C.B的加速度大小为10 m/s2 D.A的加速度为零
解析 原来A处于平衡状态,有F弹=mAg=20 N,细线剪断瞬间,
弹簧的弹力不会发生突变,故B错误;细线剪断瞬间,A、B一起加速下降,由于原来A平衡,则整体受到的合力等于B的重力,由牛顿第二定律可得mBg=(mA+mB)a,解得A、B共同的加速度a=6 m/s2,故C、D错误;对B由牛顿第二定律可得mBg-FN=mBa,解得B受到的支持力为FN=12 N,由牛顿第三定律可知,B对A的压力大小为12 N,故A正确。
C
对点练2 动力学的两类基本问题
4.(2024·湖南郴州模拟)2024年2月初,湖南省多地出现冻雨天气,路面、桥面结冰导致行车过程刹车时不能及时停住的事故时有发生。小刚分析,直线行车时刹车将车轮抱死但不能短距离停车是因为车身较轻,摩擦力不大导致,若行车时车上多乘坐几个人,刹车时速度相同,轮胎及路面等其他条件相同的前提下,车轮抱死刹车直线滑行距离与空载时对比(  )
A.多坐乘客时,摩擦力大,刹车距离更短
B.空载时惯性小,刹车距离更短
C.空载和满载乘客时刹车距离相同
D.由于乘载的重量具体值未知,无法判断
解析 根据题意,由牛顿第二定律有μmg=ma,由运动学公式有v2=2ax,可得x=,在v、μ一定的情况下x一定,与重量无关,故C正确。
A
5.(2025·河南开封模拟)农用无人机喷洒农药可以极大地提高农民的工作效率,为了防止无人机在作业中与障碍物发生碰撞,在某次测试中,无人机以标准起飞质量m=44 kg起飞,以安全飞行速度v0=8 m/s水平向着障碍物飞行,沿距雷达发现s=10.5 m处的障碍物后,无人机立即调整推力方向,做匀减速直线运动,结果无人机悬停在距离障碍物l=2.5 m处,飞行过程中可将无人机看成质点,重力加速度g取10 m/s2,忽略空气阻力,则无人机在匀减速直线运动过程中受到的推力大小为(  )
A.88 N B.176 N C.88 N D.176 N
解析 无人机做匀变速直线运动,有0-=2a(s-l),解得无人机的加速度a=-4 m/s2,对无人机进行受力分析,无人机受重力和推力,则推力大小F==88 N,故A正确。
CD
6.(多选)(2025·广东汕头模拟)如图所示,球筒中静置着一个羽毛球。小明左手拿着球筒,右手迅速拍打筒的上端,使筒获得向下的初速度并与左手发生相对运动,最后羽毛球(视为质点)从筒口上端出来,已知球筒质量为M=90 g(不含球的质量),羽毛球质量为m=5 g,球筒与手之间的滑动摩擦力为Ff1=2.6 N,球与筒之间的滑动摩擦力为Ff2=0.1 N,球头离筒的上端距离为d=9 cm,重力加速度g取10 m/s2,空气阻力忽略不计,当球筒获得一个向下的初速度后(  )
A.静置时,羽毛球的摩擦力为0.1 N
B.拍打球筒后瞬间,羽毛球受到向上的摩擦力
C.拍打球筒后瞬间,羽毛球的加速度为30 m/s2
D.仅拍打一次,羽毛球恰能出来,则筒的初速度为3 m/s
解析 羽毛球静置时,根据平衡条件有Ff=mg=5×10-3×10 N=0.05 N,故A错误;拍打球筒后瞬间,球筒相对于羽毛球向下运动,则羽毛球对球筒的摩擦力方向向上,根据牛顿第三定律可知,球筒对羽毛球的摩擦力方向向下,故B错误;拍打球筒后瞬间,对羽毛球由牛顿第二定律有mg+Ff2=ma1,解得a1=30 m/s2,故C正确;仅拍打一次,羽毛球恰能出来,则羽毛球与球筒恰好达到共速,
设球筒的加速度为a2,筒的初速度为v,对球筒由牛顿第二定律有Ff1+Ff2-Mg=Ma2,解得a2=20 m/s2,球筒做匀减速运动,羽毛球做匀加速运动,有v-a2t=a1t,vt-a2t2-a1t2=d,代入数据解得v=3 m/s,故D正确。
AD
对点练3 超重和失重现象
7.(多选)(2025·山东潍坊质检)智能手机安装适当的软件后,可随时测量手机的加速度大小。某同学手持这样一部手机,站在水平地面上,完成一次下蹲后又起立的运动,得到其加速度随时间的变化关系如图所示。设竖直向上为正方向,下列关于该同学的说法正确的是(  )
A.由a到c的过程中处于失重状态
B.c点时重心最低
C.e点时处于起立过程且速度最小
D.由e到f的过程中地面对其支持力小于重力
解析 由a到c的过程中加速度为负,即加速度向下,所以该同学处于失重状态,故A正确;c点时该同学的加速度为0,c点后该手机处于超重状态,说明c点时还未到最低点,故B错误;e点之前该同学为超重状态,之后为失重状态,所以e点时该同学处于起立过程且速度最大,故C错误;由e到f的过程该同学处于失重状态,地面对其支持力小于重力,故D正确。
D
8.如图所示,某同学抱着箱子做蹲起运动研究超重和失重现象,在箱内的顶部和底部均安装有压力传感器。两质量均为2 kg的物块用轻弹簧连接分别抵住传感器。当该同学抱着箱子静止时,箱子顶部的压力传感器示数F1=10 N。重力加速度g取10 m/s2。不计空气阻力,则(  )
A.箱子静止时,底部压力传感器示数F2=30 N
B.当F1'=5 N时,箱子处于失重状态,人可能抱着箱子下蹲
C.当F1″=15 N时,箱子处于超重状态,人可能抱着箱子向上站起
D.若箱子保持竖直从高处自由释放,运动过程中两个压力传感器的示数均为30 N
解析 当箱子静止时,对两物块和弹簧组成的系统受力分析可知2mg+F1=F2,得底部压力传感器示数F2=50 N,对上面物块有mg+F1=F弹,得F弹=30 N,故A错误;当F1'=5 N时,对上面物块有mg+F1'F弹,加速度方向向下,箱子处于失重状态,故C错误;当箱子自由下落时处于完全失重状态,两个物块所受合力均为mg,弹簧长度没变,所以两个压力传感器的示数均为F弹=30 N,故D正确。
B级 综合提升练
9.在某平直的铁路上,一列以90 m/s的速度行驶的高速列车某时刻开始关闭发动机,列车在阻力作用下做匀减速运动进站,经5 min后恰好停在该车站。在该车站停留一段时间,随后匀加速驶离该车站,加速运动8.1 km后速度恢复到90 m/s。列车总质量M=8.0×105 kg,运动中所受阻力恒定。求:
(1)列车做匀减速运动的加速度大小;
(2)列车所受阻力大小;
(3)列车驶离车站加速运动过程中牵引力的大小。
答案 (1)0.3 m/s2 (2)2.4×105 N (3)6.4×105 N
解析 (1)列车做匀减速运动的加速度大小a1==0.3 m/s2。
(2)根据牛顿第二定律得Ff=Ma1=2.4×105 N。
(3)匀加速运动过程有v2=2a2x2
根据牛顿第二定律有F-Ff=Ma2
联立解得F=6.4×105 N。
10.(2025·陕西宝鸡模拟)大功率火箭一般采取多级推进技术,以提高发射速度。某中学的物理兴趣小组同学制作了一个两级推进火箭模型进行试验。已知火箭质量为m,提供的推动力恒定且为F=3mg,火箭先经过一级推动力推进时间t后,丢弃掉质量为的一级箭体,再由二级推动力继续推动剩余质量为的火箭,推动力仍为F=3mg,火箭飞行时间t后结束推进。重力加速度恒定且为g,不考虑燃料消耗引起的质量变化,不计空气阻力,求:
(1)火箭上升过程的最大速度;
(2)火箭上升的最大高度。
答案 (1)7gt (2)30gt2
解析 (1)设一级推动火箭时间t内的加速度为a1,末速度为v1,二级推动火箭时间t内的加速度为a2,末速度为v2,由牛顿第二定律可得a1==2g,则v1=a1t=2gt
a2==5g
所以火箭上升的最大速度为v2=v1+a2t=7gt。
(2)设一级推动时间t内火箭上升的高度为h1,二级推动时间t内火箭上升的高度为h2,结束推动后火箭继续上升高度为h3,由匀变速直线运动规律可得
h1=t=gt2,h2=t=gt2
失去推力后,火箭向上做匀减速运动,加速度大小为g,末速度为0,所以有=2gh3
可得h3=gt2
所以火箭上升的最大高度为h=h1+h2+h3=30gt2。
B
11.(2024·福建福州模拟)滑块以一定的初速度沿倾角为θ、动摩擦因数为μ的粗糙斜面从底端上滑,到达最高点B后返回到底端,A点为途中的一点。利用频闪仪分别对上滑和下滑过程进行拍摄,频闪照片示意图分别如图甲、乙所示。若滑块与斜面间动摩擦因数处处相同,不计空气阻力。对比甲、乙两图,下列说法正确的是(  )
C级 培优加强练
A.滑块上滑和返回过程的运动时间相等
B.滑块运动加速度大小之比为a甲∶a乙=16∶9
C.滑块过A点时的速度大小之比为v甲∶v乙=3∶4
D.μ=tan θ
解析 根据牛顿第二定律可知,上滑过程和下滑过程分别满足mgsin θ+Ff=ma甲,mgsin θ-Ff=ma乙,设频闪时间间隔为T,图甲表示上滑过程,时间间隔为3T,图乙表示下滑过程,时间间隔为4T,即滑块上滑和返回过程的运动时间不相等,故A错误;把上滑过程逆向看成初速度为零的匀加速直线运动,由x=at2可知,加速度大小之比a甲∶a乙=
∶=16∶9,故B正确;利用逆向思维,滑块在A、B两点间运动时,根据位移公式有xAB=a甲t甲'2=a乙t乙'2,则t甲'∶t乙'=∶=3∶4,即图甲与图乙中滑块在A、B两点间运动时间之比为3∶4,由v=at知v甲∶v乙=4∶3,故C错误;根据加速度比有(gsin θ+μgcos θ)∶(gsin θ-μgcos θ)=16∶9,解得μ=tan θ,故D错误。

展开更多......

收起↑

资源列表