资源简介 中小学教育资源及组卷应用平台难题突破专题六 特殊几何图形存在性问题存在性问题是指判断满足某种条件的事物是否存在的问题,这类问题的知识覆盖面较广,综合性较强,题意构思非常精巧,解题方法灵活,对学生分析问题和解决问题的能力要求较高,是近几年各地中考的“热点”.解这类题目的一般思路是:假设存在→推理论证→得出结论.若能导出合理的结果,就做出“存在”的判断;若导出矛盾,就做出不存在的判断.类型1 特殊平行四边形存在性例题; (2024·四川达州·中考真题)如图1,抛物线与轴交于点和点,与轴交于点.点是抛物线的顶点. (1)求抛物线的解析式;(2)如图2,连接,,直线交抛物线的对称轴于点,若点是直线上方抛物线上一点,且,求点的坐标;(3)若点是抛物线对称轴上位于点上方的一动点,是否存在以点,,为顶点的三角形是等腰三角形,若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.【答案】(1)(2)或;(3)或或或【分析】(1)待定系数法求解析式,即可求解;(2)先求得的坐标,根据勾股定理的逆定理得出是等腰三角形,进而根据得出,连接,设交轴于点,则得出是等腰直角三角形,进而得出,则点与点重合时符合题意,,过点作交抛物线于点,得出直线的解析式为,联立抛物线解析式,即可求解;(3)勾股定理求得,根据等腰三角形的性质,分类讨论解方程,即可求解.【详解】(1)解:∵抛物线与轴交于点和点,∴解得:∴抛物线的解析式为;(2)由,当时,,则∵,则,对称轴为直线设直线的解析式为,代入,∴解得:∴直线的解析式为,当时,,则∴∴∴是等腰三角形,∴连接,设交轴于点,则∴是等腰直角三角形,∴,,又∴∴∴点与点重合时符合题意,如图所示,过点作交抛物线于点,设直线的解析式为,将代入得,解得:∴直线的解析式为联立解得:,∴综上所述,或;(3)解:∵,,∴∵点是抛物线对称轴上位于点上方的一动点,设其中∴,①当时,,解得:或②当时,,解得:③当时,,解得:或(舍去)综上所述,或或或.同步训练:(2024·四川泸州·中考真题)如图,在平面直角坐标系中,已知抛物线经过点,与y轴交于点B,且关于直线对称.(1)求该抛物线的解析式;(2)当时,y的取值范围是,求t的值;(3)点C是抛物线上位于第一象限的一个动点,过点C作x轴的垂线交直线于点D,在y轴上是否存在点E,使得以B,C,D,E为顶点的四边形是菱形?若存在,求出该菱形的边长;若不存在,说明理由.【答案】(1)(2)(3)存在点以B,C,D,E为顶点的四边形是菱形,边长为或2.【分析】本题考查二次函数的综合应用,菱形的性质,正确的求出函数解析式,利用数形结合和分类讨论的思想进行求解,是解题的关键.(1)待定系数法求出函数解析式即可;(2)分和,两种情况,结合二次函数的增减性进行求解即可.(3)分为菱形的边和菱形的对角线两种情况进行讨论求解即可.【详解】(1)解:∵抛物线经过点,与y轴交于点B,且关于直线对称,∴,解得:,∴;(2)∵抛物线的开口向下,对称轴为直线,∴抛物线上点到对称轴上的距离越远,函数值越小,∵时,,①当时,则:当时,函数有最大值,即:,解得:或,均不符合题意,舍去;②当时,则:当时,函数有最大值,即:,解得:;故;(3)存在;当时,解得:,当时,,∴,,设直线的解析式为,把代入,得:,∴,设,则:,∴,,,当B,C,D,E为顶点的四边形是菱形时,分两种情况:①当为边时,则:,即,解得:(舍去)或,此时菱形的边长为;②当为对角线时,则:,即:,解得:或(舍去)此时菱形的边长为:;综上:存在以B,C,D,E为顶点的四边形是菱形,边长为或2.解题方法点析已知三定点,探求第四个点,使之构成平行四边形,可以按对角线进行分类,然后利用中点坐标公式求出点的坐标,再验证是否符合限制条件.类型2 特殊三角形例题; (2024·四川眉山·中考真题)如图,抛物线与轴交于点和点,与轴交于点,点在抛物线上. (1)求该抛物线的解析式;(2)当点在第二象限内,且的面积为3时,求点的坐标;(3)在直线上是否存在点,使是以为斜边的等腰直角三角形?若存在,请直接写出点的坐标;若不存在,请说明理由.【答案】(1)抛物线的解析式为(2)的坐标为或(3)的坐标为或或或【分析】(1)利用待定系数法求解;(2)过作轴交于,求出直线解析式,根据列式求解;(3)先求出点A,B坐标,再求出直线解析式,过作轴于,过作轴于,分以下情况分别讨论即可:①与重合,与重合时;②当在第一象限,在第四象限时;③当在第四象限,在第三象限时;④当在第四象限,在第一象限时.【详解】(1)解:把,代入得:*本号资料全部来源于微信公众号:数学第六感,解得,抛物线的解析式为;(2)解:过作轴交于,如图: 由,得直线解析式为,设,则,,的面积为3,,即,解得或,的坐标为或;(3)解:在直线上存在点,使是以为斜边的等腰直角三角形,理由如下:在中,令得,解得或,,,由,得直线解析式为,设,,过作轴于,过作轴于,①,当与重合,与重合时,是等腰直角三角形,如图: 此时;②当在第一象限,在第四象限时, 是以为斜边的等腰直角三角形,,,,,,,,,解得(小于0,舍去)或,,的坐标为;③当在第四象限,在第三象限时,如图: 是以为斜边的等腰直角三角形,,,,,,,,同理可得,解得或(大于0,舍去),,的坐标为;④当在第四象限,在第一象限,如图: 是以为斜边的等腰直角三角形,,,,,,,,,解得(舍去)或,,的坐标为;综上所述,的坐标为或或或.同步训练:(2024·黑龙江齐齐哈尔·中考真题)综合与探究:如图,在平面直角坐标系中,已知直线与x轴交于点A,与y轴交于点C,过A,C两点的抛物线与x轴的另一个交点为点,点P是抛物线位于第四象限图象上的动点,过点P分别作x轴和y轴的平行线,分别交直线于点E,点F.(1)求抛物线的解析式;(2)点D是x轴上的任意一点,若是以为腰的等腰三角形,请直接写出点D的坐标;(3)当时,求点P的坐标;(4)在(3)的条件下,若点N是y轴上的一个动点,过点N作抛物线对称轴的垂线,垂足为M,连接,则的最小值为______.【答案】(1)(2)(3)(4)【分析】本题主要考查了求函数解析式、二次函数与几何的综合等知识点,掌握数形结合思想成为解题的关键.(1)先根据题意确定点A、C的坐标,然后运用待定系数法求解即可;(2)分三种情况分别画出图形,然后根据等腰三角形的定义以及坐标与图形即可解答;(3)先证明可得,设,则,可得,即,求得可得m的值,进而求得点P的坐标;(4)如图:将线段向右平移单位得到,即四边形是平行四边形,可得,即,作关于对称轴的点,则,由两点间的距离公式可得,再根据三角形的三边关系可得即可解答.本号资#料全部来源于微信公众号:数学第六感【详解】(1)解:∵直线与x轴交于点A,与y轴交于点C,∴当时,,即;当时,,即;∵,∴设抛物线的解析式为,把代入可得:,解得:,∴,∴抛物线的解析式为:.(2)解:∵,,∴,∴,如图:当,∴,即;如图:当,∴,即;如图:当,∴,即;综上,点D的坐标为.(3)解:如图:∵轴,∴,∵轴,∴,∵,∴,∴,∵设,则,∴,∴,解得:(负值舍去),当时,,∴.(4)解: ∵抛物线的解析式为:,∴抛物线的对称轴为:直线,如图:将线段向右平移单位得到,∴四边形是平行四边形,∴,即,作关于对称轴的点,则∴,∵,∴的最小值为.故答案为.解题方法点析对于两个定点、两个动点的问题,一般思路是先用一个未知数假设一个相对较简单的动点坐标,然后把这三点看成定点,用该未知数表示另一个动点的坐标,最后再根据动点应满足的条件,求出相应点的坐标.类型3 某种条件下存在特殊平行四边形例题; (20235安徽模拟)在平面直角坐标系中,点是坐标原点,抛物线经过点,对称轴为直线.(1)求的值;(2)已知点在抛物线上,点的横坐标为,点的横坐标为.过点作轴的垂线交直线于点,过点作轴的垂线交直线于点.(ⅰ)当时,求与的面积之和;(ⅱ)在抛物线对称轴右侧,是否存在点,使得以为顶点的四边形的面积为?若存在,请求出点的横坐标的值;若不存在,请说明理由.【答案】(1);(2)(ⅰ);(ⅱ)【分析】(1)待定系数法求解析式即可求解;(2)(ⅰ)根据题意画出图形,得出,,,继而得出,,当时,根据三角形的面积公式,即可求解.(ⅱ)根据(ⅰ)的结论,分和分别求得梯形的面积,根据四边形的面积为建立方程,解方程进而即可求解.【详解】(1)解:依题意,,解得:,∴;(2)(ⅰ)设直线的解析式为,∵,∴解得:,∴直线,如图所示,依题意,,,, ∴,,∴当时,与的面积之和为,(ⅱ)当点在对称右侧时,则,∴,当时,,∴,∴,解得:, 当时,,∴,∴,解得:(舍去)或(舍去) 综上所述,.同步训练:(2023·湖南·统考中考真题)如图,二次函数的图象与轴交于,两点,与轴交于点,其中,. (1)求这个二次函数的表达式;(2)在二次函数图象上是否存在点,使得?若存在,请求出点坐标;若不存在,请说明理由;(3)点是对称轴上一点,且点的纵坐标为,当是锐角三角形时,求的取值范围.【答案】(1);(2)或或;(3)或【分析】(1)待定系数法求解析式即可求解;(2)根据,可得到的距离等于到的距离,进而作出两条的平行线,求得解析式,联立抛物线即可求解;(3)根据题意,求得当是直角三角形时的的值,进而观察图象,即可求解,分和两种情况讨论,分别计算即可求解.【详解】(1)解:将点,代入,得解得:∴抛物线解析式为;(2)∵,顶点坐标为,当时,解得:∴,则∵,则∴是等腰直角三角形,∵∴到的距离等于到的距离,∵,,设直线的解析式为∴解得:∴直线的解析式为,如图所示,过点作的平行线,交抛物线于点, 设的解析式为,将点代入得,解得:∴直线的解析式为,解得:或∴,∵∴∴是等腰直角三角形,且,如图所示,延长至,使得,过点作的平行线,交轴于点,则,则符合题意的点在直线上,∵是等腰直角三角形,∴∴是等腰直角三角形,∴∴设直线的解析式为∴解得:∴直线的解析式为联立解得:或∴或综上所述,或或;(3)①当时,如图所示,过点作交于点,当点与点重合时,是直角三角形,当时,是直角三角形, 设交于点,∵直线的解析式为,则,∴,∵,∴是等腰直角三角形,∴∴,设,则∵∴解得:(舍去)或∴∵是锐角三角形∴;当时,如图所示,同理可得即∴解得:或(舍去)由(2)可得时, ∴综上所述,当是锐角三角形时,或.类型4:图形变化过程中体现特殊平行四边形(2024 山西)综合与探究问题情境:如图1,四边形ABCD是菱形,过点A作AE⊥BC于点E,过点C作CF⊥AD于点F.猜想证明:(1)判断四边形AECF的形状,并说明理由;深入探究:(2)将图1中的△ABE绕点A逆时针旋转,得到△AHG,点E,B的对应点分别为点G,H.①如图2,当线段AH经过点C时,GH所在直线分别与线段AD,CD交于点M,N.猜想线段CH与MD的数量关系,并说明理由;②当直线GH与直线CD垂直时,直线GH分别与直线AD,CD交于点M,N,直线AH与线段CD交于点Q.若AB=5,BE=4,直接写出四边形AMNQ的面积.【分析】(1)根据矩形的判定方法(有三个角是直角的四边形是矩形)很容易证出;(2)①方法一可先证△HAM≌△DAC,得出AM=AC,减去公共边得出CH=MD.方法二证△CDH≌△MHD,可直接得出CH=MD;②对于旋转的存在性问题,首先分类讨论,根据情况画出草图,再利用旋转的性质以及锐角三角函数或相似进行计算即可,需要主要的是四边形AMNQ的面积是不规则,需要用去用三角形面积的和差解决.【解答】解:(1)四边形AECF为矩形.理由如下:∵AE⊥BC,CF⊥AD,∴∠AEC=90°,∠AFC=90°,∵四边形ABCD 为菱形,∴AD∥BC,∴∠AFC+∠ECF=180°,∠ECF=180°﹣∠AFC=90°∴四边形AECF为矩形.(2)①CH=MD.理由如下:证法一:∵四边形ABCD为菱形,∴AB=AD,∠B=∠D.∵△ABE 旋转得到△AHG,∴AB=AH,∠B=∠H.∴AH=AD,∠H=∠D.∵∠HAM=∠DAC,∴△HAM≌△DAC,∴AM=AC,∴AH﹣AC=AD﹣AM,∴CH=MD.证法二:如图,连接HD.∵四边形ABCD为菱形,∴AB=AD,∠B=∠ADC,∵△ABE 旋转得到△AHG,∴AB=AH,∠B=∠AHM,∴AH=AD,∠AHM=∠ADC,∴∠AHD=∠ADH,∴∠AHD﹣∠AHM=∠ADH﹣∠ADC,∴∠MHD=∠CDH,∵DH=HD,∴△CDH≌△MHD,∴CH=MD.②情况一:如图,当点G旋转至BA的延长线上时,GH⊥CD,此时S四边形AMNQ=.∵AB=5,BE=4,∴由勾股定理可得AE=3,∵△ABE旋转到△AHG,∴AG=AE=3,GH=BE=4,∠H=∠B,∵GN⊥CD,∴GN=AE=3,∴NH=1,∵AD∥BC,∴∠GAM=∠B,∴tan∠GAM=tan∠B,即,解得GM=,则MH=,∵tan∠H=tan∠B,∴在Rt△QNH中,QN=,∴S四边形AMNQ=S△AMH﹣S△QNH=MH AG﹣NH QN=.情况二:如图,当点G旋转至BA上时,GH⊥CD,此时S四边形AMNQ=.同第一种情况的计算思路可得:NH=7,QN=,AG=3,MH=,∴S四边形AMNQ=S△QNH﹣S△AMH=NH QN﹣MH AG=.综上,四边形AMNQ的面积为 或 .专 题 训 练1. (2023·山东枣庄·统考中考真题)如图,抛物线经过两点,并交x轴于另一点B,点M是抛物线的顶点,直线AM与轴交于点D. (1)求该抛物线的表达式;(2)若点H是x轴上一动点,分别连接MH,DH,求的最小值;(3)若点P是抛物线上一动点,问在对称轴上是否存在点Q,使得以D,M,P,Q为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.【答案】(1);(2);(3)存在,或或【分析】(1)待定系数法求出函数解析式即可;(2)作点关于轴的对称点,连接,与轴的交点即为点,进而得到的最小值为的长,利用两点间距离公式进行求解即可;(3)分,,分别为对角线,三种情况进行讨论求解即可.【详解】(1)解:∵抛物线经过两点,∴,解得:,∴;(2)∵,∴,设直线,则:,解得:,∴,当时,,∴;作点关于轴的对称点,连接,则:,,∴当三点共线时,有最小值为的长, ∵,,∴,即:的最小值为:;(3)解:存在;∵,∴对称轴为直线,设,,当以D,M,P,Q为顶点的四边形是平行四边形时:①为对角线时:, ∴,当时,,∴,∴;②当为对角线时:, ∴,当时,,∴,∴;③当为对角线时:, ∴,当时,,∴,∴;综上:当以D,M,P,Q为顶点的四边形是平行四边形时,或或.2. (2023·湖南岳阳·统考中考真题)已知抛物线与轴交于两点,交轴于点. (1)请求出抛物线的表达式.(2)如图1,在轴上有一点,点在抛物线上,点为坐标平面内一点,是否存在点使得四边形为正方形?若存在,请求出点的坐标;若不存在,请说明理由.(3)如图2,将抛物线向右平移2个单位,得到抛物线,抛物线的顶点为,与轴正半轴交于点,抛物线上是否存在点,使得?若存在,请求出点的坐标;若不存在,请说明理由.【答案】(1);(2);;(3)点的坐标为或【分析】(1)把代入,求出即可;(2)假设存在这样的正方形,过点E作于点R,过点F作轴于点I,证明可得故可得,;(3)先求得抛物线的解析式为,得出,,运用待定系数法可得直线的解析式为,过点作轴于点,连接,设交直线于或,如图2,过点作轴交于点,交抛物线于点,连接,利用等腰直角三角形性质和三角函数定义可得,进而可求得点的坐标.【详解】(1)∵抛物线与轴交于两点,交轴于点,∴把代入,得,解得,∴解析式为:;(2)假设存在这样的正方形,如图,过点E作于点R,过点F作轴于点I, ∴∵四边形是正方形,∴∴∴又∴∴∵∴∴∴;同理可证明:∴∴∴;(3)解:抛物线上存在点,使得.,抛物线的顶点坐标为,将抛物线向右平移2个单位,得到抛物线,抛物线的解析式为,抛物线的顶点为,与轴正半轴交于点,,,设直线的解析式为,把,代入得,解得:,直线的解析式为,过点作轴于点,连接,设交直线于或,如图2,过点作轴交于点,交抛物线于点,连接,则,,, ,,是等腰直角三角形,,,,,是等腰直角三角形,,,,,,,,,∵,,,即点与点重合时,,;,,,,点与点关于直线对称,;综上所述,抛物线上存在点,使得,点的坐标为或.3. (2023·山东烟台·统考中考真题)如图,抛物线与轴交于两点,与轴交于点.抛物线的对称轴与经过点的直线交于点,与轴交于点. (1)求直线及抛物线的表达式;(2)在抛物线上是否存在点,使得是以为直角边的直角三角形 若存在,求出所有点的坐标;若不存在,请说明理由;(3)以点为圆心,画半径为2的圆,点为上一个动点,请求出的最小值.【答案】(1)直线的解析式为;抛物线解析式为;(2)存在,点M的坐标为或 或;(3)【分析】(1)根据对称轴,,得到点A及B的坐标,再利用待定系数法求解析式即可;(2)先求出点D的坐标,再分两种情况:①当时,求出直线的解析式为,解方程组,即可得到点M的坐标;②当时,求出直线的解析式为,解方程组,即可得到点M的坐标;(3)在上取点,使,连接,证得,又,得到,推出,进而得到当点C、P、F三点共线时,的值最小,即为线段的长,利用勾股定理求出即可.【详解】(1)解:∵抛物线的对称轴,,∴,将代入直线,得,解得,∴直线的解析式为;将代入,得,解得,∴抛物线的解析式为;(2)存在点,∵直线的解析式为,抛物线对称轴与轴交于点.∴当时,,∴,①当时,设直线的解析式为,将点A坐标代入,得,解得,∴直线的解析式为,解方程组,得或,∴点M的坐标为;②当时,设直线的解析式为,将代入,得,解得,∴直线的解析式为,解方程组,解得或,∴点M的坐标为 或综上,点M的坐标为或 或;(3)如图,在上取点,使,连接,∵,∴,∵,、∴,又∵,∴,∴,即,∴,∴当点C、P、F三点共线时,的值最小,即为线段的长,∵,∴,∴的最小值为. 4. (2024·黑龙江大兴安岭地·中考真题)如图,在平面直角坐标系中,等边三角形的边在x轴上,点A在第一象限,的长度是一元二次方程的根,动点P从点O出发以每秒2个单位长度的速度沿折线运动,动点Q从点O出发以每秒3个单位长度的速度沿折线运动,P、Q两点同时出发,相遇时停止运动.设运动时间为t秒(),的面积为S.(1)求点A的坐标;(2)求S与t的函数关系式;(3)在(2)的条件下,当时,点M在y轴上,坐标平面内是否存在点N,使得以点O、P、M、N为顶点的四边形是菱形.若存在,直接写出点N的坐标;若不存在,说明理由.【答案】(1)点A的坐标为(2)(3)存在,,,,【分析】(1)运用因式分解法解方程求出的长,根据等边三角形的性质得出,过点A作轴,垂足为C,求出的长即可;(2)分,和三种情况,运用三角形面积公式求解即可;(3)当时求出,得,分为边和对角线两种情况可得点N的坐标;当和时不存在以点O、P、M、N为顶点的四边形是菱形【详解】(1)解:,解得,的长度是的根,∵是等边三角形,∴,过点A作轴,垂足为C,在中,∴,∴点A的坐标为(2)解:当时.过P作轴,垂足为点D,∴,,∴∴,;当时,过Q作,垂足为点E∵∴又∴,又,当时,过O作,垂足为F∴,同理可得,,∴;综上所述(3)解:当时,解得,∴,过点P作轴于点G,则∴∴点P的坐标为;当为边时,将沿轴向下平移4个单位得,此时,四边形是菱形;将沿轴向上平移4个单位得,此时,四边形是菱形;如图,作点P关于y轴的对称点,当时,四边形是菱形;当为对角线时,设的中点为T,过点T作,交y轴于点M,延长到,使连接,过点作轴于点,则∴∴,即,解得,,∴,∴;当,解得,,不符合题意,此情况不存在;当时,解得,,不符合题意,此情况不存在;综上,点N的坐标为,,,21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)HYPERLINK "http://21世纪教育网(www.21cnjy.com)" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台难题突破专题六 特殊几何图形存在性问题存在性问题是指判断满足某种条件的事物是否存在的问题,这类问题的知识覆盖面较广,综合性较强,题意构思非常精巧,解题方法灵活,对学生分析问题和解决问题的能力要求较高,是近几年各地中考的“热点”.解这类题目的一般思路是:假设存在→推理论证→得出结论.若能导出合理的结果,就做出“存在”的判断;若导出矛盾,就做出不存在的判断.类型1 特殊平行四边形存在性例题; (2024·四川达州·中考真题)如图1,抛物线与轴交于点和点,与轴交于点.点是抛物线的顶点. (1)求抛物线的解析式;(2)如图2,连接,,直线交抛物线的对称轴于点,若点是直线上方抛物线上一点,且,求点的坐标;(3)若点是抛物线对称轴上位于点上方的一动点,是否存在以点,,为顶点的三角形是等腰三角形,若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.同步训练:(2024·四川泸州·中考真题)如图,在平面直角坐标系中,已知抛物线经过点,与y轴交于点B,且关于直线对称.(1)求该抛物线的解析式;(2)当时,y的取值范围是,求t的值;(3)点C是抛物线上位于第一象限的一个动点,过点C作x轴的垂线交直线于点D,在y轴上是否存在点E,使得以B,C,D,E为顶点的四边形是菱形?若存在,求出该菱形的边长;若不存在,说明理由.解题方法点析已知三定点,探求第四个点,使之构成平行四边形,可以按对角线进行分类,然后利用中点坐标公式求出点的坐标,再验证是否符合限制条件.类型2 特殊三角形例题; (2024·四川眉山·中考真题)如图,抛物线与轴交于点和点,与轴交于点,点在抛物线上. (1)求该抛物线的解析式;(2)当点在第二象限内,且的面积为3时,求点的坐标;(3)在直线上是否存在点,使是以为斜边的等腰直角三角形?若存在,请直接写出点的坐标;若不存在,请说明理由.同步训练:(2024·黑龙江齐齐哈尔·中考真题)综合与探究:如图,在平面直角坐标系中,已知直线与x轴交于点A,与y轴交于点C,过A,C两点的抛物线与x轴的另一个交点为点,点P是抛物线位于第四象限图象上的动点,过点P分别作x轴和y轴的平行线,分别交直线于点E,点F.(1)求抛物线的解析式;(2)点D是x轴上的任意一点,若是以为腰的等腰三角形,请直接写出点D的坐标;(3)当时,求点P的坐标;(4)在(3)的条件下,若点N是y轴上的一个动点,过点N作抛物线对称轴的垂线,垂足为M,连接,则的最小值为______.解题方法点析对于两个定点、两个动点的问题,一般思路是先用一个未知数假设一个相对较简单的动点坐标,然后把这三点看成定点,用该未知数表示另一个动点的坐标,最后再根据动点应满足的条件,求出相应点的坐标.类型3 某种条件下存在特殊平行四边形例题; (20235安徽模拟)在平面直角坐标系中,点是坐标原点,抛物线经过点,对称轴为直线.(1)求的值;(2)已知点在抛物线上,点的横坐标为,点的横坐标为.过点作轴的垂线交直线于点,过点作轴的垂线交直线于点.(ⅰ)当时,求与的面积之和;(ⅱ)在抛物线对称轴右侧,是否存在点,使得以为顶点的四边形的面积为?若存在,请求出点的横坐标的值;若不存在,请说明理由.同步训练:(2023·湖南·统考中考真题)如图,二次函数的图象与轴交于,两点,与轴交于点,其中,. (1)求这个二次函数的表达式;(2)在二次函数图象上是否存在点,使得?若存在,请求出点坐标;若不存在,请说明理由;(3)点是对称轴上一点,且点的纵坐标为,当是锐角三角形时,求的取值范围.类型4:图形变化过程中体现特殊平行四边形(2024 山西)综合与探究问题情境:如图1,四边形ABCD是菱形,过点A作AE⊥BC于点E,过点C作CF⊥AD于点F.猜想证明:(1)判断四边形AECF的形状,并说明理由;深入探究:(2)将图1中的△ABE绕点A逆时针旋转,得到△AHG,点E,B的对应点分别为点G,H.①如图2,当线段AH经过点C时,GH所在直线分别与线段AD,CD交于点M,N.猜想线段CH与MD的数量关系,并说明理由;②当直线GH与直线CD垂直时,直线GH分别与直线AD,CD交于点M,N,直线AH与线CD交于点Q.若AB=5,BE=4,直接写出四边形AMNQ的面积.专 题 训 练1. (2023·山东枣庄·统考中考真题)如图,抛物线经过两点,并交x轴于另一点B,点M是抛物线的顶点,直线AM与轴交于点D. (1)求该抛物线的表达式;(2)若点H是x轴上一动点,分别连接MH,DH,求的最小值;(3)若点P是抛物线上一动点,问在对称轴上是否存在点Q,使得以D,M,P,Q为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.2. (2023·湖南岳阳·统考中考真题)已知抛物线与轴交于两点,交轴于点. (1)请求出抛物线的表达式.(2)如图1,在轴上有一点,点在抛物线上,点为坐标平面内一点,是否存在点使得四边形为正方形?若存在,请求出点的坐标;若不存在,请说明理由.(3)如图2,将抛物线向右平移2个单位,得到抛物线,抛物线的顶点为,与轴正半轴交于点,抛物线上是否存在点,使得?若存在,请求出点的坐标;若不存在,请说明理由.3. (2023·山东烟台·统考中考真题)如图,抛物线与轴交于两点,与轴交于点.抛物线的对称轴与经过点的直线交于点,与轴交于点. (1)求直线及抛物线的表达式;(2)在抛物线上是否存在点,使得是以为直角边的直角三角形 若存在,求出所有点的坐标;若不存在,请说明理由;(3)以点为圆心,画半径为2的圆,点为上一个动点,请求出的最小值.4. (2024·黑龙江大兴安岭地·中考真题)如图,在平面直角坐标系中,等边三角形的边在x轴上,点A在第一象限,的长度是一元二次方程的根,动点P从点O出发以每秒2个单位长度的速度沿折线运动,动点Q从点O出发以每秒3个单位长度的速度沿折线运动,P、Q两点同时出发,相遇时停止运动.设运动时间为t秒(),的面积为S.(1)求点A的坐标;(2)求S与t的函数关系式;(3)在(2)的条件下,当时,点M在y轴上,坐标平面内是否存在点N,使得以点O、P、M、N为顶点的四边形是菱形.若存在,直接写出点N的坐标;若不存在,说明理由.21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)HYPERLINK "http://21世纪教育网(www.21cnjy.com)" 21世纪教育网(www.21cnjy.com) 展开更多...... 收起↑ 资源列表 2025年中考数学复习难题突破专题十讲第六讲特殊几何图形存在性问题(原卷).doc 2025年中考数学复习难题突破专题十讲第六讲特殊几何图形存在性问题(教师卷).doc