2025年4月山东省枣庄市薛城区九年级二模数学试卷(含部分答案)

资源下载
  1. 二一教育资源

2025年4月山东省枣庄市薛城区九年级二模数学试卷(含部分答案)

资源简介

试卷类型A
九年级第二次调研考试
数学试题
2025.4
亲爱的同学:
这份试卷将记录你的自信、沉着、智慧和收获.请认真审题,看清要求,仔细答题.预祝你取得好成绩!
请注意:
1.选择题答案用铅笔涂在答题卡上,如不用答题卡,请将答案填在表格里.
2.填空题、解答题不得用铅笔或红色笔填写.
3.考试时,不允许使用科学计算器.
4.试卷分值:120分.
第I卷(选择题共30分)
一、选择题:下面每小题给出的四个选项中,只有一项是正确的,请把正确选项选出来.每小题3分,共30分.
1. 在实数0,,,中,最小的数是( )
A. B. C. 0 D.
2. 《国语》有云:“夫美也者,上下、内外、小大,远近皆无害焉,故曰美.”这是古人对于对称美的一种定义.这种审美法则在生活中体现得淋漓尽致.下列航空公司的标志是轴对称图形的是( )
A. B. C. D.
3. 维生素在人体健康中发挥着至关重要的作用,从维持骨骼健康到调节免疫功能,再到预防多种疾病,维生素都扮演着不可或缺的角色.因此,合理补充维生素对于维护整体健康至关重要.据科学验证,成年人每天维生素的摄入量约为克,将数字用科学记数法表示为( )
A. B. C. D.
4. 已知一个几何体如图所示,则该几何体左视图是(  )
A. B. C. D.
5. 不等式组的解集在数轴上表示为( )
A. B.
C. D.
6. 下列计算正确的是( )
A. B.
C. D.
7. “过新年,挂新灯,家家户户乐融融”,挂灯笼是我国各地新年的一个传统习俗.如图,欣欣从三个灯笼中随机选择两个挂在门口,则选择和两个灯笼的概率为( )
A. B. C. D.
8. 要说明命题“若,则”是假命题,能举的一个反例是( )
A. , B. , C. , D. ,
9. 刘徽是我国魏晋时期卓越数学家,他在《九章算术》中提出了“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的面积.如图,若用圆的内接正十二边形的面积来近似估计的面积S,设的半径为1,则的值为( )()
A. 0.14 B. 0.2 C. 0.5 D. 1
10. 现定义对于一个数a,我们把称为a的“邻一数”;若,则;若,则.例如:,.下列说法,其中正确结论有( )个
①若,则;
②当,时,,那么代数式的值为4;
③方程的解为或或;
④若函数,当时,x的取值范围是.
A. 0 B. 1 C. 2 D. 3
二、填空题(每小题3分,共18分)
11. 若式子在实数范围内有意义,则的取值范围是________.
12. 若关于一元二次方程的两根为,且,则的值是______.
13. 如图,直线与x轴、y轴分别交于A,B两点,以为边在y轴右侧作等边,将点C向左平移,使其对应点恰好落在直线上,则点C平移的距离________.
14. 如图,在矩形中,,将矩形绕点按逆时针方向旋转,得到矩形,点的对应点落在上,且,则的面积为______.
15. 如图,正八边形的边长为3,以顶点A为圆心,的长为半径画圆,则阴影部分的面积为__________.(结果保留π)
16. 在平面直角坐标系中,对于点,我们把点叫作点的“相伴点”.已知点的“相伴点”为,点的“相伴点”为,点的“相伴点”为,……,这样依次得到点,,,……,.若点的坐标为,则点的坐标为______.
三、解答题(本题共8道大题,满分72分)
17. (1)计算:
(2)先化简,再求值:,其中
18. 数学活动课上,小慧同学利用直尺和圆规进行了如下操作:如图1,已知四边形是平行四边形,①连接,分别以点A、C为圆心,以大于的长为半径画弧,两弧相交于点P、Q;②作直线,分别交、、于点E、O、F,连接、. 若,平分,,求四边形的面积.
同桌小明同学利用直尺和圆规进行了如下操作:如图2,四边形是平行四边形,以点B为圆心,任意长为半径画弧,分别交和于点P,Q;分别以点P,Q为圆心,大于的长为半径画弧,两弧交于点H,作射线交边于点E,分别以点A,E为圆心,大于的长为半径画弧,两弧相交于M,N两点,作直线交边于点F,连接,交于点G. 若,求的值.
19. 【综合与实践】
火车轨道平顺性和稳定性直接影响列车的运行安全.我国目前轨道检测的主要方法是机械检测,通过使用机械传感器和无损检测设备(包括激光三角位移传感器、超声波传感器等)来测量轨道的各种参数(几何尺寸、轨距、高差和曲率),从而判断轨道是否有损伤或缺陷.某校科创活动小组率先就“激光三角位移计”这一设备开展了学习与探究:
阅读理解 激光三角位移计是由半导体激光向目标物照射激光,聚集目标物反射的光,并在光接收元件上成像.一旦离目标物的距离发生改变,聚集反射光的角度也会改变,成像的位置也随之改变.可以通过成像的位移来计算物体实际的移动距离.
发现原理 被测量物体从初始位置移动到最终位置,需要测量的是参考平面与目标测量平面的距离,也就是图中点M与点N之间的距离.假设激光通过接收透镜后仍按照原直线方向传播,最后在光学成像设备上成像.
建立模型 如图,直线直线直线,直线垂直于和,垂足分别为和,线段与线段交于点,线段与直线交于点,.
解决问题 (1)作于点,设,请用含和的式子表示的长度;()若,,,求的长度.(结果精确到个位,参考数据:,,)
20. 甲、乙两所学校组织志愿服务团队选拔活动,经过初选,两所学校各 400名学生进入综合素质展示环节.从两校进入综合素质展示环节的学生中分别随机抽取了50名学生的综合素质展示成绩(百分制),并对数据(成绩)进行整理、描述和分析,下面给出了部分信息.
a.甲学校学生成绩的频数分布直方图如图(数据分成6组:,,,,,):
b.甲学校学生成绩在这一组的是:
80 80 81 82 82 83 83 84 85 86 86.5 87 87 88 88.5 89
c.乙学校学生成绩的平均数、中位数、众数、优秀率(85分及以上为优秀)如下表:
平均数 中位数 众数 优秀率
83.3 84 78 46%
根据以上信息,回答下列问题:
(1)甲学校50名学生成绩的中位数为_____,优秀率为_____(85分及以上为优秀);
(2)甲学校学生A,乙学校学生B的综合素质展示成绩同为83分,这两人在本校学生中的综合素质展示排名更靠前的是_____(填“A”或“B”);
(3)根据上述信息,推断_____学校综合素质展示的水平更高,理由为_____(至少从一个角度说明推断的合理性);
(4)若每所学校综合素质展示的前120名学生将被选入志愿服务团队,请预估甲学校学生分数至少达到多少分才可以入选,并说明理由.
21. 如图,是的直径,D是上的一点,是的平分线,交于点C,过点C作,垂足为E,连接.
(1)求证:是的切线;
(2)若,求.
22. 在平面直角坐标系中,点P是反比例函数在第一象限的图象上一点
(1)如图,过点P直线分别与轴,轴交于点A,B,且.
①求反比例函数的表达式;
②点D为x轴正半轴上一点,点E反比例函数图象上,若以点B,D,E,P为顶点的四边形为平行四边形,求点E的坐标;
(2)过定点P的直线交反比例函数在第一象限的图象于另一点Q,交y轴千点M,连接,设的面积为,的面积为,若,求m的值.
23. 如图①,和都是等腰直角三角形,,当点在线段上,点在线段上时,我们很容易得到,不需证明.
(1)如图②,将绕点逆时针旋转,连接和,此时是否依然成立?若成立,写出证明过程;若不成立,说明理由;
(2)如图③,当绕点逆时针旋转,使得点恰好落在的延长线上,连接.若,,求线段的长;
(3)若为中点,连接,,,当绕点逆时针旋转时,最大值为,最小值为,则的值为______.
24. 定义:平面直角坐标系中,点、若满足,其中为常数,且,则称点与点互为“阶点”,例如点与点互为“阶点”.
(1)若抛物线的顶点与点互为“4阶点”,求的值;
(2)对于动点,若抛物线上只存在一个点与点互为“阶点”,求的值;
(3)已知点、是抛物线上的两点,且都与点互为“阶点”,是抛物线的顶点,是线段的中点,若与互为“阶点”,求的最小值.
试卷类型A
九年级第二次调研考试
数学试题
2025.4
亲爱的同学:
这份试卷将记录你的自信、沉着、智慧和收获.请认真审题,看清要求,仔细答题.预祝你取得好成绩!
请注意:
1.选择题答案用铅笔涂在答题卡上,如不用答题卡,请将答案填在表格里.
2.填空题、解答题不得用铅笔或红色笔填写.
3.考试时,不允许使用科学计算器.
4.试卷分值:120分.
第I卷(选择题共30分)
一、选择题:下面每小题给出的四个选项中,只有一项是正确的,请把正确选项选出来.每小题3分,共30分.
【1题答案】
【答案】B
【2题答案】
【答案】A
【3题答案】
【答案】B
【4题答案】
【答案】D
【5题答案】
【答案】D
【6题答案】
【答案】B
【7题答案】
【答案】B
【8题答案】
【答案】D
【9题答案】
【答案】A
【10题答案】
【答案】C
二、填空题(每小题3分,共18分)
【11题答案】
【答案】
【12题答案】
【答案】8
【13题答案】
【答案】
【14题答案】
【答案】
【15题答案】
【答案】π
【16题答案】
【答案】
三、解答题(本题共8道大题,满分72分)
【17题答案】
【答案】(1)8;(2);.
【18题答案】
【答案】四边形的面积为;的值为
【19题答案】
【答案】(1)(2)
【20题答案】
【答案】(1);
(2)A (3)乙校,乙校的中位数高于甲校,乙校的优秀率高于甲校;
(4)预估甲学校学生分数至少达到88分才可以入选.
【21题答案】
【答案】(1)见解析 (2)
【22题答案】
【答案】(1)①反比例函数的表达式为;②E点坐标为或
(2)m的值为或
【23题答案】
【答案】(1)依然成立,理由见解析
(2)
(3)
【24题答案】
【答案】(1)
(2)或
(3)最小值为

展开更多......

收起↑

资源预览