资源简介 中小学教育资源及组卷应用平台难题突破专题八 类比、拓展探究问题类比、拓展探究题是近两年中考热门考题,题型的模式基本分为三步:初步尝试、类比发现、深入探究,考查的知识点有:三角形旋转、平行四边形性质、相似、全等、矩形折叠、勾股定理等.此类问题解答往往是层层深入,从特殊到一般,然后是拓展运用.在解题时需要牢牢把握特殊情况、特殊位置下的结论,然后探寻一般情况下是否也成立,最后是类比应用.类比模仿是解决此类问题的重要手段.例题1:模型探究问题(2024·甘肃·中考真题)【模型建立】(1)如图1,已知和,,,,.用等式写出线段,,的数量关系,并说明理由.【模型应用】(2)如图2,在正方形中,点E,F分别在对角线和边上,,.用等式写出线段,,的数量关系,并说明理由.【模型迁移】(3)如图3,在正方形中,点E在对角线上,点F在边的延长线上,,.用等式写出线段,,的数量关系,并说明理由.【答案】(1),理由见详解,(2),理由见详解,(3),理由见详解【分析】(1)直接证明,即可证明;(2)过E点作于点M,过E点作于点N,先证明,可得,结合等腰直角三角形的性质可得:, ,即有,,进而可得,即可证;(3)过A点作于点H,过F点作,交的延长线于点G,先证明,再结合等腰直角三角形的性质,即可证明.【详解】(1),理由如下:∵,,,∴,∴,∴,∵,∴,∴,,∴,∴;(2),理由如下:过E点作于点M,过E点作于点N,如图,∵四边形是正方形,是正方形的对角线,∴,平分,,∴,即,∵,,∴,∵,∴,∴,∵,,,,∴四边形是正方形,∴是正方形对角线,,∴, ,∴,,∴,即,∵,∴,即有;(3),理由如下,过A点作于点H,过F点作,交的延长线于点G,如图,∵,,,∴,∴,∴,又∵,∴,∴,∵在正方形中,,∴,∴,∴是等腰直角三角形,∴,∴,∵,,∴是等腰直角三角形,∴,∴,∴,∵,∴,∴.【点睛】本题主要考查了正方形的性质,等腰直角三角形的性质,全等三角形的判定与性质,角平分线的性质等知识,题目难度中等,作出合理的辅助线,灵活证明三角形的全等,并准确表示出各个边之间的数量关系,是解答本题的关键.例题2:作图探究问题:(2024·吉林·中考真题)小明在学习时发现四边形面积与对角线存在关联,下面是他的研究过程: 【探究论证】(1)如图①,在中,,,垂足为点D.若,,则______.(2)如图②,在菱形中,,,则______.(3)如图③,在四边形中,,垂足为点O.若,,则______;若,,猜想与a,b的关系,并证明你的猜想.【理解运用】(4)如图④,在中,,,,点P为边上一点.小明利用直尺和圆规分四步作图:(ⅰ)以点K为圆心,适当长为半径画弧,分别交边,于点R,I;(ⅱ)以点P为圆心,长为半径画弧,交线段于点;(ⅲ)以点为圆心,长为半径画弧,交前一条弧于点,点,K在同侧;(ⅳ)过点P画射线,在射线上截取,连接,,.请你直接写出的值.【答案】(1)2,(2)4,(3),,证明见详解,(4)10【分析】(1)根据三角形的面积公式计算即可;(2)根据菱形的面积公式计算即可;(3)结合图形有,,即可得,问题随之得解;(4)先证明是直角三角形,由作图可知:,即可证明,再结合(3)的结论直接计算即可.【详解】(1)∵在中,,,,∴,∴,∴,故答案为:2;(2)∵在菱形中,,,∴,故答案为:4;(3)∵,∴,,∵,∴,∴,∵,,∴,故答案为:,猜想:,证明:∵,∴,,∵,∴,∴,∵,,∴;(4)根据尺规作图可知:,∵在中,,,,∴,∴是直角三角形,且,∴,∵,∴,∴,∵,,∴根据(3)的结论有:.【点睛】本题考查了等腰三角形的性质,菱形的性质,作一个角等于已知角的尺规作图,勾股定理的逆定理等知识,难度不大,掌握作一个角等于已知角的尺规作图方法,是解答本题的关键.例题3:剪切拼接问题(2024·河北·中考真题)情境 图1是由正方形纸片去掉一个以中心O为顶点的等腰直角三角形后得到的.该纸片通过裁剪,可拼接为图2所示的钻石型五边形,数据如图所示.(说明:纸片不折叠,拼接不重叠无缝隙无剩余)操作 嘉嘉将图1所示的纸片通过裁剪,拼成了钻石型五边形.如图3,嘉嘉沿虚线,裁剪,将该纸片剪成①,②,③三块,再按照图4所示进行拼接.根据嘉嘉的剪拼过程,解答问题:(1)直接写出线段的长;(2)直接写出图3中所有与线段相等的线段,并计算的长.探究淇淇说:将图1所示纸片沿直线裁剪,剪成两块,就可以拼成钻石型五边形.请你按照淇淇的说法设计一种方案:在图5所示纸片的边上找一点P(可以借助刻度尺或圆规),画出裁剪线(线段)的位置,并直接写出的长.【答案】(1);(2),;的长为或.【分析】本题考查的是正方形的性质,等腰直角三角形的判定与性质,勾股定理的应用,二次根式的混合运算,本题要求学生的操作能力要好,想象能力强,有一定的难度.(1)如图,过作于,结合题意可得:四边形为矩形,可得,由拼接可得:,可得,,为等腰直角三角形,为等腰直角三角形,设,则,再进一步解答即可;(2)由为等腰直角三角形,;求解,再分别求解;可得答案,如图,以为圆心,为半径画弧交于,交于,则直线为分割线,或以圆心,为半径画弧,交于,交于,则直线为分割线,再进一步求解的长即可.【详解】解:如图,过作于,结合题意可得:四边形为矩形,∴,由拼接可得:,由正方形的性质可得:,∴,,为等腰直角三角形,∴为等腰直角三角形,设,∴,∴,,∵正方形的边长为,∴对角线的长,∴,∴,解得:,∴;(2)∵为等腰直角三角形,;∴,∴,∵,,∴;如图,以为圆心,为半径画弧交于,交于,则直线为分割线,此时,,符合要求,或以圆心,为半径画弧,交于,交于,则直线为分割线,此时,,∴,综上:的长为或.例4:旋转变化问题探究(2024 牡丹江)数学老师在课堂上给出了一个问题,让同学们探究.在Rt△ABC中,∠ACB=90°,∠BAC=30°,点D在直线BC上,将线段AD绕点A顺时针旋转60°得到线段AE,过点E作EF∥BC,交直线AB于点F.(1)当点D在线段BC上时,如图①,求证:BD+EF=AB;分析问题:某同学在思考这道题时,想利用AD=AE构造全等三角形,便尝试着在AB上截取AM=EF,连接DM,通过证明两个三角形全等,最终证出结论:推理证明:写出图①的证明过程:探究问题:(2)当点D在线段BC的延长线上时,如图②:当点D在线段CB的延长线上时,如图③,请判断并直接写出线段BD,EF,AB之间的数量关系;拓展思考:(3)在(1)(2)的条件下,若AC=6,CD=2BD,则EF= 10或18 .【分析】(1)在AB边上截取AM=EF,连接DM,根据题意证明出△DAM≌△AEF(SAS),得到AF=DM,然后证明出△BMD是等边三角形,得到BD=BM=DM,进而求解即可;(2)图②:在BD上取点H,使BH=AB,连接AH并延长到点G使AG=AF,连接DG,首先证明出△ABH是等边三角形,得到∠BAH=60°,然后求出∠BAH=∠DAE,然后证明出△FAE≌△GAD(SAS),得到EF=DG,∠AFE=∠G,然后证明出△DHG是等边三角形,得到DH=DG=EF,进而求解即可;图③:在EF上取点H使AH=AF,同理证明出△EAH≌△ADB(AAS),得到BD=AH,AB=EH,进而求解即可;(3)根据勾股定理和含30°角直角三角形的性质求出BC=6,AB=12,然后结合CD=2BD,分别(1)(2)的条件下求出BD的长度,进而求解即可.【解答】(1)证明:在Rt△ABC中,∠ACB=90°,∠BAC=30°,点D在直线BC上,将线段AD绕点A顺时针旋转60°得到线段AE,过点E作EF∥BC,交直线AB于点F.在AB边上截取AM=EF,连接DM.如图1,∴∠B=90°﹣∠BAC=90°﹣30°=60°.∵EF∥BC,∴∠EFB=∠B=60°.又∵∠EAD=60°,∴∠EFB=∠EAD.又∵∠BAD=∠EAD﹣∠EAF,∠AEF=∠EFB﹣∠EAF,∴∠BAD=∠AEF.又∵AD=AE,AM=EF,∴△DAM≌△AEF(SAS).∴AF=DM.∴∠AMD=∠EFA=180°﹣∠EFB=180°﹣60°=120°.∴∠BMD=180°﹣∠AMD=180°﹣120°=60°.∵∠B=60°,∴∠BMD=∠B=∠BDM.∴△BMD是等边三角形.∴BD=BM=DM,∵AB=AM+BM,∴AB=EF+BD;(2)解:图②:AB=BD﹣EF,证明如下:如图2.1所示,在BD上取点H,使BH=AB,连接AH并延长到点G使AG=AF,连接DG,∵∠ABC=60°,∴△ABH是等边三角形,∴∠BAH=60°,∵线段AD绕点A顺时针旋转60°得到线段AE,∴∠DAE=60°,AE=AD,∴∠BAH=∠DAE,∴∠BAH﹣∠EAH=∠DAE﹣∠EAH,即∠BAE=∠HAD,又∵AG=AF,∴△FAE≌△GAD(SAS),∴EF=DG,∠AFE=∠G,∵BD∥EF,∴∠ABC=∠F=∠G=60°,∵∠DHG=∠AHB=60°,∴△DHG是等边三角形,∴DH=DG=EF,∴AB=BH=BD﹣DH=BD﹣EF;图③:AB=EF﹣BD,证明如下:如图2.2所示,在EF上取点H使AH=AF,∵EF∥BC,∴∠F=∠ABC=60°,∵AH=AF,∴△AHF是等边三角形,∴∠AHF=∠HAF=60°,∴∠AHE=120°,∵将线段AD绕点A顺时针旋转60°得到线段AE,∴AD=AE,∠DAE=60°,∴∠DAB+∠EAH=180°﹣∠EAD﹣∠HAF=60°,∵∠D+∠DAB=∠ABC=60°,∴∠D=∠EAH,∵∠DBA=180°﹣∠ABC=120°=∠EHA,又∵AD=AE,∴△EAH≌△ADB(AAS),∴BD=AH,AB=EH,∵AH=FH,∴BD=HF,∴AB=EH=EF﹣FH=EF﹣BD;(3)解:如图3.1所示,∵∠BAC=30°,∠C=90°,∴AB=2BC,AB2=BC2+AC2,∴,∴BC=6,∴AB=2BC=12,∵CD=2BD,BC=BD+CD,∴,由(1)可知,BD+EF=AB,∴EF=AB﹣BD=12﹣2=10;如图3.2所示,当点D在线段BC的延长线上时,∵CD<BD,与CD=2BD矛盾,∴不符合题意;如图3.3所示,当点D在线段CB的延长线上时,∵CD=2BD=BD+BC,BC=6,∴BD=BC=6,由(2)可知,AB=EF﹣BD,∵AB=2BC=12,∴EF=AB+BD=12+6=18.综上所述,EF=10或18,故答案为:10或18.【点评】此题考查了全等三角形的性质和判定,勾股定理,等边三角形的性质和判定,含30°角直角三角形的性质,解题的关键是掌握以上知识点.专 题 训 练1. (2024·吉林长春·中考真题)【问题呈现】小明在数学兴趣小组活动时遇到一个几何问题:如图①,在等边中,,点、分别在边、上,且,试探究线段长度的最小值.【问题分析】小明通过构造平行四边形,将双动点问题转化为单动点问题,再通过定角发现这个动点的运动路径,进而解决上述几何问题.【问题解决】如图②,过点、分别作、的平行线,并交于点,作射线.在【问题呈现】的条件下,完成下列问题:(1)证明:;(2)的大小为 度,线段长度的最小值为________.【方法应用】某种简易房屋在整体运输前需用钢丝绳进行加固处理,如图③.小明收集了该房屋的相关数据,并画出了示意图,如图④,是等腰三角形,四边形是矩形,米,.是一条两端点位置和长度均可调节的钢丝绳,点在上,点在上.在调整钢丝绳端点位置时,其长度也随之改变,但需始终保持.钢丝绳长度的最小值为多少米.【答案】问题解决:(1)见解析(2)30,;方法应用:线段长度的最小值为米【分析】(1)过点、分别作、的平行线,并交于点,作射线,根据平行四边形性质证明结论即可;(2)先证明,根据垂线段最短求出最小值;(3)过点、分别作、的平行线,并交于点,作射线,连接,求出,进而得,利用垂线段最短求出即可.【详解】解:问题解决:(1)证明:过点、分别作、的平行线,并交于点,作射线,四边形是平行四边形,;(2)在等边中,,;当时,最小,此时最小,在中,,线段长度的最小值为;方法应用:过点、分别作、的平行线,并交于点,作射线,连接,四边形是平行四边形,,四边形是矩形,当时,最小,此时最小,作于点R,在中,,在中,,线段长度的最小值为米.【点睛】本题考查了平行四边形的判定与性质、等腰三角形的判定与性质、三角形外角的性质,垂线段最短及矩形性质,熟练掌握相关性质是解题关键.2. (2024·青海·中考真题)综合与实践顺次连接任意一个四边形的中点得到一个新四边形,我们称这个新四边形为原四边形的中点四边形.数学兴趣小组通过作图、测量,猜想:原四边形的对角线对中点四边形的形状有着决定性作用.以下从对角线的数量关系和位置关系两个方面展开探究.【探究一】原四边形对角线关系 中点四边形形状不相等、不垂直 平行四边形如图1,在四边形中,E、F、G、H分别是各边的中点.求证:中点四边形是平行四边形.证明:∵E、F、G、H分别是、、、的中点,∴、分别是和的中位线,∴,(____①____)∴.同理可得:.∴中点四边形是平行四边形.结论:任意四边形的中点四边形是平行四边形.(1)请你补全上述过程中的证明依据①________【探究二】原四边形对角线关系 中点四边形形状不相等、不垂直 平行四边形菱形从作图、测量结果得出猜想Ⅰ:原四边形的对角线相等时,中点四边形是菱形.(2)下面我们结合图2来证明猜想Ⅰ,请你在探究一证明结论的基础上,写出后续的证明过程.【探究三】原四边形对角线关系 中点四边形形状不相等、不垂直 平行四边形②________(3)从作图、测量结果得出猜想Ⅱ:原四边形对角线垂直时,中点四边形是②________.(4)下面我们结合图3来证明猜想Ⅱ,请你在探究一证明结论的基础上,写出后续的证明过程.【归纳总结】(5)请你根据上述探究过程,补全下面的结论,并在图4中画出对应的图形.原四边形对角线关系 中点四边形形状③________ ④________结论:原四边形对角线③________时,中点四边形是④________.【答案】(1)①中位线定理(2)证明见解析(3)②矩形(4)证明见解析(5)补图见解析;③且;④正方形【分析】本题考查了三角形中位线定理,平行四边形的判定和性质,菱形的判定和性质,矩形的判定和性质等知识(1)利用三角形中位线定理即可解决问题;(2)根据三角形中位线定理,菱形判定定理即可解决问题;(3)根据三角形中位线定理,矩形判定定理即可解决问题;(4)根据三角形中位线定理,矩形判定定理即可解决问题;(5)根据三角形中位线定理,正方形判定定理即可解决问题.【详解】(1)①证明依据是:中位线定理;(2)证明:∵分别是的中点,∴分别是和的中位线,∴,∴.同理可得:.∵∴∴中点四边形是菱形.(3)②矩形;故答案为:矩形(4)证明∵分别是的中点,∴分别是和的中位线,∴,,∴.同理可得:.∵∴,∴∴中点四边形是矩形.(5)证明:如图4,∵分别是的中点,∴分别是和的中位线,∴,∴.同理可得:.∵∴∴中点四边形是菱形.∵由(4)可知∴菱形是正方形.故答案为:③且;④正方形 3. (2024 成都)数学活动课上,同学们将两个全等的三角形纸片完全重合放置,固定一个顶点,然后将其中一个纸片绕这个顶点旋转,来探究图形旋转的性质.已知三角形纸片ABC和ADE中,AB=AD=3,BC=DE=4,∠ABC=∠ADE=90°.【初步感知】(1)如图1,连接BD,CE,在纸片ADE绕点A旋转过程中,试探究的值.【深入探究】(2)如图2,在纸片ADE绕点A旋转过程中,当点D恰好落在△ABC的中线BM的延长线上时,延长ED交AC于点F,求CF的长.【拓展延伸】(3)在纸片ADE绕点A旋转过程中,试探究C,D,E三点能否构成直角三角形.若能,直接写出所有直角三角形CDE的面积;若不能,请说明理由.【分析】(1)证明△ADE≌△ABC(SAS),求出AC=AE=5,可得∠DAE=∠BAC,故∠CAE=∠BAD,又==1,可得ΔADB∽△AEC,从而==;(2)连接CE,延长BM交CE于点Q,连接AQ交EF于P,延长EF交BC于N,由ΔADB∽△AEC,得∠ABD=∠ACE,求出BM=AM=CM=AC=,证明AB∥CE,即可得△BAM≌△QCM(AAS),BM=QM,从而四边形ABCQ矩形,有AB=CQ=3,BC=AQ=4,∠AQC=90°,PQ∥CN,得EQ==3,可得PQ是△CEN的中位线,PQ=CN,设PQ=x,证明△EQP≌△ADP(AAS),得EP=AP=4﹣x,故(4﹣x)2=x2+32,x=,AP=,CN=,由△APF∽ΔCNF,得=,可得=,CF=;(3)分四种情况分别画出图形解答即可.【解答】解:(1)∵AB=AD=3,BC=DE=4,∠ABC=∠ADE=90°,∴△ADE≌△ABC(SAS),AC=AE==5,∴∠DAE=∠BAC,∴∠DAE﹣∠DAC=∠BAC﹣∠DAC 即∠CAE=∠BAD,∵==1,∴△ADB∽△AEC,∴=,∵AB=3,AC=5,∴=;(2)连接CE,延长BM交CE于点Q,连接AQ交EF于P,延长EF交BC于N,如图:同(1)得△ADB∽△AEC,∴∠ABD=∠ACE,∵BM是中线,∴BM=AM=CM=AC=,∴∠MBC=∠MCB,∵∠ABD+∠MBC=90°,∴∠ACE+∠MCB=90°,即∠BCE=90°,∴AB∥CE,∴∠BAM=∠QCM,∠ABM=∠CQM,又AM=CM,∴△BAM≌△QCM(AAS),∴BM=QM,∴四边形ABCQ是平行四边形,∵∠ABC=90°∴四边形ABCQ矩形,∴AB=CQ=3,BC=AQ=4,∠AQC=90°,PQ∥CN,∴EQ===3,∴EQ=CQ,∴PQ是△CEN的中位线,∴PQ=CN,设PQ=x,则CN=2x,AP=4﹣x,∵∠EPQ=∠APD,∠EQP=90°=∠ADP,EQ=AD=3,∴△EQP≌△ADP(AAS),∴EP=AP=4﹣x,∵EP2=PQ2+EQ2,∴(4﹣x)2=x2+32,解得:x=,∴AP=4﹣x=,CN=2x=,∵PQ∥CN,∴△APF∽△CNF,∴=,∴==,∵AC=5,∴=,∴CF=;方法2:∵BM是Rt△ABC斜边AC上的中线,∴AM=BM=CM=AC=,∴∠ABM=∠BAM,∵AB=AD,∴∠ABM=∠ADB,∴∠BAM=∠ADB,∵∠ABM=∠DBA,∴△ABM∽△DBA,∴=,即=,∴BD=,∴DM=BD﹣BM=﹣=,∵∠EAD=∠CAB=∠ABD=∠ADB,∴DM∥AE,∴△FDM∽△FEA,∴=,即=,解得FM=,∴CF=CM﹣FM=﹣=;(3)C,D,E三点能构成直角三角形,理由如下:①当AD在AC上时,DE⊥AC,此时△CDE是直角三角形,如图,∴S△CDE=CD DE=×(5﹣3)×4=4;②当AD在CA的延长线上时,DE⊥AC,此时△CDE是直角三角形,如图,∴S△CDE=CD DE=×(5+3)×4=16;③当DE⊥EC时,△CDE是直角三角形,过点A作AQ⊥EC于点Q,如图,∵AQ⊥EC,DE⊥EC,DE⊥AD,∴四边形ADEQ是矩形,∴AD=EQ=3,AQ=DE=4,∵AE=AC=5,∴EQ=CQ=CE,∴CE=3,∴CE=6,∴S△CDE=AQ CE=×4×6=12;④当DC⊥EC时,△CDE是直角三角形,过点A作AQ⊥EC于点Q,交DE于点N,如图,∵DC⊥EC,AQ⊥EC,∴AQ∥DC,∵AC=AE,AQ⊥EC,∴EQ=CQ,∴NQ是△CDE的中位线,∴ND=NE=DE=2,CD=2NQ,∵∠AND=∠ENQ,∠ADN=∠EQN=90°,∴∠DAN=∠QEN,∴tan∠DAN=tan∠QEN,∴=,∴=,∴NQ=EQ,∵NQ2+EQ2=NE2,∴(EQ)2+EQ2=22,解得EQ=,∴CE=2EQ=,NQ=EQ=,∴CD=2NQ=,∴S△CDE=CD CE=××=.综上所述,直角三角形CDE的面积为4或16或12或.【点评】本题考查三角形相似的综合应用,涉及旋转的性质,三角形中位线定理,三角形全等的判定和性质,三角函数的应用,勾股定理等知识,熟练掌握三角函数的应用,三角形相似的判定和性质,矩形的判定和性质,中位线定理是解题的关键.4. (2024 贵州)综合与探究:如图,∠AOB=90°,点P在∠AOB的平分线上,PA⊥OA于点A.(1)【操作判断】如图①,过点P作PC⊥OB于点C,根据题意在图①中画出PC,图中∠APC的度数为 90 度;(2)【问题探究】如图②,点M在线段AO上,连接PM,过点P作PN⊥PM交射线OB于点N,求证:OM+ON=2PA;(3)【拓展延伸】点M在射线AO上,连接PM,过点P作PN⊥PM交射线OB于点N,射线NM与射线PO相交于点F,若ON=3OM,求的值.【分析】(1)依题意画出图形,证四边形OAPC是矩形即可求解;(2)过P作PC⊥OB于点C,证矩形OAPC是正方形,得出OA=AP=PC=OC,再证△APM≌△CPN(ASA),得出AM=CN,然后利用线段的和差关系以及等量代换即可证明;(3)分M在线段AO上和AO的延长线上讨论,利用相似三角形的判定和性质求解即可.【解答】(1)解:如图,PC即为所求.∵∠AOB=90°,PA⊥OA,PC⊥OB,∴四边形OAPC是矩形,∴∠APC=90°,故答案为:90.(2)证明:如图,过P作PC⊥OB于点C.由(!)知四边形OAPC是矩形,∵点P在∠AOB的平分线上,PA⊥OA,PC⊥OB,∴PA=PC,∴矩形OAPC是正方形,∴OA=AP=PC=OC,∠APC=90°,∵PN⊥PM,∴∠APM=∠CPN=90°﹣∠MPC,又∠MAP=∠CNP=90°,AP=CP,∴△APM≌△CPN(ASA),∴AM=CN,∴OM+ON=OM+AC+CN=OM+AM+OC=OA+OC=2AP,∴OM+ON=2PA.(3)①当M在线段AO上时,如图,延长NM、PA交于点G.由(2)知OM+ON=2AP,设OM=x,则ON=3x,OA=AP=2x.∴AM=AO﹣OM=x=OM,∵∠MON=∠MAG=90°,∠OMN=∠AMG,∴△MON≌△MAG(ASA),∴AG=ON=3x,∵AP∥OB,∴△ONF∽△PGF,∴=,∴,∴;②当M在AO的延长线上时,如图,过P作PC⊥OB于C,并延长交MN于G.由(2)知,四边形OAPC是正方形,∴OA=AP=PC=OC,∠APC=90°,PC∥AO,∵PN⊥PM,∠APM=∠CPN=90°﹣∠MPC,又∵∠A=∠PCN=90°,AP=CP,∴△APM≌△CPN,∴AM=CN,∴ON﹣OM=OC+CN﹣OM=AO+AM﹣OM=2AO,∵ON=3OM=x,∴AO=x,CN=AM=2x,∵PC∥AO,∴△CGN∽△OMN,∴,即,∴CG=,∵PC∥AO,∴△OMF∽△PGF,∴==,∴=,∴=;综上,的值为或.【点评】本题考查了四边形综合,同时考查了矩形的判定和性质、正方形的判定和性质、角平分线的性质、全等三角形的判定和性质、相似三角形的判定和性质等知识,明确题意,添加合适的辅助线,构造全等三角形、相似三角形,合理分类讨论是解题的关键.5. (2024 绥化)综合与实践问题情境在一次综合与实践课上,老师让同学们以两个全等的等腰直角三角形纸片为操作对象.纸片△ABC和△DEF满足∠ACB=∠EDF=90°,AC=BC=DF=DE=2cm.下面是创新小组的探究过程.操作发现(1)如图1,取AB的中点O,将两张纸片放置在同一平面内,使点O与点F重合.当旋转△DEF纸片交AC边于点H、交BC边于点G时,设AH=x(1<x<2),BG=y,请你探究出y与x的函数关系式,并写出解答过程.问题解决(2)如图2,在(1)的条件下连接GH,发现△CGH的周长是一个定值.请你写出这个定值,并说明理由.拓展延伸(3)如图3,当点F在AB边上运动(不包括端点A、B),且始终保持∠AFE=60°.请你直接写出△DEF纸片的斜边EF与△ABC纸片的直角边所夹锐角的正切值 2+或2﹣ (结果保留根号).【分析】(1)证明△AFH∽△BGF,可得AH BG=AF BF,求出,可得,故,=2,从而y与x的函数关系式为;(2)求出CH=2﹣x,CG=2﹣y,可得===,将xy=2代入得=,而1<x<2,1<y<2,知x+y>2,故GH=x+y﹣2,可得△CHG 的周长=CH+CG+GH=2﹣x+2﹣y+x+y﹣2=2;(3)分两种情况:①过点F作 FN⊥AC于点N,作FH的垂直平分线交FN于点M,连接MH,求出∠AHF=75°,可得∠NMH=30°,设NH=k,则MH=MF=2k,从而FN=MF+MN=(2+)k,;②过点F作FN⊥BC于点N,作FG的垂直平分线交BG于点M,连接FM,同理可得GN=GM+MN=(2+)k,.【解答】解:(1)如图:∵∠ACB=∠EDF=90°,且 AC=BC=DF=DE=2cm,∴∠A=∠B=∠DFE=45°,∴∠AFH+∠BFG=∠BFG+∠FGB=135°,∴∠AFH=∠FGB,∴△AFH∽△BGF,∴,∴AH BG=AF BF,在 Rt△ACB 中,AC=BC=2,∴,∵O是AB的中点,点O与点F重合,∴,∴,∴,∴y与x的函数关系式为;(2)△CGH的周长定值为2,理由如下:∵AC=BC=2,AH=x,BG=y,∴CH=2﹣x,CG=2﹣y,在Rt△HCG 中,∴===,将(1)中xy=2代入得:=,∵1<x<2,y=,∴1<y<2,∴x+y>2,∴GH=x+y﹣2,∴△CHG 的周长=CH+CG+GH=2﹣x+2﹣y+x+y﹣2=2;(3)①过点F作 FN⊥AC于点N,作FH的垂直平分线交FN于点M,连接MH,如图:∵∠AFE=60°,∠A=45°,∴∠AHF=75°,∴FM=MH,∵∠FNH=90°,∴∠NFH=15°,∵FM=MH,∴∠NFH=∠MHF=15°,∴∠NMH=30°,在 Rt△MNH中,设NH=k,∴MH=MF=2k,∴MN==k,∴FN=MF+MN=(2+)k,在Rt△FNH中,;②过点F作FN⊥BC于点N,作FG的垂直平分线交BG于点M,连接FM,∵∠AFE=60°,∠B=45°,∴∠FGB=∠AFE﹣∠B=15°,∵GM=MF,∴∠FGB=∠GFM=15°,∴∠FMB=30°,在 Rt△FNM中,设FN=k,∴GM=MF=2k,由勾股定理得MN==k,∴GN=GM+MN=(2+)k,在 Rt△FNG 中,,综上所述,tan 或 ,故答案为:2+或2﹣.【点评】本题考查几何变换综合应用,涉及相似三角形判定与性质,等腰直角三角形性质及应用,锐角三角函数,勾股定理及应用等知识,解题的关键是作辅助线,构造直角三角形解决问题.6. (2024 江西)综合与实践如图,在Rt△ABC中,点D是斜边AB上的动点(点D与点A不重合),连接CD,以CD为直角边在CD的右侧构造Rt△CDE,∠DCE=90°,连接BE,=m.特例感知(1)如图1,当m=1时,BE与AD之间的位置关系是 AD⊥BE ,数量关系是 AD=BE .类比迁移(2)如图2,当m≠1时,猜想BE与AD之间的位置关系和数量关系,并证明猜想.拓展应用(3)在(1)的条件下,点F与点C关于DE对称,连接DF,EF,BF,如图3.已知AC=6,设AD=x,四边形CDFE的面积为y.①求y与x的函数表达式,并求出y的最小值;②当BF=2时,请直接写出AD的长度.【分析】(1)由=1,得到CE=CD,CB=CA,根据等腰直角三角形的性质得到∠A=∠ABC=45°,∠ACD=∠BAE,根据全等三角形的性质得到AD=BE,∠A=∠CBE=45°,根据垂直的定义得到AD⊥BE;(2)根据相似三角形的判定定理得到△ADC∽△BEC,求得=m,∠CBE=∠A,得到BE=mAD,根据垂直的定义得到AD⊥BE;(3)①连接CF交DE于O,由(1)知,AC=BC=6,∠ACB=90°,求得AB=6,得到BD=6﹣x,根据勾股定理得到DE2=BD2+BE2=(6﹣x)2+x2,根据线段垂直平分线的性质得到CE=EF,CD=DF,推出四边形CDFE是正方形,根据正方形的面积公式即可得到y=DE2=[(6﹣x)2+x2],根据二次函数的性质即可得到结论;②过D作DH⊥AC于H,根据等腰直角三角形 到现在得到AH=DH=AD=x,求得CH=6﹣x,连接OB,推出OB=,得到∠CBF=90°,根据勾股定理得到结论.【解答】解:(1)AD⊥BE,AD=BE,理由:∵=1,∴CE=CD,CB=CA,∵∠ACB=∠DCE=90°,∴∠A=∠ABC=45°,∠ACD=∠BAE,∴△ACD≌△BCE(SAS),∴AD=BE,∠A=∠CBE=45°,∴∠ABE=90°,∴AD⊥BE;故答案为:AD⊥BE,AD=BE;(2)BE=mAD,AD⊥BE,证明:∵∠ACB=∠DCE=90°,∴∠ACD=∠BAE,∵=m,∴△ADC∽△BEC,∴=m,∠CBE=∠A,∴BE=mAD,∵∠A+∠ABC=90°,∴∠CBE+∠ABC=90°,∴∠ABE=90°,∴AD⊥BE;(3)①连接CF交DE于O,由(1)知,AC=BC=6,∠ACB=90°,∴AB=6,∴BD=6﹣x,∵AD=BE=x,∠DBE=90°,∴DE2=BD2+BE2=(6﹣x)2+x2,∵点F与点C关于DE对称,∴DE垂直平分CF,∴CE=EF,CD=DF,∵CD=CE,∴CD=DF=EF=CE,∵∠DCE=90°,∴四边形CDFE是正方形,∴y=DE2=[(6﹣x)2+x2],∴y与x的函数表达式为y=x2﹣6+36(0<x≤6),∵y=x2﹣6+36=(x﹣3)2+18,∴y的最小值为18;②过D作DH⊥AC于H,则△ADH是等腰直角三角形,∴AH=DH=AD=x,∴CH=6﹣x,连接OB,∴OB=OE=OD=OC=OF,∴OB=,∴∠CBF=90°,∵BC=6,BF=2,∴CF==2∴CD=CF=2,∵CH2+DH2=CD2,∴(6﹣x)2+(x)2=(2)2,解得x=4或x=2,∴AD=4或2.【点评】本题是相似形的综合题,考查了等腰直角三角形的性质,全等三角形的判定和性质,相似三角形的判定和性质,正方形的判定和性质.勾股定理,正确地作出辅助线是解题的关键.21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)HYPERLINK "http://21世纪教育网(www.21cnjy.com)" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台难题突破专题八 类比、拓展探究问题类比、拓展探究题是近两年中考热门考题,题型的模式基本分为三步:初步尝试、类比发现、深入探究,考查的知识点有:三角形旋转、平行四边形性质、相似、全等、矩形折叠、勾股定理等.此类问题解答往往是层层深入,从特殊到一般,然后是拓展运用.在解题时需要牢牢把握特殊情况、特殊位置下的结论,然后探寻一般情况下是否也成立,最后是类比应用.类比模仿是解决此类问题的重要手段.例题1:模型探究问题(2024·甘肃·中考真题)【模型建立】(1)如图1,已知和,,,,.用等式写出线段,,的数量关系,并说明理由.【模型应用】(2)如图2,在正方形中,点E,F分别在对角线和边上,,.用等式写出线段,,的数量关系,并说明理由.【模型迁移】(3)如图3,在正方形中,点E在对角线上,点F在边的延长线上,,.用等式写出线段,,的数量关系,并说明理由.例题2:作图探究问题:(2024·吉林·中考真题)小明在学习时发现四边形面积与对角线存在关联,下面是他的研究过程: 【探究论证】(1)如图①,在中,,,垂足为点D.若,,则______.(2)如图②,在菱形中,,,则______.(3)如图③,在四边形中,,垂足为点O.若,,则______;若,,猜想与a,b的关系,并证明你的猜想.【理解运用】(4)如图④,在中,,,,点P为边上一点.小明利用直尺和圆规分四步作图:(ⅰ)以点K为圆心,适当长为半径画弧,分别交边,于点R,I;(ⅱ)以点P为圆心,长为半径画弧,交线段于点;(ⅲ)以点为圆心,长为半径画弧,交前一条弧于点,点,K在同侧;(ⅳ)过点P画射线,在射线上截取,连接,,.请你直接写出的值.例题3:剪切拼接问题(2024·河北·中考真题)情境 图1是由正方形纸片去掉一个以中心O为顶点的等腰直角三角形后得到的.该纸片通过裁剪,可拼接为图2所示的钻石型五边形,数据如图所示.(说明:纸片不折叠,拼接不重叠无缝隙无剩余)操作 嘉嘉将图1所示的纸片通过裁剪,拼成了钻石型五边形.如图3,嘉嘉沿虚线,裁剪,将该纸片剪成①,②,③三块,再按照图4所示进行拼接.根据嘉嘉的剪拼过程,解答问题:(1)直接写出线段的长;(2)直接写出图3中所有与线段相等的线段,并计算的长.探究淇淇说:将图1所示纸片沿直线裁剪,剪成两块,就可以拼成钻石型五边形.请你按照淇淇的说法设计一种方案:在图5所示纸片的边上找一点P(可以借助刻度尺或圆规),画出裁剪线(线段)的位置,并直接写出的长.例4:旋转变化问题探究(2024 牡丹江)数学老师在课堂上给出了一个问题,让同学们探究.在Rt△ABC中,∠ACB=90°,∠BAC=30°,点D在直线BC上,将线段AD绕点A顺时针旋转60°得到线段AE,过点E作EF∥BC,交直线AB于点F.(1)当点D在线段BC上时,如图①,求证:BD+EF=AB;分析问题:某同学在思考这道题时,想利用AD=AE构造全等三角形,便尝试着在AB上截取AM=EF,连接DM,通过证明两个三角形全等,最终证出结论:推理证明:写出图①的证明过程:探究问题:(2)当点D在线段BC的延长线上时,如图②:当点D在线段CB的延长线上时,如图③,请判断并直接写出线段BD,EF,AB之间的数量关系;拓展思考:(3)在(1)(2)的条件下,若AC=6,CD=2BD,则EF= .专 题 训 练1. (2024·吉林长春·中考真题)【问题呈现】小明在数学兴趣小组活动时遇到一个几何问题:如图①,在等边中,,点、分别在边、上,且,试探究线段长度的最小值.【问题分析】小明通过构造平行四边形,将双动点问题转化为单动点问题,再通过定角发现这个动点的运动路径,进而解决上述几何问题.【问题解决】如图②,过点、分别作、的平行线,并交于点,作射线.在【问题呈现】的条件下,完成下列问题:(1)证明:;(2)的大小为 度,线段长度的最小值为________.【方法应用】某种简易房屋在整体运输前需用钢丝绳进行加固处理,如图③.小明收集了该房屋的相关数据,并画出了示意图,如图④,是等腰三角形,四边形是矩形,米,.是一条两端点位置和长度均可调节的钢丝绳,点在上,点在上.在调整钢丝绳端点位置时,其长度也随之改变,但需始终保持.钢丝绳长度的最小值为多少米.2. (2024·青海·中考真题)综合与实践顺次连接任意一个四边形的中点得到一个新四边形,我们称这个新四边形为原四边形的中点四边形.数学兴趣小组通过作图、测量,猜想:原四边形的对角线对中点四边形的形状有着决定性作用.以下从对角线的数量关系和位置关系两个方面展开探究.【探究一】原四边形对角线关系 中点四边形形状不相等、不垂直 平行四边形如图1,在四边形中,E、F、G、H分别是各边的中点.求证:中点四边形是平行四边形.证明:∵E、F、G、H分别是、、、的中点,∴、分别是和的中位线,∴,(____①____)∴.同理可得:.∴中点四边形是平行四边形.结论:任意四边形的中点四边形是平行四边形.(1)请你补全上述过程中的证明依据①________【探究二】原四边形对角线关系 中点四边形形状不相等、不垂直 平行四边形菱形从作图、测量结果得出猜想Ⅰ:原四边形的对角线相等时,中点四边形是菱形.(2)下面我们结合图2来证明猜想Ⅰ,请你在探究一证明结论的基础上,写出后续的证明过程.【探究三】原四边形对角线关系 中点四边形形状不相等、不垂直 平行四边形②________(3)从作图、测量结果得出猜想Ⅱ:原四边形对角线垂直时,中点四边形是②________.(4)下面我们结合图3来证明猜想Ⅱ,请你在探究一证明结论的基础上,写出后续的证明过程.【归纳总结】(5)请你根据上述探究过程,补全下面的结论,并在图4中画出对应的图形.原四边形对角线关系 中点四边形形状③________ ④________结论:原四边形对角线③________时,中点四边形是④________.3. (2024 成都)数学活动课上,同学们将两个全等的三角形纸片完全重合放置,固定一个顶点,然后将其中一个纸片绕这个顶点旋转,来探究图形旋转的性质.已知三角形纸片ABC和ADE中,AB=AD=3,BC=DE=4,∠ABC=∠ADE=90°.【初步感知】(1)如图1,连接BD,CE,在纸片ADE绕点A旋转过程中,试探究的值.【深入探究】(2)如图2,在纸片ADE绕点A旋转过程中,当点D恰好落在△ABC的中线BM的延长线上时,延长ED交AC于点F,求CF的长.【拓展延伸】(3)在纸片ADE绕点A旋转过程中,试探究C,D,E三点能否构成直角三角形.若能,直接写出所有直角三角形CDE的面积;若不能,请说明理由.4. (2024 贵州)综合与探究:如图,∠AOB=90°,点P在∠AOB的平分线上,PA⊥OA于点A.(1)【操作判断】如图①,过点P作PC⊥OB于点C,根据题意在图①中画出PC,图中∠APC的度数为 90 度;(2)【问题探究】如图②,点M在线段AO上,连接PM,过点P作PN⊥PM交射线OB于点N,求证:OM+ON=2PA;(3)【拓展延伸】点M在射线AO上,连接PM,过点P作PN⊥PM交射线OB于点N,射线NM与射线PO相交于点F,若ON=3OM,求的值.5. (2024 绥化)综合与实践问题情境在一次综合与实践课上,老师让同学们以两个全等的等腰直角三角形纸片为操作对象.纸片△ABC和△DEF满足∠ACB=∠EDF=90°,AC=BC=DF=DE=2cm.下面是创新小组的探究过程.操作发现(1)如图1,取AB的中点O,将两张纸片放置在同一平面内,使点O与点F重合.当旋转△DEF纸片交AC边于点H、交BC边于点G时,设AH=x(1<x<2),BG=y,请你探究出y与x的函数关系式,并写出解答过程.问题解决(2)如图2,在(1)的条件下连接GH,发现△CGH的周长是一个定值.请你写出这个定值,并说明理由.拓展延伸(3)如图3,当点F在AB边上运动(不包括端点A、B),且始终保持∠AFE=60°.请你直接写出△DEF纸片的斜边EF与△ABC纸片的直角边所夹锐角的正切值 2+或2﹣ (结果保留根号).6. (2024 江西)综合与实践如图,在Rt△ABC中,点D是斜边AB上的动点(点D与点A不重合),连接CD,以CD为直角边在CD的右侧构造Rt△CDE,∠DCE=90°,连接BE,=m.特例感知(1)如图1,当m=1时,BE与AD之间的位置关系是 AD⊥BE ,数量关系是 AD=BE .类比迁移(2)如图2,当m≠1时,猜想BE与AD之间的位置关系和数量关系,并证明猜想.拓展应用(3)在(1)的条件下,点F与点C关于DE对称,连接DF,EF,BF,如图3.已知AC=6,设AD=x,四边形CDFE的面积为y.①求y与x的函数表达式,并求出y的最小值;②当BF=2时,请直接写出AD的长度.21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)HYPERLINK "http://21世纪教育网(www.21cnjy.com)" 21世纪教育网(www.21cnjy.com) 展开更多...... 收起↑ 资源列表 2025年中考数学复习难题突破专题十讲第八讲类比拓展研究问题(原卷).doc 2025年中考数学复习难题突破专题十讲第八讲类比拓展研究问题(教师卷).doc