资源简介 中小学教育资源及组卷应用平台第9讲 不等式(组)及其应用【考点梳理】1.不等式的基本性质性质1:不等式两边加(或减)同一个数(或式子),不等号方向不改变;如果a>b,那么a±c>b±c;性质2:不等式两边乘(或除以)同一个正数,不等号方向不改变;如果a>b,c>0,那么ac>bc,>;性质3:不等式两边乘(或除以)同一个负数,不等号方向改变;如果a>b,c<0,那么ac2.一元一次不等式(1)定义:只含有一个未知数,并且未知数的最高次数是1,且不等式左右两边都是整式,这样的不等式叫做一元一次不等式.(2)解一元一次不等式的一般步骤:去分母、去括号、移项、合并同类项、系数化为1(注意不等号方向是否改变).(3)解集在数轴上表示:①画数轴 ②定边界 ③定方向x>a x<a x≥a x≤a 3.一元一次不等式组(1)定义:一般地,关于同一个未知数的几个不等式联立在一起,就组成了一个一元一次不等式组.(2)一元一次不等式组的解集:组成一元一次不等式组的几个一元一次不等式的解集的公共部分,叫做这个一元一次不等式组的解集.注意:不等式的解可以是一个或多个数值,而不等式组的解集是包含所有使不等式成立的解的集合.(3)解一元一次不等式组的步骤:①分别解每个一元一次不等式;②在数轴上表示各不等式的解集;③确定各不等式解集的公共部分;④得到不等式组的解集;(4)几种常见的不等式组的解集(a>b,且a、b为常数):不等式组(a>b)图示 解集 口诀x≥a 同大取大x≤b 同小取小a≤x≤b 大小、小大中间找无解 小小、大大找不到4.一元一次不等式的应用(1)列不等式解应用题的基本步骤:①审题;②设元;③找出能够包含未知数的不等量关系;④列出不等式;⑤解不等式;⑥在不等式的解中找出符合题意的未知数的值;⑦写出答案.(2)列不等式解应用题涉及的题型常与方案设计型问题相联系,如最大利润、最优方案等,一般所求问题中有“至少(≥)”、“最多(≤)”、“不低于(≥)”、“超过(>)”、“不大于(≤)”等词,要正确理解这些词的含义.【高频考点】考点1:解一元一次不等式【例题1】(2018广西桂林)(6.00分)解不等式<x+1,并把它的解集在数轴上表示出来.解:去分母,得:5x﹣1<3x+3,移项,得:5x﹣3x<3+1,合并同类项,得:2x<4,系数化为1,得:x<2,将不等式的解集表示在数轴上如下:归纳:1. 本题主要考查解一元一次不等式,解题的关键是掌握解不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1;2.将不等式(组)的解集直观地表示在数轴上,体现数形结合的思想;3.在画图时,先确定边界点,解集包含边界点,则边界点是实心圆点;解集不包含边界点,则边界点是空心圆圈,再确定方向(大向右,小向左).考点2:解一元一次不等式组【例题2】(2018·自贡)解不等式组并在数轴上表示其解集.【解答】解:解不等式①,得x≤2.解不等式②,得x>1.∴不等式组的解集为1<x≤2.将其表示在数轴上,如图所示.归纳:在数轴上表示解集时,大于号向右,小于号向左,有等号的用实心圆点,无等号的用空心圆圈. (1)在解不等式的过程注意不等式性质3的使用,即给不等式两边同时乘以(或除以)一个负数,不等号要改变方向;(2)求不等式组的整数解时,“实心”点所表示的实数如果是整数,则该点也是所求整数解,如果不是整数,要从离该点最近的整数点开始算起;“空心”点所在的实数如果是整数,则该点不是整数解,如果不是整数,则要从解集中离该点最近的整数点开始算起.考点3:一元一次不等式的实际应用【例题3】(2019湖南益阳10分)为了提高农田利用效益,某地由每年种植双季稻改为先养殖小龙虾再种植一季水稻的“虾 稻”轮作模式.某农户有农田20亩,去年开始实施“虾 稻”轮作,去年出售小龙虾每千克获得的利润为32元(利润=售价﹣成本).由于开发成本下降和市场供求关系变化,今年每千克小龙虾的养殖成本下降25%,售价下降10%,出售小龙虾每千克获得利润为30元.(1)求去年每千克小龙虾的养殖成本与售价;(2)该农户今年每亩农田收获小龙虾100千克,若今年的水稻种植成本为600元/亩,稻谷售价为25元/千克,该农户估计今年可获得“虾 稻”轮作收入不少于8万元,则稻谷的亩产量至少会达到多少千克?【分析】(1)设去年每千克小龙虾的养殖成本与售价分别为x元、y元,由题意列出方程组,解方程组即可;(2)设今年稻谷的亩产量为z千克,由题意列出不等式,就不等式即可.【解答】解:(1)设去年每千克小龙虾的养殖成本与售价分别为x元、y元,由题意得:,解得:;答:去年每千克小龙虾的养殖成本与售价分别为8元、40元;(2)设今年稻谷的亩产量为z千克,由题意得:20×100×30+20×2.5z﹣20×600≥80000,解得:z≥640;答:稻谷的亩产量至少会达到640千克.归纳:本题考查了二元一次方程组的应用、一元一次不等式的应用;根据题意列出方程组或不等式是解题的关键.归纳总结:1.利用不等式(组)解决实际问题,关键是要抓住题目中表示不等关系的语句,列出不等式,问题的答案不仅要根据解集,还要根据使实际问题有意义确定.2.在利用不等式组解决实际问题中的方案选择、优化设计以及最大利润等问题时,为防止漏解和便于比较,我们常用分类讨论的思想方法,对方案的优劣进行探讨.考点4:一元一次不等式与其它知识的综合应用【例题4】(2018·河北中考预测)如图,在数轴上有A,B,C,D四点,点A对应的数为a,点B对应的数为3,点D对应的数为t,若CD=4,且在数轴上移动.(1)若2AB表示的数始终位于点A的左侧,求a的取值范围,并把解集表示在数轴上;(2)当t为何值,且是整数时,点B落在C,D两点之间.解:(1)∵AB=3-a,2AB表示的数始终位于点A的左侧,∴2(3-a)2.∵a<3,∴a的取值范围为2在数轴上表示如图.(2)∵CD=4,且当点B落在C,D两点之间,∴解得3∵t是整数,∴t可以取4,5或6.【自我检测】一、选择题:1. 若,则下列不等式不一定成立的是( )A. B. C. D.【答案】C【解析】【分析】根据不等式的基本性质,逐项判断即可求解.【详解】解:A、若,则,故本选项不符合题意;B、若,则,故本选项不符合题意;C、若,当时,,故本选项符合题意;D、若,则,故本选项不符合题意;故选:C【点睛】本题主要考查了不等式的性质,熟练掌握不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.2. (2024·内蒙古包头·中考真题)若,,这三个实数在数轴上所对应的点从左到右依次排列,则的取值范围是( )A. B. C. D.【答案】B【分析】本题考查实数与数轴,求不等式组的解集,根据数轴上的数右边的比左边的大,列出不等式组,进行求解即可.【详解】解:由题意,得:,解得:;故选B.3. (2024·内蒙古赤峰·中考真题)解不等式组时,不等式①和不等式②的解集在数轴上表示正确的是( )A. B.C. D.【答案】C【分析】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,先求出不等式组的解集,再在数轴上表示出不等式组的解集即可.【详解】解:解不等式①得,,解不等式②得,,所以,不等式组的解集为:,在数轴上表示为:故选:C.4. (2024·山东·中考真题)根据以下对话,给出下列三个结论:①1班学生的最高身高为;②1班学生的最低身高小于;③2班学生的最高身高大于或等于.上述结论中,所有正确结论的序号是( )A.①② B.①③ C.②③ D.①②③【答案】C【分析】本题考查了二元一次方程、不等式的应用,设1班同学的最高身高为,最低身高为,2班同学的最高身高为,最低身高为,根据1班班长的对话,得,,然后利用不等式性质可求出,即可判断①,③;根据2班班长的对话,得,,然后利用不等式性质可求出,即可判断②.本号资#料全部来源于微信公众号:数学第*六感【详解】解:设1班同学的最高身高为,最低身高为,2班同学的最高身高为,最低身高为,根据1班班长的对话,得,,∴∴,解得,故①错误,③正确;根据2班班长的对话,得,,∴,∴,∴,故②正确,故选:C.5. (2024·安徽·中考真题)已知实数a,b满足,,则下列判断正确的是( )A. B.C. D.【答案】C【分析】题目主要考查不等式的性质和解一元一次不等式组,根据等量代换及不等式的性质依次判断即可得出结果,熟练掌握不等式的性质是解题关键【详解】解:∵,∴,∵,∴,∴,选项B错误,不符合题意;∵,∴,∵,∴,∴,选项A错误,不符合题意;∵,,∴,,∴,选项C正确,符合题意;∵,,∴,,∴,选项D错误,不符合题意;故选:C二、填空题:6. 如图,在数轴上点,分别表示数,,则的取值范围是______.【答案】【分析】本题考查解一元一次不等式,数轴,根据题意可得:,然后按照解一元一次不等式的步骤进行计算,即可解答.熟练掌握解一元一次不等式的步骤是解题的关键.【详解】解:由题意得:,,,∴,∴的取值范围是.故答案为:.7. 如图所示,点C位于点A、B之间(不与A、B重合),点C表示,则x的取值范围是_____.【答案】【分析】根据题意列出不等式组,求出解集即可确定出x的范围.【详解】解:根据题意得:,解得:,则x的范围是,故答案为:.8. . 鱼缸里饲养两种鱼,种鱼的生长温度的范围是,种鱼的生长温度的范围是,那么鱼缸里的温度应该控制在 ______ 范围内【答案】【分析】根据题意列出不等式组,求不等式组解集的公共部分即可.【详解】解:由题意,解得:20≤x≤25,故答案为:20≤x≤25.三、解答题:9.(1)解不等式组:【解析】【分析】本题考查了解不等式,整式的混合运算,熟知相关计算法则是解题的关键.分别解出两个不等式,求出解集的公共部分,进而得到不等式组的解集;【详解】解: ,解不等式①,得,解不等式②,得,不等式组的解集为;(2)解不等式组:.【答案】1<x<8.【详解】试题分析:根据不等式性质分别求出每一个不等式的解集,再根据口诀:大小小大中间找可得不等式组的解集.试题解析:解不等式2x+5>3(x﹣1),得:x<8,解不等式,得:x>1,∴不等式组的解集为:1<x<8.10. 已知杜鹃花宜居在的环境中,某山区要种植杜鹃花.已知平均气温为,且海拔每上升米,气温就下降.山脚的海拔的取值范围是多少?【答案】米【分析】本题考查了一元一次不等式的应用,设这种杜鹃花应种在比山脚的海拔高米的山坡上,根据题意列出不等式即可求解,根据题意列出不等式是解题的关键.【详解】解:设这种杜鹃花应种在比山脚的海拔高米的山坡上,由题意得,,解得,答:山脚的海拔的取值范围是米.11.小明解不等式-≤1的过程如图.请指出他解答过程中错误步骤的序号,并写出正确的解答过程.解:去分母,得3(1+x)-2(2x+1)≤1.①去括号,得3+3x-4x+1≤1.② 移项,得3x-4x≤1-3-1.③合并同类项,得-x≤-3.④两边都除以-1,得x≤3.⑤【解析】:错误的是①②⑤,正确解答过程如下:去分母,得3(1+x)-2(2x+1)≤6.去括号,得3+3x-4x-2≤6.移项,得3x-4x≤6-3+2.合并同类项,得-x≤5.两边都除以-1,得x≥-5.12. (2024·天津·中考真题)解不等式组请结合题意填空,完成本题的解答.(1)解不等式①,得______;(2)解不等式②,得______;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为______.【答案】(1)(2)(3)见解析(4)【分析】本题考查的是解一元一次不等式,解一元一次不等式组;(1)根据解一元一次不等式基本步骤:移项、合并同类项、化系数为1可得出答案;(2)根据解一元一次不等式基本步骤:移项、合并同类项、化系数为1可得出答案;(3)根据前两问的结果,在数轴上表示不等式的解集;(4)根据数轴上的解集取公共部分即可.【详解】(1)解:解不等式①得,故答案为:;(2)解:解不等式②得,故答案为:;(3)解:在数轴上表示如下:(4)解:由数轴可得原不等式组的解集为,故答案为:.13. (2024·江西·中考真题)如图,书架宽,在该书架上按图示方式摆放数学书和语文书,已知每本数学书厚,每本语文书厚.(1)数学书和语文书共90本恰好摆满该书架,求书架上数学书和语文书各多少本;(2)如果书架上已摆放10本语文书,那么数学书最多还可以摆多少本?本号资料*全部来源于微信公众号:数学第六感【答案】(1)书架上有数学书60本,语文书30本.(2)数学书最多还可以摆90本【分析】本题主要考查了一元一次方程及不等式的应用,解题的关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程.(1)首先设这层书架上数学书有本,则语文书有本,根据题意可得等量关系:本数学书的厚度本语文书的厚度,根据等量关系列出方程求解即可;(2)设数学书还可以摆m本,根据题意列出不等式求解即可.【详解】(1)解:设书架上数学书有本,由题意得:,解得:,.∴书架上有数学书60本,语文书30本.(2)设数学书还可以摆m本,根据题意得:,解得:,∴数学书最多还可以摆90本.14. (2024·黑龙江牡丹江·中考真题)牡丹江某县市作为猴头菇生产的“黄金地带”,年总产量占全国总产量的以上,黑龙江省发布的“九珍十八品”名录将猴头菇列为首位.某商店准备在该地购进特级鲜品、特级干品两种猴头菇,购进鲜品猴头菇3箱、干品猴头菇2箱需420元,购进鲜品猴头菇4箱、干品猴头菇5箱需910元.请解答下列问题:(1)特级鲜品猴头菇和特级干品猴头菇每箱的进价各是多少元?(2)某商店计划同时购进特级鲜品猴头菇和特级干品猴头菇共80箱,特级鲜品猴头菇每箱售价定为50元,特级干品猴头菇每箱售价定为180元,全部销售后,获利不少于1560元,其中干品猴头菇不多于40箱,该商店有哪几种进货方案?(3)在(2)的条件下,购进猴头菇全部售出,其中两种猴头菇各有1箱样品打a(a为正整数)折售出,最终获利1577元,请直接写出商店的进货方案.【答案】(1)特级鲜品猴头菇每箱进价为40元,特级干品猴头菇每箱进价为150元(2)有3种方案,详见解析(3)特级干品猴头菇40箱,特级鲜品猴头菇40箱【分析】本题考查了二元一次方程组的应用、一元一次不等式组的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组;(3)正确计算求解.(1)设特级鲜品猴头菇和特级干品猴头菇每箱的进价分别是x元和y元,根据“购进鲜品猴头菇3箱、干品猴头菇2箱需420元,购进鲜品猴头菇4箱、干品猴头菇5箱需910元”,列出方程组求解即可;(2)设商店计划购进特级鲜品猴头菇m箱,则购进特级干品猴头菇箱,根据“获利不少于1560元,其中干品猴头菇不多于40箱,”列出不等式组求解即可;(3)根据(2)中三种方案分别求解即可;【详解】(1)解:设特级鲜品猴头菇和特级干品猴头菇每箱的进价分别是x元和y元,则,解得:,故特级鲜品猴头菇每箱进价为40元,特级干品猴头菇每箱进价为150元;(2)解:设商店计划购进特级鲜品猴头菇m箱,则购进特级干品猴头菇箱,则,解得:,∵为正整数,∴,故该商店有三种进货方案,分别为:①购进特级鲜品猴头菇40箱,则购进特级干品猴头菇40箱;②购进特级鲜品猴头菇41箱,则购进特级干品猴头菇39箱;③购进特级鲜品猴头菇42箱,则购进特级干品猴头菇38箱;(3)解:当购进特级鲜品猴头菇40箱,则购进特级干品猴头菇40箱时:根据题意得,解得:;当购进特级鲜品猴头菇41箱,则购进特级干品猴头菇39箱时:根据题意得,解得:(是小数,不符合要求);当购进特级鲜品猴头菇42箱,则购进特级干品猴头菇38箱时:根据题意得,解得:(不符合要求);故商店的进货方案是特级干品猴头菇40箱,特级鲜品猴头菇40箱.21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)HYPERLINK "http://21世纪教育网(www.21cnjy.com)" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台第9讲 不等式(组)及其应用【考点梳理】1.不等式的基本性质性质1:不等式两边加(或减)同一个数(或式子),不等号方向不改变;如果a>b,那么a±c>b±c;性质2:不等式两边乘(或除以)同一个正数,不等号方向不改变;如果a>b,c>0,那么ac>bc,>;性质3:不等式两边乘(或除以)同一个负数,不等号方向改变;如果a>b,c<0,那么ac2.一元一次不等式(1)定义:只含有一个未知数,并且未知数的最高次数是1,且不等式左右两边都是整式,这样的不等式叫做一元一次不等式.(2)解一元一次不等式的一般步骤:去分母、去括号、移项、合并同类项、系数化为1(注意不等号方向是否改变).(3)解集在数轴上表示:①画数轴 ②定边界 ③定方向x>a x<a x≥a x≤a 3.一元一次不等式组(1)定义:一般地,关于同一个未知数的几个不等式联立在一起,就组成了一个一元一次不等式组.(2)一元一次不等式组的解集:组成一元一次不等式组的几个一元一次不等式的解集的公共部分,叫做这个一元一次不等式组的解集.注意:不等式的解可以是一个或多个数值,而不等式组的解集是包含所有使不等式成立的解的集合.(3)解一元一次不等式组的步骤:①分别解每个一元一次不等式;②在数轴上表示各不等式的解集;③确定各不等式解集的公共部分;④得到不等式组的解集;(4)几种常见的不等式组的解集(a>b,且a、b为常数):不等式组(a>b)图示 解集 口诀x≥a 同大取大x≤b 同小取小a≤x≤b 大小、小大中间找无解 小小、大大找不到4.一元一次不等式的应用(1)列不等式解应用题的基本步骤:①审题;②设元;③找出能够包含未知数的不等量关系;④列出不等式;⑤解不等式;⑥在不等式的解中找出符合题意的未知数的值;⑦写出答案.(2)列不等式解应用题涉及的题型常与方案设计型问题相联系,如最大利润、最优方案等,一般所求问题中有“至少(≥)”、“最多(≤)”、“不低于(≥)”、“超过(>)”、“不大于(≤)”等词,要正确理解这些词的含义.【高频考点】考点1:解一元一次不等式【例题1】(2018广西桂林)(6.00分)解不等式<x+1,并把它的解集在数轴上表示出来.考点2:解一元一次不等式组【例题2】(2018·自贡)解不等式组并在数轴上表示其解集.考点3:一元一次不等式的实际应用【例题3】(2019湖南益阳10分)为了提高农田利用效益,某地由每年种植双季稻改为先养殖小龙虾再种植一季水稻的“虾 稻”轮作模式.某农户有农田20亩,去年开始实施“虾 稻”轮作,去年出售小龙虾每千克获得的利润为32元(利润=售价﹣成本).由于开发成本下降和市场供求关系变化,今年每千克小龙虾的养殖成本下降25%,售价下降10%,出售小龙虾每千克获得利润为30元.(1)求去年每千克小龙虾的养殖成本与售价;(2)该农户今年每亩农田收获小龙虾100千克,若今年的水稻种植成本为600元/亩,稻谷售价为25元/千克,该农户估计今年可获得“虾 稻”轮作收入不少于8万元,则稻谷的亩产量至少会达到多少千克?考点4:一元一次不等式与其它知识的综合应用【例题4】(2018·河北中考预测)如图,在数轴上有A,B,C,D四点,点A对应的数为a,点B对应的数为3,点D对应的数为t,若CD=4,且在数轴上移动.(1)若2AB表示的数始终位于点A的左侧,求a的取值范围,并把解集表示在数轴上;(2)当t为何值,且是整数时,点B落在C,D两点之间.【自我检测】一、选择题:1. 若,则下列不等式不一定成立的是( )2. (2024·内蒙古包头·中考真题)若,,这三个实数在数轴上所对应的点从左到右依次排列,则的取值范围是( )A. B. C. D.3. (2024·内蒙古赤峰·中考真题)解不等式组时,不等式①和不等式②的解集在数轴上表示正确的是( )A. B.C. D.4. (2024·山东·中考真题)根据以下对话,给出下列三个结论:①1班学生的最高身高为;②1班学生的最低身高小于;③2班学生的最高身高大于或等于.上述结论中,所有正确结论的序号是( )A.①② B.①③ C.②③ D.①②③5. (2024·安徽·中考真题)已知实数a,b满足,,则下列判断正确的是( )A. B.C. D.二、填空题:6. 如图,在数轴上点,分别表示数,,则的取值范围是______.7. 如图所示,点C位于点A、B之间(不与A、B重合),点C表示,则x的取值范围是_____.8. . 鱼缸里饲养两种鱼,种鱼的生长温度的范围是,种鱼的生长温度的范围是,那么鱼缸里的温度应该控制在 ______ 范围内三、解答题:9.(1)解不等式组:【解析】10. 已知杜鹃花宜居在的环境中,某山区要种植杜鹃花.已知平均气温为,且海拔每上升米,气温就下降.山脚的海拔的取值范围是多少?11.小明解不等式-≤1的过程如图.请指出他解答过程中错误步骤的序号,并写出正确的解答过程.解:去分母,得3(1+x)-2(2x+1)≤1.①去括号,得3+3x-4x+1≤1.② 移项,得3x-4x≤1-3-1.③合并同类项,得-x≤-3.④两边都除以-1,得x≤3.⑤12. (2024·天津·中考真题)解不等式组请结合题意填空,完成本题的解答.(1)解不等式①,得______;(2)解不等式②,得______;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为______.13. (2024·江西·中考真题)如图,书架宽,在该书架上按图示方式摆放数学书和语文书,已知每本数学书厚,每本语文书厚.(1)数学书和语文书共90本恰好摆满该书架,求书架上数学书和语文书各多少本;(2)如果书架上已摆放10本语文书,那么数学书最多还可以摆多少本?本号资料*全部来源于微信公众号:数学第六感14. (2024·黑龙江牡丹江·中考真题)牡丹江某县市作为猴头菇生产的“黄金地带”,年总产量占全国总产量的以上,黑龙江省发布的“九珍十八品”名录将猴头菇列为首位.某商店准备在该地购进特级鲜品、特级干品两种猴头菇,购进鲜品猴头菇3箱、干品猴头菇2箱需420元,购进鲜品猴头菇4箱、干品猴头菇5箱需910元.请解答下列问题:(1)特级鲜品猴头菇和特级干品猴头菇每箱的进价各是多少元?(2)某商店计划同时购进特级鲜品猴头菇和特级干品猴头菇共80箱,特级鲜品猴头菇每箱售价定为50元,特级干品猴头菇每箱售价定为180元,全部销售后,获利不少于1560元,其中干品猴头菇不多于40箱,该商店有哪几种进货方案?(3)在(2)的条件下,购进猴头菇全部售出,其中两种猴头菇各有1箱样品打a(a为正整数)折售出,最终获利1577元,请直接写出商店的进货方案.21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)HYPERLINK "http://21世纪教育网(www.21cnjy.com)" 21世纪教育网(www.21cnjy.com) 展开更多...... 收起↑ 资源列表 备战2025年中考数学精准专题导练案第9讲不等式(组)及其应用(原卷).doc 备战2025年中考数学精准专题导练案第9讲不等式(组)及其应用(教师卷).doc