2025年中考数学复习难题突破专题十讲第五讲实践与应用(原卷 教师卷)

资源下载
  1. 二一教育资源

2025年中考数学复习难题突破专题十讲第五讲实践与应用(原卷 教师卷)

资源简介

中小学教育资源及组卷应用平台
难题突破专题五 实践与应用
现实生活中存在大量的有关数量关系的问题,需要从所研究的问题中捕捉数量关系,建立相应的数学模型——方程(组)、不等式(组)、函数表达式,再通过对数学模型的研究,使原问题获得解决,为此学生要过好三关:
1.审题关.应用题出题形式多样,如利用对话或图表呈现相关信息.对于文字叙述冗长的问题,要从数学的角度去除无关信息,抓住有用信息,捕捉数量关系,为此学生要提高阅读能力和搜集信息的能力.
2.转化关.在分析数量关系时要抓住反映数量关系的关键词语,如“共”“少”“是”“剩下”等,根据相等、不等关系分别列方程(组)、不等式(组),根据变量之间的对应关系列函数表达式,切忌混淆数量关系,建立错误的数学模型.
3.解题关.加强解方程(组)、不等式(组)的训练,确保求解正确,充分考虑结果的多样性,使答案简明、准确.
在空间与图形的综合题中,常遇到求未知几何量或探索存在性问题,可通过探索图形性质,寻找未知几何量和已知几何量之间的等量关系或不等关系,列出方程(组)或不等式(组),利用其有解、无解探索存在性问题,通过求解来求几何量.
类型1 分析数量之间的相等或不等关系,建立方程(组)或不等式(组)
例题:(2024·湖南·中考真题)某村决定种植脐橙和黄金贡柚,助推村民增收致富,已知购买1棵脐橙树苗和2棵黄金贡柚树苗共需110元;购买2棵脐橙树苗和3棵黄金贡柚树苗共需190元.
(1)求脐橙树苗和黄金贡柚树苗的单价;
(2)该村计划购买脐橙树苗和黄金贡柚树苗共1000棵,总费用不超过38000元,问最多可以购买脐橙树苗多少棵?
【分析】本题考查了二元一次方程组的应用、一元一次不等式的应用,解题的关键是:
(1)设脐橙树苗和黄金贡柚树苗的单价分别为x元/棵,y元/棵,根据“购买1棵脐橙树苗和2棵黄金贡柚树苗共需110元;购买2棵脐橙树苗和3棵黄金贡柚树苗共需190元”列方程组求解即可;
(2)购买脐橙树苗a棵,根据“总费用不超过38000元”列不等式求解即可.本号资料全部来源于微信公众号:数学*第六感
【详解】(1)解:设脐橙树苗和黄金贡柚树苗的单价分别为x元/棵,y元/棵,
根据题意,得,
解得,
答:脐橙树苗和黄金贡柚树苗的单价分别为50元/棵,30元/棵;
(2)解:设购买脐橙树苗a棵,则购买黄金贡柚树苗棵,
根据题意,得,
解得,
答:最多可以购买脐橙树苗400棵.
同步训练:(2024·贵州·中考真题)为增强学生的劳动意识,养成劳动的习惯和品质,某校组织学生参加劳动实践.经学校与劳动基地联系,计划组织学生参加种植甲、乙两种作物.如果种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物和2亩乙作物需要22名学生.
根据以上信息,解答下列问题:
(1)种植1亩甲作物和1亩乙作物分别需要多少名学生?
(2)种植甲、乙两种作物共10亩,所需学生人数不超过55人,至少种植甲作物多少亩?
【答案】(1)种植1亩甲作物和1亩乙作物分别需要5、6名学生
(2)至少种植甲作物5亩
【分析】本题考查了二元一次方程组的应用,一元一次不等式的应用,
(1)设种植1亩甲作物和1亩乙作物分别需要x、y名学生,根据“种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物和2亩乙作物需要22名”列方程组求解即可;
(2)设种植甲作物a亩,则种植乙作物亩,根据“所需学生人数不超过55人”列不等式求解即可.
【详解】(1)解:设种植1亩甲作物和1亩乙作物分别需要x、y名学生,
根据题意,得,
解得,
答:种植1亩甲作物和1亩乙作物分别需要5、6名学生;
(2)解:设种植甲作物a亩,则种植乙作物亩,
根据题意,得:,
解得,
答:至少种植甲作物5亩.
类型2 分析数量之间的对应关系,建立函数表达式
例题:(2024·内蒙古呼伦贝尔·中考真题)某超市从某水果种植基地购进甲、乙两种优质水果,经调查,这两种水果的进价和售价如表所示:
水果种类 进价(元/千克) 售价(元/千克)
甲 22
乙 25
该超市购进甲种水果18千克和乙种水果6千克需366元:购进甲种水果30千克和乙种水果15千克需705元.
(1)求的值;
(2)该超市决定每天购进甲、乙两种水果共150千克进行销售,其中甲种水果的数量不少于50千克,且不大于120千克.实际销售时,若甲种水果超过80千克,则超过部分按每千克降价5元销售.求超市当天销售完这两种水果获得的利润(元)与购进甲种水果的数量(千克)之间的函数关系式(写出自变量的取值范围),并求出在获得最大利润时,超市的进货方案以及最大利润.
【答案】(1),
(2),购进甲种水果80千克,乙种水果70千克,最大利润为1060元
【分析】本题考查了二元一次方程组的应用,一次函数的应用,解题的关键是∶
(1)根据“购进甲种水果18千克和乙种水果6千克需366元:购进甲种水果30千克和乙种水果15千克需705元”列方程求解即可;
(2)分,两种情况讨论,根据总利润等于甲的利润与乙的利润列出函数关系式,然后利用一次函数的性质求解即可.
【详解】(1)解:根据题意,得,
解得;
(2)解:当时,
根据题意,得,
∵,
∴随的增大而增大,
∴当时,有最大值,最大值为,
即购进甲种水果80千克,乙种水果70千克,最大利润为1060元;
当时,
根据题意,得,
∵,
∴随的增大而减小,
∴时,有最大值,最大值为,
即购进甲种水果80千克,乙种水果70千克,最大利润为1060元;
综上,,购进甲种水果80千克,乙种水果70千克,最大利润为1060元
同步训练:(2024·黑龙江牡丹江·中考真题)一条公路上依次有A、B、C三地,甲车从A地出发,沿公路经B地到C地,乙车从C地出发,沿公路驶向B地.甲、乙两车同时出发,匀速行驶,乙车比甲车早小时到达目的地.甲、乙两车之间的路程与两车行驶时间的函数关系如图所示,请结合图象信息,解答下列问题:
(1)甲车行驶的速度是_____,并在图中括号内填上正确的数;
(2)求图中线段所在直线的函数解析式(不要求写出自变量的取值范围);
(3)请直接写出两车出发多少小时,乙车距B地的路程是甲车距B地路程的3倍.
【答案】(1)70,300
(2)
(3)或
【分析】本题考查一次函数的实际应用,一元一次方程的实际应用,求出A、B、C两两之间的距离是解题的关键.
(1)利用时间、速度、路程之间的关系求解;
(2)利用待定系数法求解;
(3)先求出A、B、C两两之间的距离和乙车的速度,设两车出发x小时,乙车距B地的路程是甲车距B地路程的3倍,分甲乙相遇前、相遇后两种情况,列一元一次方程分别求解即可.
【详解】(1)解:由图可知,甲车小时行驶的路程为,
甲车行驶的速度是,
∴A、C两地的距离为:,
故答案为:70;300;
(2)解:由图可知E,F的坐标分别为,,
设线段所在直线的函数解析式为,
则,
解得,
线段所在直线的函数解析式为;
(3)解:由题意知,A、C两地的距离为:,
乙车行驶的速度为:,
C、B两地的距离为:,
A、B两地的距离为:,
设两车出发x小时,乙车距B地的路程是甲车距B地路程的3倍,
分两种情况,当甲乙相遇前时:

解得;
当甲乙相遇后时:

解得;
综上可知,两车出发或时,乙车距B地的路程是甲车距B地路程的3倍.
类型3 函数与方程、不等式之间的关系
例题; (2024·黑龙江大兴安岭地·中考真题)甲、乙两货车分别从相距的A、B两地同时出发,甲货车从A地出发途经配货站时,停下来卸货,半小时后继续驶往B地,乙货车沿同一条公路从B地驶往A地,但乙货车到达配货站时接到紧急任务立即原路原速返回B地,结果比甲货车晚半小时到达B地.如图是甲、乙两货车距A地的距离与行驶时间之间的函数图象,结合图象回答下列问题:
(1)甲货车到达配货站之前的速度是    ,乙货车的速度是    ;
(2)求甲货车在配货站卸货后驶往B地的过程中,甲货车距A地的距离与行驶时间之间的函数解析式;
(3)直接写出甲、乙两货车在行驶的过程中,出发多长时间甲、乙两货车与配货站的距离相等.
【答案】(1)30,40
(2)的函数解析式是
(3)经过1.5h或或5h甲、乙两货车与配货站的距离相等
【分析】本题考查一次函数的应用,待定系数法求一次函数解析式的运用,认真分析函数图象,读懂函数图象表示的意义是解题关键.
(1)由图象可知甲货车到达配货站路程为,所用时间为,乙货车到达配货站路程为,到达后返回,所用时间为,根据速度=距离÷时间即可得;
(2)甲货车从A地出发途经配货站时,停下来卸货,半小时后继续驶往B地,由图象结合已知条件可知和点,再利用待定系数法求出y与x的关系式即可得答案;
(3)分两车到达配货站之前和乙货车到达配货站时接到紧急任务立即原路原速返回B地后、甲货车卸货,半小时后继续驶往B地,三种情况与配货站的距离相等,分别列方程求出x的值即可得答案.
【详解】(1)解:由图象可知甲货车到达配货站路程为105km,所用时间为3.5h,所以甲货车到达配货站之前的速度是()
∴乙货车到达配货站路程为,到达配货站时接到紧急任务立即原路原速返回B地,总路程为240km,总时间是6h,
∴乙货车速度,
故答案为:30;40
(2)甲货车从A地出发途经配货站时,停下来卸货,半小时后继续驶往B地,由图象可知和点


解得:,
∴甲货车距A地的距离与行驶时间之间的函数解析式
(3)设甲货车出发,甲、乙两货车与配货站的距离相等,
①两车到达配货站之前:,
解得:,
②乙货车到达配货站时开始返回,甲货车未到达配货站:,
解得:,
③甲货车在配货站卸货后驶往B地时:,
解得:,
答:经过或或甲、乙两货车与配货站的距离相等.
同步训练:(2024·内蒙古赤峰·中考真题)一段高速公路需要修复,现有甲、乙两个工程队参与施工,已知乙队平均每天修复公路比甲队平均每天修复公路多3千米,且甲队单独修复60千米公路所需要的时间与乙队单独修复90千米公路所需要的时间相等.
(1)求甲、乙两队平均每天修复公路分别是多少千米;
(2)为了保证交通安全,两队不能同时施工,要求甲队的工作时间不少于乙队工作时间的2倍,那么15天的工期,两队最多能修复公路多少千米?
【答案】(1)甲队平均每天修复公路6千米,则乙队平均每天修复公路9千米;
(2)15天的工期,两队最多能修复公路千米.
【分析】本题考查了分式方程的应用,一元一次不等式的应用,一次函数的应用.
(1)设甲队平均每天修复公路千米,则乙队平均每天修复公路千米,根据“甲队单独修复60千米公路所需要的时间与乙队单独修复90千米公路所需要的时间相等”列分式方程求解即可;
(2)设甲队的工作时间为天,则乙队的工作时间为天,15天的工期,两队能修复公路千米,求得关于的一次函数,再利用“甲队的工作时间不少于乙队工作时间的2倍”求得的范围,利用一次函数的性质求解即可.
【详解】(1)解:设甲队平均每天修复公路千米,则乙队平均每天修复公路千米,
由题意得,
解得,
经检验,是原方程的解,且符合题意,

答:甲队平均每天修复公路6千米,则乙队平均每天修复公路9千米;
(2)解:设甲队的工作时间为天,则乙队的工作时间为天,15天的工期,两队能修复公路千米,
由题意得,

解得,
∵,
∴随的增加而减少,
∴当时,有最大值,最大值为,
答:15天的工期,两队最多能修复公路千米.
专 题 训 练
1. (2024·安徽·中考真题)乡村振兴战略实施以来,很多外出人员返乡创业.某村有部分返乡青年承包了一些田地.采用新技术种植两种农作物.种植这两种农作物每公顷所需人数和投入资金如表:
农作物品种 每公顷所需人数 每公顷所需投入资金(万元)
已知农作物种植人员共位,且每人只参与一种农作物种植,投入资金共万元.问这两种农作物的种植面积各多少公顷?
【答案】农作物的种植面积为公顷,农作物的种植面积为公顷.
【分析】本题考查了二元一次方程组的应用,设农作物的种植面积为公顷,农作物的种植面积为公顷,根据题意列出二元一次方程组即可求解,根据题意,找到等量关系,正确列出二元一次方程组是解题的关键.
【详解】解:设农作物的种植面积为公顷,农作物的种植面积为公顷,
由题意可得,,
解得,
答:设农作物的种植面积为公顷,农作物的种植面积为公顷.
2. (2024·广西·中考真题)综合与实践
在综合与实践课上,数学兴趣小组通过洗一套夏季校服,探索清洗衣物的节约用水策略.
【洗衣过程】
步骤一:将校服放进清水中,加入洗衣液,充分浸泡揉搓后拧干;
步骤二:将拧干后的校服放进清水中,充分漂洗后拧干.重复操作步骤二,直至校服上残留洗衣液浓度达到洗衣目标.
假设第一次漂洗前校服上残留洗衣液浓度为,每次拧干后校服上都残留水.
浓度关系式:.其中、分别为单次漂洗前、后校服上残留洗衣液浓度;w为单次漂洗所加清水量(单位:)
【洗衣目标】经过漂洗使校服上残留洗衣液浓度不高于
【动手操作】请按要求完成下列任务:
(1)如果只经过一次漂洗,使校服上残留洗衣液浓度降为,需要多少清水?
(2)如果把清水均分,进行两次漂洗,是否能达到洗衣目标?
(3)比较(1)和(2)的漂洗结果,从洗衣用水策略方面,说说你的想法.
【答案】(1)只经过一次漂洗,使校服上残留洗衣液浓度降为,需要清水.
(2)进行两次漂洗,能达到洗衣目标;
(3)两次漂洗的方法值得推广学习
【分析】本题考查的是分式方程的实际应用,求解代数式的值,理解题意是关键;
(1)把,代入, 再解方程即可;
(2)分别计算两次漂洗后的残留洗衣液浓度,即可得到答案;
(3)根据(1)(2)的结果得出结论即可.
【详解】(1)解:把,代入
得,
解得.经检验符合题意;
∴只经过一次漂洗,使校服上残留洗衣液浓度降为,需要清水.
(2)解:第一次漂洗:
把,代入,
∴,
第二次漂洗:
把,代入,
∴,
而,
∴进行两次漂洗,能达到洗衣目标;
(3)解:由(1)(2)的计算结果发现:经过两次漂洗既能达到洗衣目标,还能大幅度节约用水,
∴从洗衣用水策略方面来讲,采用两次漂洗的方法值得推广学习.
3. (2024·吉林·中考真题)综合与实践
某班同学分三个小组进行“板凳中的数学”的项目式学习研究,第一小组负责调查板凳的历史及结构特点;第二小组负责研究板凳中蕴含的数学知识:第三小组负责汇报和交流,下面是第三小组汇报的部分内容,请你阅读相关信息,并解答“建立模型”中的问题.
【背景调查】
图①中的板凳又叫“四脚八叉凳”,是中国传统家具,其榫卯结构体现了古人含蓄内敛的审美观.榫眼的设计很有讲究,木工一般用铅笔画出凳面的对称轴,以对称轴为基准向两边各取相同的长度,确定榫眼的位置,如图②所示.板凳的结构设计体现了数学的对称美.
【收集数据】
小组收集了一些板凳并进行了测量.设以对称轴为基准向两边各取相同的长度为,凳面的宽度为,记录如下:
以对称轴为基准向两边各取相同的长度 16.5 19.8 23.1 26.4 29.7
凳面的宽度 115.5 132 148.5 165 181.5
【分析数据】
如图③,小组根据表中x,y的数值,在平面直角坐标系中描出了各点.
【建立模型】
请你帮助小组解决下列问题:
(1)观察上述各点的分布规律,它们是否在同一条直线上?如果在同一条直线上,求出这条直线所对应的函数解析式;如果不在同一条直线上,说明理由.
(2)当凳面宽度为时,以对称轴为基准向两边各取相同的长度是多少?
【答案】(1)在同一条直线上,函数解析式为:
(2)
【分析】本题考查了一次函数的实际应用,待定系数法求函数解析式,已知函数值求自变量,熟练掌握知识点,正确理解题意是解题的关键.
(1)用待定系数法求解即可;
(2)将代入函数解析式,解方程即可.
【详解】(1),
解:设函数解析式为:,
∵当,,
∴,
解得:,
∴函数解析式为:,
经检验其余点均在直线上,
∴函数解析式为,这些点在同一条直线上;
(2)解:把代入得:

解得:,
∴当凳面宽度为时,以对称轴为基准向两边各取相同的长度为.
4. (2024·四川凉山·中考真题)阅读下面材料,并解决相关问题:
下图是一个三角点阵,从上向下数有无数多行,其中第一行有1个点,第二行有2个点……第行有个点……
容易发现,三角点阵中前4行的点数之和为10.
(1)探索:三角点阵中前8行的点数之和为_____,前15行的点数之和为______,那么,前行的点数之和为______
(2)体验:三角点阵中前行的点数之和______(填“能”或“不能”)为500.
(3)运用:某广场要摆放若干种造型的盆景,其中一种造型要用420盆同样规格的花,按照第一排2盆,第二排4盆,第三排6盆……第排盆的规律摆放而成,则一共能摆放多少排?
【答案】(1)36;120;
(2)不能
(3)一共能摆放20排.
【分析】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.
(1)根据图形,总结规律,列式计算即可求解;
(2)根据前n行的点数和是500,即可得出关于n的一元二次方程,解之即可判断;
(2)先得到前n行的点数和是,再根据题意得出关于n的一元二次方程,解之即可得出n的值.
【详解】(1)解:三角点阵中前8行的点数之和为,
前15行的点数之和为,
那么,前行的点数之和为;
故答案为:36;120;;
(2)解:不能,
理由如下:
由题意得,
得,

∴此方程无正整数解,
所以三角点阵中前n行的点数和不能是500;
故答案为:不能;
(3)解:同理,前行的点数之和为,
由题意得,
得,即,
解得或(舍去),
∴一共能摆放20排.
5. (2024·吉林长春·中考真题)区间测速是指在某一路段前后设置两个监控点,根据车辆通过两个监控点的时间来计算车辆在该路段上的平均行驶速度.小春驾驶一辆小型汽车在高速公路上行驶,其间经过一段长度为20千米的区间测速路段,从该路段起点开始,他先匀速行驶小时,再立即减速以另一速度匀速行驶(减速时间忽略不计),当他到达该路段终点时,测速装置测得该辆汽车在整个路段行驶的平均速度为100千米/时.汽车在区间测速路段行驶的路程(千米)与在此路段行驶的时间(时)之间的函数图象如图所示.
(1)的值为________;
(2)当时,求与之间的函数关系式;
(3)通过计算说明在此区间测速路段内,该辆汽车减速前是否超速.(此路段要求小型汽车行驶速度不得超过120千米/时)
【答案】(1)
(2)
(3)没有超速
【分析】本题考查了一次函数的应用、一次函数的图像、求函数解析式等知识点,掌握待定系数法求函数关系式是解题的关键.
(1)由题意可得:当以平均时速为行驶时,小时路程为千米,据此即可解答;
(2)利用待定系数法求解即可;
(3)求出先匀速行驶小时的速度,据此即可解答.
【详解】(1)解:由题意可得:,解得:.
故答案为:.
(2)解:设当时,y与x之间的函数关系式为,
则:,解得:,
∴.
(3)解:当时,,
∴先匀速行驶小时的速度为:,
∵,
∴辆汽车减速前没有超速.
6. (2024·江苏盐城·中考真题)请根据以下素材,完成探究任务.
制定加工方案
生产背景 背景1 ◆某民族服装厂安排70名工人加工一批夏季服装,有“风”“雅”“正”三种样式.◆因工艺需要,每位工人每天可加工且只能加工“风”服装2件,或“雅”服装1件,或“正”服装1件.◆要求全厂每天加工“雅”服装至少10件,“正”服装总件数和“风”服装相等.
背景2 每天加工的服装都能销售出去,扣除各种成本,服装厂的获利情况为:①“风”服装:24元/件;②“正”服装:48元/件;③“雅”服装:当每天加工10件时,每件获利100元;如果每天多加工1件,那么平均每件获利将减少2元.
信息整理 现安排x名工人加工“雅”服装,y名工人加工“风”服装,列表如下:服装种类加工人数(人)每人每天加工量(件)平均每件获利(元)风y224雅x1正148
探究任务 任务1 探寻变量关系 求x、y之间的数量关系.
任务2 建立数学模型 设该工厂每天的总利润为w元,求w关于x的函数表达式.
任务3 拟定加工方案 制定使每天总利润最大的加工方案.
【答案】任务1:;任务2:;任务3:安排17名工人加工“雅”服装,17名工人加工“风”服装,34名工人加工“正”服装,即可获得最大利润
【分析】题目主要考查一次函数及二次函数的应用,理解题意,根据二次函数的性质求解是解题关键.
任务1:根据题意安排x名工人加工“雅”服装,y名工人加工“风”服装,得出加工“正”服装的有人,然后利用“正”服装总件数和“风”服装相等,得出关系式即可得出结果;
任务2:根据题意得:“雅”服装每天获利为:,然后将2种服装的获利求和即可得出结果;
任务3:根据任务2结果化为顶点式,然后结合题意,求解即可.
【详解】解:任务1:根据题意安排70名工人加工一批夏季服装,
∵安排x名工人加工“雅”服装,y名工人加工“风”服装,
∴加工“正”服装的有人,
∵“正”服装总件数和“风”服装相等,
∴,
整理得:;
任务2:根据题意得:“雅”服装每天获利为:,
∴,
整理得:

任务3:由任务2得,
∴当时,获得最大利润,

∴,
∵开口向下,
∴取或,
当时,,不符合题意;
当时,,符合题意;
∴,
综上:安排17名工人加工“雅”服装,17名工人加工“风”服装,34名工人加工“正”服装,即可获得最大利润.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
难题突破专题五 实践与应用
现实生活中存在大量的有关数量关系的问题,需要从所研究的问题中捕捉数量关系,建立相应的数学模型——方程(组)、不等式(组)、函数表达式,再通过对数学模型的研究,使原问题获得解决,为此学生要过好三关:
1.审题关.应用题出题形式多样,如利用对话或图表呈现相关信息.对于文字叙述冗长的问题,要从数学的角度去除无关信息,抓住有用信息,捕捉数量关系,为此学生要提高阅读能力和搜集信息的能力.
2.转化关.在分析数量关系时要抓住反映数量关系的关键词语,如“共”“少”“是”“剩下”等,根据相等、不等关系分别列方程(组)、不等式(组),根据变量之间的对应关系列函数表达式,切忌混淆数量关系,建立错误的数学模型.
3.解题关.加强解方程(组)、不等式(组)的训练,确保求解正确,充分考虑结果的多样性,使答案简明、准确.
在空间与图形的综合题中,常遇到求未知几何量或探索存在性问题,可通过探索图形性质,寻找未知几何量和已知几何量之间的等量关系或不等关系,列出方程(组)或不等式(组),利用其有解、无解探索存在性问题,通过求解来求几何量.
类型1 分析数量之间的相等或不等关系,建立方程(组)或不等式(组)
例题:(2024·湖南·中考真题)某村决定种植脐橙和黄金贡柚,助推村民增收致富,已知购买1棵脐橙树苗和2棵黄金贡柚树苗共需110元;购买2棵脐橙树苗和3棵黄金贡柚树苗共需190元.
(1)求脐橙树苗和黄金贡柚树苗的单价;
(2)该村计划购买脐橙树苗和黄金贡柚树苗共1000棵,总费用不超过38000元,问最多可以购买脐橙树苗多少棵?
同步训练:(2024·贵州·中考真题)为增强学生的劳动意识,养成劳动的习惯和品质,某校组织学生参加劳动实践.经学校与劳动基地联系,计划组织学生参加种植甲、乙两种作物.如果种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物和2亩乙作物需要22名学生.
根据以上信息,解答下列问题:
(1)种植1亩甲作物和1亩乙作物分别需要多少名学生?
(2)种植甲、乙两种作物共10亩,所需学生人数不超过55人,至少种植甲作物多少亩?
类型2 分析数量之间的对应关系,建立函数表达式
例题:(2024·内蒙古呼伦贝尔·中考真题)某超市从某水果种植基地购进甲、乙两种优质水果,经调查,这两种水果的进价和售价如表所示:
水果种类 进价(元/千克) 售价(元/千克)
甲 22
乙 25
该超市购进甲种水果18千克和乙种水果6千克需366元:购进甲种水果30千克和乙种水果15千克需705元.
(1)求的值;
(2)该超市决定每天购进甲、乙两种水果共150千克进行销售,其中甲种水果的数量不少于50千克,且不大于120千克.实际销售时,若甲种水果超过80千克,则超过部分按每千克降价5元销售.求超市当天销售完这两种水果获得的利润(元)与购进甲种水果的数量(千克)之间的函数关系式(写出自变量的取值范围),并求出在获得最大利润时,超市的进货方案以及最大利润.
同步训练:(2024·黑龙江牡丹江·中考真题)一条公路上依次有A、B、C三地,甲车从A地出发,沿公路经B地到C地,乙车从C地出发,沿公路驶向B地.甲、乙两车同时出发,匀速行驶,乙车比甲车早小时到达目的地.甲、乙两车之间的路程与两车行驶时间的函数关系如图所示,请结合图象信息,解答下列问题:
(1)甲车行驶的速度是_____,并在图中括号内填上正确的数;
(2)求图中线段所在直线的函数解析式(不要求写出自变量的取值范围);
(3)请直接写出两车出发多少小时,乙车距B地的路程是甲车距B地路程的3倍.
类型3 函数与方程、不等式之间的关系
例题; (2024·黑龙江大兴安岭地·中考真题)甲、乙两货车分别从相距的A、B两地同时出发,甲货车从A地出发途经配货站时,停下来卸货,半小时后继续驶往B地,乙货车沿同一条公路从B地驶往A地,但乙货车到达配货站时接到紧急任务立即原路原速返回B地,结果比甲货车晚半小时到达B地.如图是甲、乙两货车距A地的距离与行驶时间之间的函数图象,结合图象回答下列问题:
(1)甲货车到达配货站之前的速度是    ,乙货车的速度是    ;
(2)求甲货车在配货站卸货后驶往B地的过程中,甲货车距A地的距离与行驶时间之间的函数解析式;
(3)直接写出甲、乙两货车在行驶的过程中,出发多长时间甲、乙两货车与配货站的距离相等.
同步训练:(2024·内蒙古赤峰·中考真题)一段高速公路需要修复,现有甲、乙两个工程队参与施工,已知乙队平均每天修复公路比甲队平均每天修复公路多3千米,且甲队单独修复60千米公路所需要的时间与乙队单独修复90千米公路所需要的时间相等.
(1)求甲、乙两队平均每天修复公路分别是多少千米;
(2)为了保证交通安全,两队不能同时施工,要求甲队的工作时间不少于乙队工作时间的2倍,那么15天的工期,两队最多能修复公路多少千米?
专 题 训 练
1. (2024·安徽·中考真题)乡村振兴战略实施以来,很多外出人员返乡创业.某村有部分返乡青年承包了一些田地.采用新技术种植两种农作物.种植这两种农作物每公顷所需人数和投入资金如表:
农作物品种 每公顷所需人数 每公顷所需投入资金(万元)
已知农作物种植人员共位,且每人只参与一种农作物种植,投入资金共万元.问这两种农作物的种植面积各多少公顷?
2. (2024·广西·中考真题)综合与实践
在综合与实践课上,数学兴趣小组通过洗一套夏季校服,探索清洗衣物的节约用水策略.
【洗衣过程】
步骤一:将校服放进清水中,加入洗衣液,充分浸泡揉搓后拧干;
步骤二:将拧干后的校服放进清水中,充分漂洗后拧干.重复操作步骤二,直至校服上残留洗衣液浓度达到洗衣目标.
假设第一次漂洗前校服上残留洗衣液浓度为,每次拧干后校服上都残留水.
浓度关系式:.其中、分别为单次漂洗前、后校服上残留洗衣液浓度;w为单次漂洗所加清水量(单位:)
【洗衣目标】经过漂洗使校服上残留洗衣液浓度不高于
【动手操作】请按要求完成下列任务:
(1)如果只经过一次漂洗,使校服上残留洗衣液浓度降为,需要多少清水?
(2)如果把清水均分,进行两次漂洗,是否能达到洗衣目标?
(3)比较(1)和(2)的漂洗结果,从洗衣用水策略方面,说说你的想法.
3. (2024·吉林·中考真题)综合与实践
某班同学分三个小组进行“板凳中的数学”的项目式学习研究,第一小组负责调查板凳的历史及结构特点;第二小组负责研究板凳中蕴含的数学知识:第三小组负责汇报和交流,下面是第三小组汇报的部分内容,请你阅读相关信息,并解答“建立模型”中的问题.
【背景调查】
图①中的板凳又叫“四脚八叉凳”,是中国传统家具,其榫卯结构体现了古人含蓄内敛的审美观.榫眼的设计很有讲究,木工一般用铅笔画出凳面的对称轴,以对称轴为基准向两边各取相同的长度,确定榫眼的位置,如图②所示.板凳的结构设计体现了数学的对称美.
【收集数据】
小组收集了一些板凳并进行了测量.设以对称轴为基准向两边各取相同的长度为,凳面的宽度为,记录如下:
以对称轴为基准向两边各取相同的长度 16.5 19.8 23.1 26.4 29.7
凳面的宽度 115.5 132 148.5 165 181.5
【分析数据】
如图③,小组根据表中x,y的数值,在平面直角坐标系中描出了各点.
【建立模型】
请你帮助小组解决下列问题:
(1)观察上述各点的分布规律,它们是否在同一条直线上?如果在同一条直线上,求出这条直线所对应的函数解析式;如果不在同一条直线上,说明理由.
(2)当凳面宽度为时,以对称轴为基准向两边各取相同的长度是多少?
4. (2024·四川凉山·中考真题)阅读下面材料,并解决相关问题:
下图是一个三角点阵,从上向下数有无数多行,其中第一行有1个点,第二行有2个点……第行有个点……
容易发现,三角点阵中前4行的点数之和为10.
(1)探索:三角点阵中前8行的点数之和为_____,前15行的点数之和为______,那么,前行的点数之和为______
(2)体验:三角点阵中前行的点数之和______(填“能”或“不能”)为500.
(3)运用:某广场要摆放若干种造型的盆景,其中一种造型要用420盆同样规格的花,按照第一排2盆,第二排4盆,第三排6盆……第排盆的规律摆放而成,则一共能摆放多少排?
5. (2024·吉林长春·中考真题)区间测速是指在某一路段前后设置两个监控点,根据车辆通过两个监控点的时间来计算车辆在该路段上的平均行驶速度.小春驾驶一辆小型汽车在高速公路上行驶,其间经过一段长度为20千米的区间测速路段,从该路段起点开始,他先匀速行驶小时,再立即减速以另一速度匀速行驶(减速时间忽略不计),当他到达该路段终点时,测速装置测得该辆汽车在整个路段行驶的平均速度为100千米/时.汽车在区间测速路段行驶的路程(千米)与在此路段行驶的时间(时)之间的函数图象如图所示.
(1)的值为________;
(2)当时,求与之间的函数关系式;
(3)通过计算说明在此区间测速路段内,该辆汽车减速前是否超速.(此路段要求小型汽车行驶速度不得超过120千米/时)
6. (2024·江苏盐城·中考真题)请根据以下素材,完成探究任务.
制定加工方案
生产背景 背景1 ◆某民族服装厂安排70名工人加工一批夏季服装,有“风”“雅”“正”三种样式.◆因工艺需要,每位工人每天可加工且只能加工“风”服装2件,或“雅”服装1件,或“正”服装1件.◆要求全厂每天加工“雅”服装至少10件,“正”服装总件数和“风”服装相等.
背景2 每天加工的服装都能销售出去,扣除各种成本,服装厂的获利情况为:①“风”服装:24元/件;②“正”服装:48元/件;③“雅”服装:当每天加工10件时,每件获利100元;如果每天多加工1件,那么平均每件获利将减少2元.
信息整理 现安排x名工人加工“雅”服装,y名工人加工“风”服装,列表如下:服装种类加工人数(人)每人每天加工量(件)平均每件获利(元)风y224雅x1正148
探究任务 任务1 探寻变量关系 求x、y之间的数量关系.
任务2 建立数学模型 设该工厂每天的总利润为w元,求w关于x的函数表达式.
任务3 拟定加工方案 制定使每天总利润最大的加工方案.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)

展开更多......

收起↑

资源列表