江苏省南通市海门区2024-2025学年第二学期九年级期中考试数学试卷(pdf版,含答案)

资源下载
  1. 二一教育资源

江苏省南通市海门区2024-2025学年第二学期九年级期中考试数学试卷(pdf版,含答案)

资源简介

2024~2025 学年第二学期学情调研试卷
九年级 数学
参考答案和评分标准
说明:本评分标准每题给出的解法仅供参考,如果考生的解法与本解答不同,参照本评分标
准给分.
一、选择题(本大题共 10 小题,每小题 3 分,共 30 分)
题号 1 2 3 4 5 6 7 8 9 10
选项 D B B C C A A C D A
二、填空题(本大题共 8 小题,第 11~12 题每小题 3 分,第 13~18 题每小题 4 分,共 30 分)
11.1 12.(x+2)(x-2) 13.1 14.50(1+x)2=72
15.12 16.15 6 17.13° 18. 13
三、解答题(本大题共 8 小题,共 90 分)
19.(本小题满分 10 分)
x+y=5 ①
解:(1) ,
2x+3y=8 ②
①×3-②,得:x=7. ···································································· 2 分
将 x=7 代入①,得:7+y=5,
解得 y=-2. ······································································ 4 分
x=7
所以方程组的解为 ; ····················································· 5 分
y=-2
3 ( +1)( 1) 2( 2)
(2) 原式= ÷ ·························································· 7 分
+1 +1
2+4 +1
=
+1 ( 2)2
( +2)( 2) +1
= ·························································· 9 分
+1 ( 2)2
+2
= . ··········································································· 10 分
2
20.(本小题满分 10 分)
解:(1)85.5,86; ··········································································· 4 分
(2)九年级劳动知识掌握更好.九年级平均数和中位数都比八年级高.
(任选两个方面说明即可). ······················································· 7 分
5+5
(3)八年级优秀人数 ×600=300 人, ··········································· 8 分
20
15
九年级优秀人数 ×600=450 人; ············································· 9 分
20
∴两个年级成绩优秀的学生总数为 750 人. ·································· 10 分
九年级数学参考答案和评分标准 第 1 页 共5页
21.(本小题满分 10 分)
解:(1)∵点 D、E 分别为边 AB、BC 的中点,
∴DE∥AC. ··········································································· 2 分
∵CF∥AE,
∴四边形 AEFC 是平行四边形. ··················································· 4 分
(2)∵点 D、E 分别为边 AB、BC 的中点,DE=1,
∴AC=2DE=2. ·································································· 6 分
∵四边形 AEFC 是平行四边形,
∴EF=AC=2.
∵DE∥AC
∴∠BDE=∠BAC,∠BED=∠BCD=90°
∵tan∠CAB=3,
∴tan∠BDE=3,
BE
∴ =3,
DE
∵DE=1
∴BE=3, ··········································································· 8 分
2 2
在 Rt△BEF 中,BF= BE +EF = 13 ,
∴BF 的长为 13. ······························································· 10 分
22.(本小题满分 12 分)
1
解:(1) ; ······················································································ 4 分
2
(2)设梅花 5 剪断成 A,B 两张卡片,
黑桃 3 剪断成 C,D 两张卡片,
画树状图如下:
································· 8 分
共有 12 种等可能的结果,其中抽到的这两张卡片恰好能拼成一张完整扑克牌
的结果有:AB,BA,CD,DC,共 4 种, ···································· 10 分
4 1
∴抽到的这两张卡片恰好能拼成一张完整扑克牌的概率为 = . ······ 12 分
12 3
23.(本小题满分 10 分)
解:(1)如答图 1,连接 OD.
∵BC 是⊙O 的切线,
∴∠ODC=90°.·········································· 1 分
∵∠C=90°,
九年级数学参考答案和评分标准 第 2 页 共5页
∴∠ODC+∠C=180°,
∴OD∥AC.
A
∴∠CAD=∠ADO.······································· 3 分
O
∵OD=OA,
∴∠DAB=∠ADO,
E F ∴∠CAD=∠DAB,
C D B ∴AD 平分∠BAC. ······································· 4 分
(第 23 题答图 1)
(2)设⊙O 半径为 r,则 OB=10-r
由(1)DO∥AC
OB OD
∴ = ,
AB AC
A 10-r r
∴ = ,
O 10 6
G
15
∴r= ,
F 4E
AG AO
C D B 如答图 2,过点 O 作 OG⊥AC 于点 G,则 = . AC AB
(第 23 题答图 2) 9
∴AG= ,
4
9
∴AE=2AG= ,
2
3
∴CE=AC-AE= . ······································· 10 分
2
24.(本小题满分 12 分)
解:(1)由题意得
600 400
= . ······································································ 3 分
x+20 x
∴600x=400(x+20),
∴x=40, ·················································································· 5 分
检验:当 x=40 时,x(x+20)≠0,
∴x=40. ·················································································· 6 分
(2)设甲施工 a 天,则乙施工(20 – a)天.
∵甲每天安装 60 台,乙每天安装 40 台,
∴ 60a + 40(20-a) ≥1000,
∴a≥10. ·················································································· 8 分
设施工费用为 w,则 W=5000a+3000(20 a)=2000a+60000, ··············· 10 分
∵2000>0,
∴W 随 a 的增大而增大,
∴a=10 时,W 有最小值 80 000 元,
∴该项目安装成本的最小值为 80 000 元. ········································ 12 分
九年级数学参考答案和评分标准 第 3 页 共5页
25.(本小题满分 13 分)
解:(1)A(-2,0),B(2,0),C(0,-4); ········································· 3 分
(2)设 P 点坐标为(a,a2-4).
则直线 AP 的解析式为 y=(a-2) x+2(a-2) , ································ 5 分
直线 BP 的解析式为 y=(a+2) x-2(a+2) , ··································· 7 分
∴OE=2(2-a),OF=2(a+2) ,
∴OE+OF=8,为定值. ··························································· 9 分
(3)∵一次函数 y=-mx+5m-4(m 为常数,m≠0),
∴此一次函数过定点 M(5,-4). ··············································· 11 分
当-m<0,即 m>0 时,
4 8
直线 AM 的解析式为 y=- x- ,
7 7
4 8 10
联立 AM 的解析式 y=- x- 与抛物线 y=x2-4 可得 P 点横坐标为 ,
7 7 7
当-m>0,即 m<0 时,不符合题意;
10
∴P 点的横坐标 k 的取值范围是:0<k< . ······································ 13 分
7
26.(本小题满分 13 分)
解:【尝试解决】
(1)DG=EF; ······································· 2 分
A E D (2)∵EF⊥AP,EF∥DG,
∴DG⊥AP.
P ∵四边形 ABCD 为正方形,
∴∠DAP=∠GDC ,AD=DC,
∠ADP=∠DCG=90°
∴△ADP≌△CDG,
B C ∴AP=DG, F G
∴EF=AP. ······································ 5 分
(第 26 题答图 1) 【类比应用】
如答图 2,过点 P 作 MN∥EF 交 AD 于点 M,交
BC延长线于点N,过点M 作MG⊥于AP于点G.
E M
A D ∵EF∥MN,∠AQE=45°,
∴∠APM=45°.
Q
G P ∵P 为 CD 的中点,四边形 ABCD 为正方形,
MG 1
∴tan∠DAP= = .
AG 2
B F C N 设 MG=a,则 GP=MG=a,GA=2MG=2a.
(第 26 题答图 2) ∴AP=3a=3 5,
∴a= 5,
∴MP= 2a= 10.······························ 7 分
∵P 为 CD 中点,
∴△PDM≌△PCN,
∴EF=MN=2PM=2 10 . ······················ 9 分
九年级数学参考答案和评分标准 第 4 页 共5页
【拓展延伸】
如答图 3,当点 P 在线段 CD 上时,
A E M D 过点 P 作 MN∥EF 交 AD 于点 M,交 BC 延长线于点
G N,过点 M 作 MG⊥于 AP 于点 G.
Q
∵EF∥MN,
P
1
B F C N ∴tan∠AQE=∠APM= . 2
(第 26 题答图 3)
∵DP=5,AD=15,四边形 ABCD 为矩形,
DP MG 1
∴tan∠DAP= = = .
AD AG 3
P 设 MG=a,则 GP=2MG=2a,GA=3MG=3a.
Q
G
∴AP=5a=5 10,
E ∴a= 10, A
M D ∴MP= 5a=5 2.
∵EF=6 2,
∴PN= 2,
B F N C DP MP
∴ = =5. ······························· 11 分
(第 题答图 ) PC PN26 4
当点 P 在线段 CD 延长线上时,如答图 4
同理可求得
DP 5
= . ······································· 13 分
DC 6
九年级数学参考答案和评分标准 第 5 页 共5页2024~2025学年第二学期学情调研试卷
九年级数学
注意事项
考生在答题前请认真阅读本注意事项:
1.本试卷共6页,满分为150分,考试时间为120分钟,考试结束后,请将本试卷和
答题卡一并交回
2.答题前,请务必将自已的姓名、考试证号用0.5毫米黑色字迹的签字笔填写在试卷
及答题卡上指定的位置
3.答案必须按要求填涂、书写在答题卡上,在试卷、草稿纸上答题一律无效
一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰
有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)
1.若南通某日最高气温为+5℃,最低气温为一2℃,则当日温差为
A.-7℃
B.3℃
C.5℃
D.7℃
2.下列图形中,既是轴对称图形又是中心对称图形的是
A.
B.
C
D
3.据统计,南通某景区去年接待游客约5600000人次,将5600000用科学记数法表示

A.5.6×105
B.5.6×105
C.56×10
D.0.56×107
4.若点P(a,b)在函数y=3x十2的图象上,则代数式6a一2b+1的值等于
A.5
B.3
C.-3
D.-1
5.
如图,小明用一副三角板拼成一幅“帆船图”.∠B=∠E=90°,
∠C=30°,∠F=45°,若ED//AB,则∠FDC的度数为
A.60
B.65°
C.75°
D.80°
6.
己知关于x的一元二次方程x2一4x十m=0有两个相等的实数根;
(第5题)
则m的值为
A.4
B.2
C.1
D.-4
7.《九章算术》中“盈不足”问题:“今有共买物,人出八,盈三;人出七,不足四,问
人数、物价各几何?”意思是:现有几个人共买一件物品,每人出8钱多出3钱:每
人出7钱,还差4钱.设人数为x,可列方程为
A.8x-3=7x+4
B.8x+3=7x-4
c
D.+3=号-4
数学试卷第1页(共6页)
0000000
8.如图,在∠MON的两边上分别截取OA,OB,使OA=OB;分别以点A,B为圆心,
OA长为半径作弧,两弧交于点C:连接AC,BC,OC.若AB=2cm,四边形OACB
的面积为4cm,则OC的长为
A.2cm
B.3cm
C.4cm
D.5cm
M
B
B x
(第8题)
(第9题)
(第10题)
9.如图,在平面直角坐标系x0中,函数y冬(k>0,>0》的图象与等边三角形0A8
的边OA,AB分别交于点M,N.若B(10,0),MN⊥OA,则k的值为
A.6N3
B.7V3
C.8V3
D.9V3
1O.如图,矩形ABCD中,AB过P作PF⊥BD于点F,连接BP.设点P运动路径长为x,△BPF的面积为y,则y
关于x的函数图象大致是
B.
C.
D.
二、填空题(本大题共8小题,第11~12题每小题3分,第13~18题每小题4分,共30
分.,不需写出解答过程,请把答案直接填写在答题卡相应位置上)
11.计算:V9--2=▲
12.分解因式:x2一4=▲
13.若分式十的值为0,则x的值为△
14.某经济开发区1月份工业产值达50亿元,3月份工业产值达72亿元,设平均每月增
长率为x,则可列方程为▲.

15.若圆锥的底面半径长为6,其侧面展开图是一个半圆,
B
则该圆锥的母线长为▲一,
450
16,如图,一艘轮船位于灯塔P的南偏东60°方向,距离
灯塔30海里的A处,它沿正北方向航行一段时间后,
P

600
到达位于灯塔P的北偏东45°方向上的B处,此时
B处与灯塔P的距离为▲海里(结果保留根号).
(第16题)
数学试卷第2页(共6页)
0000000

展开更多......

收起↑

资源列表