资源简介 (共31张PPT)26.1.2 反比例函数的图象和性质(第2课时)第二十六章 反比例函数人教版数学九年级下册授课教师:********班 级:********时 间:********学习目标理解反比例函数的系数 k 的几何意义,并将其灵活运用于坐标系中图形的面积计算中.2.能解决反比例函数与一次函数的综合问题.3. 深刻领会函数解析式与函数图象之间的联系,体会数形结合及转化的思想方法.互逆命题、互逆定理教案一、教学目标知识与技能目标理解互逆命题、互逆定理的概念,能准确说出一个命题的逆命题。会判断一个命题及它的逆命题的真假性,掌握证明命题真假的方法。过程与方法目标通过对命题、逆命题的分析,培养学生的逻辑思维能力和语言表达能力。经历探究互逆定理的过程,体会从特殊到一般的数学思想。情感态度与价值观目标培养学生积极参与数学活动,敢于质疑、勇于探索的精神。让学生感受数学知识的严谨性和逻辑性,体会数学的应用价值。二、教学重难点重点互逆命题、互逆定理的概念及命题真假的判断。能正确写出一个命题的逆命题。难点判断一个命题的逆命题的真假性,理解原命题为真,其逆命题不一定为真。用逻辑推理的方法证明命题的真假。三、教学方法讲授法、讨论法、练习法相结合四、教学过程(一)导入新课(5 分钟)展示一些简单的命题,如 “如果两个角是对顶角,那么这两个角相等” ,“如果 a=b,那么 a =b ”。引导学生分析这些命题的题设和结论。提问:能否交换这些命题的题设和结论,得到新的命题?新命题是否成立?从而引出本节课的课题 —— 互逆命题、互逆定理。(二)讲授新课(25 分钟)互逆命题给出互逆命题的定义:在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论又是第二个命题的题设,那么这两个命题叫做互逆命题。如果把其中一个命题叫做原命题,那么另一个命题叫做它的逆命题。举例说明:如原命题 “如果两个角是直角,那么这两个角相等”,它的逆命题是 “如果两个角相等,那么这两个角是直角” 。让学生进一步理解互逆命题的概念。组织学生进行小组讨论,每个小组写出 3 - 5 个命题,并交换写出它们的逆命题。命题真假的判断引导学生思考如何判断一个命题的真假。对于真命题,需要通过推理证明;对于假命题,只需举一个反例即可。以刚才的命题为例,分析原命题和逆命题的真假性。如 “如果两个角是直角,那么这两个角相等” 是真命题,而它的逆命题 “如果两个角相等,那么这两个角是直角” 是假命题,因为两个相等的角不一定是直角,还可能是锐角或钝角等。让学生自己判断之前小组讨论中写出的命题及其逆命题的真假性,并在小组内交流。互逆定理给出互逆定理的定义:如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理叫做互逆定理,其中一个定理叫做另一个定理的逆定理。举例说明:如 “两直线平行,同位角相等” 和 “同位角相等,两直线平行” 是互逆定理。强调:并不是所有的定理都有逆定理,只有当定理的逆命题为真命题时,才有逆定理。(三)例题讲解(15 分钟)例 1:写出下列命题的逆命题,并判断其真假。(1)如果 a = 0,那么 ab = 0。(2)全等三角形的对应角相等。(3)等腰三角形的两个底角相等。分析:(1)逆命题为 “如果 ab = 0,那么 a = 0”,这是假命题,因为当 b = 0 时,ab = 0,a 不一定为 0。(2)逆命题为 “对应角相等的三角形是全等三角形”,这是假命题,因为对应角相等的三角形不一定全等,可能是相似三角形。(3)逆命题为 “有两个角相等的三角形是等腰三角形”,这是真命题,它是等腰三角形的判定定理。例 2:证明命题 “如果一个三角形的两个角相等,那么这两个角所对的边也相等” 是真命题。分析:引导学生画出图形,写出已知、求证,然后进行证明。已知:在△ABC 中,∠B = ∠C。求证:AB = AC。证明:作∠BAC 的平分线 AD,交 BC 于点 D。因为 AD 平分∠BAC,所以∠BAD = ∠CAD。在△ABD 和△ACD 中,∠B = ∠C,∠BAD = ∠CAD,AD = AD(公共边),所以△ABD≌△ACD(AAS)。所以 AB = AC。(四)课堂练习(10 分钟)写出下列命题的逆命题,并判断真假。(1)如果 x = 2,那么 x = 4。(2)直角三角形的两个锐角互余。(3)对顶角相等。判断下列说法是否正确:(1)每个命题都有逆命题。(2)每个定理都有逆定理。(3)真命题的逆命题一定是真命题。(4)假命题的逆命题一定是假命题。(五)课堂小结(5 分钟)与学生一起回顾互逆命题、互逆定理的概念,以及如何判断命题的真假。强调:原命题为真,逆命题不一定为真;原命题为假,逆命题也不一定为假。(六)布置作业(5 分钟)课本课后习题,要求学生认真书写解题过程,判断命题真假时要说明理由。拓展作业:收集生活中或数学学习中至少两个互逆命题,并分析它们的真假性。五、教学反思在教学过程中,要注重引导学生积极思考、主动参与,通过实际例子帮助学生理解抽象的概念。对于学生在判断命题真假和写逆命题时容易出现的错误,要及时给予纠正和指导。在今后的教学中,可以进一步加强练习,提高学生的逻辑思维能力和解决问题的能力。5课堂检测4新知讲解6变式训练7中考考法8小结梳理9布置作业学习目录1复习引入2新知讲解3典例讲解二、四象限一、三象限函数 正比例函数 反比例函数解析式图象形状k>0k<0位置增减性位置增减性y=kx ( k≠0 )直线双曲线y随x的增大而增大一、三象限在每个象限, y随x的增大而减小二、四象限y随x的增大而减小在每个象限, y随x的增大而增大正比例函数和反比例函数的区别用对比的方法去记忆效果如何?导入新知yxoyxooyxoyx已知反比例函数的图象经过点A(2,6).(1)这个函数的图象分布在哪些象限 y随x的增大如何变化 (2)点B(3,4)、C( )和D(2,5)是否在这个函数的图象上?探究新知知识点 1利用待定系数法确定反比例函数解析式解:(1)因为点A(2,6)在第一象限,所以这个函数的图象在第一、第三象限,在每个象限内,y随x的增大而减小.解:(2)设这个反比例函数的解析式为 ,因为点A (2,6)在其图象上,所以有 ,解得 k =12.因为点 B,C 的坐标都满足该解析式,而点D的坐标不满足,所以点 B,C 在这个函数的图象上,点 D 不在这个函数的图象上.所以反比例函数的解析式为 .探究新知方法总结:已知反比例函数图象上一点,可以根据坐标确定点所在的象限,然后确定反比例函数的性质.或用待定系数法求出反比例函数的解析式,再判断图象性质;要判断所给的点是否在该图象上,可以将其坐标代入求得的反比例函数解析式中,若满足左边=右边,则在;若不满足左边=右边,则不在.【讨论】已知反比例函数图象上的一点,如何确定其图象的性质 以及所给的点是否在该图象上 探究新知已知反比例函数 的图象经过点 A (2,3).(1) 求这个函数的表达式;解:∵ 反比例函数 的图象经过点 A(2,3),∴ 把点 A 的坐标代入表达式,得 , 解得 k = 6.∴ 这个函数的表达式为 . 巩固练习(2) 判断点 B (-1,6),C(3,2) 是否在这个函数的图象上,并说明理由;解:分别把点 B,C 的坐标代入反比例函数的解析式,因为点 B 的坐标不满足该解析式,点C的坐标满足该解析式,所以点 B 不在该函数的图象上,点C 在该函数的图象上.巩固练习(3) 当 -3< x <-1 时,求 y 的取值范围.解:∵ 当 x = -3时,y =-2;当 x = -1时,y =-6,且 k > 0,∴ 当 x < 0 时,y 随 x 的增大而减小,∴ 当 -3 < x < -1 时,-6 < y < -2.巩固练习解:(1)反比例函数图象的分布只有两种可能,分布在第一、第三象限,或者分布在第二、第四象限.这个函数的图象的一支在第一象限,则另一支必在第三象限.∵函数的图象在第一、第三象限,∴ m-5>0,解得 m>5. 探究新知知识点 2如图是反比例函数 的图象一支,根据图象回答下列问题 :(1)图象的另一支在哪个象限?常数m的取值范围是什么?(2)在这个函数图象的某一支上任取点A(a,b)和B(a′,b′),如果a>a′,那 么b和b′有怎样的大小关系?反比例函数的综合性题目(2)∵m-5>0,在这个函数图象的任一支上,y随x的增大而减小,∴当a>a′时,b<b′.【思考】根据反比例函数的部分图象,如何确定其完整图象的位置以及比例系数的取值范围 注:由于双曲线的两个分支在两个不同的象限内,因此函数y随x的增减性就不能连续的看,一定要强调“在每一象限内”,否则,笼统说k<0时,y随x的增大而增大,从而出现错误.探究新知如图,是反比例函数 的图象的一个分支,对于给出的下列说法:①常数k的取值范围是 ;②另一个分支在第三象限;③在函数图象上取点 和 ,当 时, ;④在函数图象的某一个分支上取点 和 ,当 时, .其中正确的是____________(在横线上填出正确的序号).①巩固练习②④Oxy在反比例函数 的图象上分别取点P,Q 向 x 轴、y 轴作垂线,围成面积分别为S1,S2的矩形,填写下页表格:知识点 3反比例函数中k的几何意义探究新知51234-15xyOPS1S2P (2,2)Q (4,1)S1的值S2的值S1与S2的关系猜想 S1,S2 与 k的关系44S1=S2S1=S2=k-5-4-3-21432-3-2-4-5-1Q探究新知S1的值 S2的值 S1与S2的关系 猜想与k 的关系P (-1,4) Q (-2,2)若在反比例函数 中也用同样的方法分别取 P,Q 两点,填写表格:44S1=S2S1=S2=-kyxOPQS1S2探究新知由前面的探究过程,可以猜想:若点P是 图象上的任意一点,作 PA 垂直于 x 轴,作 PB 垂直于 y 轴,矩形AOBP 的面积与k的关系是S矩形 AOBP=|k|.探究新知yxOPS我们就 k < 0 的情况给出证明:设点 P 的坐标为 (a,b)AB∵点 P (a,b) 在函数 的图象上,∴ ,即 ab=k.∴ S矩形 AOBP=PB·PA=-a·b=-ab=-k;若点 P 在第二象限,则 a<0,b>0,若点 P 在第四象限,则 a>0,b<0,∴ S矩形 AOBP=PB·PA=a· (-b)=-ab=-k.BPA综上,S矩形 AOBP=|k|.自己尝试证明k > 0的情况.探究新知点 Q 是其图象上的任意一点,作 QA 垂直于 y 轴,作 QB 垂直于x 轴,矩形AOBQ 的面积与 k 的关系是 S矩形AOBQ= .推理:△QAO与△QBO的面积和 k 的关系是.Q对于反比例函数 ,AB|k|yxO反比例函数的面积不变性探究新知要点归纳如图,点B在反比例函数 (x>0)的图象上,横坐标是1,过点B分别向x轴、y轴作垂线,垂足为A、C,则矩形OABC的面积为( )A.1 B.2C.3 D.4B巩固练习D返回1.A.(-2,4) B.(4,2)C.(2,-4) D.(-2,-4)返回C2.4返回3.4.【点拨】返回5.(2)当y1<y2时,直接写出x的取值范围.【解】x<-2或0<x<2.返回6.面积问题与一次函数的综合反比例函数图象和性质的综合运用课堂小结面积不变性反比例函数的图象是一个以原点为对称中心的中心对称图形,其与正比例函数的交点关于原点中心对称判断反比例函数和一次函数在同一直角坐标系中的图象,要对系数进行分类讨论,并注意b 的正负谢谢观看! 展开更多...... 收起↑ 资源预览