2025年中考数学压轴题型模型方与技巧(通用版)专题09函数选填压轴常考热点问题(原卷版+解析)

资源下载
  1. 二一教育资源

2025年中考数学压轴题型模型方与技巧(通用版)专题09函数选填压轴常考热点问题(原卷版+解析)

资源简介

2025届中考复习专题09:代数选填压轴常考热点问题
模块一 二次函数 2
【题型1】 二次函数的性质及应用综合 3
【题型2】 二次函数图象与系数的关系(给出对称轴或对称轴范围) 12
【题型3】 二次函数图象与系数的关系(给出对称轴和交点坐标) 23
【题型4】 二次函数图象与系数的关系(题目没给出图像) 29
【题型5】 含参二次函数 36
【题型6】 二次函数新定义问题 40
模块二 代几综合 47
【题型7】 从函数图像获取信息(行程问题) 47
【题型8】 由动点的函数图像求线段长 50
【题型9】 动点的函数图像分析与判定 61
模块三 规律探索 75
【题型10】 数字类规律探索 75
【题型11】 图形类规律探索 78
【题型12】 点坐标规律探索 83
模块四 其它问题 92
【题型13】 三角函数综合 92
【题型14】 函数的应用 97
【题型15】 一次函数综合 100
模块一 二次函数
二次函数图像与系数a,b,c的关系
如图,二次函数的图象关于直线对称,与x轴交于,两点
考法 解决方法 本题结果
① 二次函数图像开口向上时,a>0;开口向下,则a<0, a>0 b<0 c<0
:和共同决定了函数对称轴的位置,“左同右异”
c为图像和y轴交点的纵坐标
② 两个交点: 一个交点: 没有交点:
③ 用特殊值进行判断: a+b+c即为当时的函数值; 4a-2b+c为当时的函数值 a+b+c<0 a-b+c<0
④ 只有a,b时,用对称轴代换,消去一个未知数进行判断 ∵,∴,
⑤c+a 只有a,c或只有b,c时,先用对称轴代换,消去一个未知数,然后利用④中的结果判断结果 ∵a-b+c<0,∴a+c<b,∵a>0, ∴b=-2a<0,∴a+c<0
⑥ 若c的系数不是1,可以先化成1再进行计算,或这把③中的某个式子中的c的系数变成题里的形式 而,
⑦am2+bm和a+b的大小关系 同时加上c,am2+bm+c,a+b+c 第一个式子是当x=m时的函数值,第二个式子是当x=1时的函数值;由图可知,x=1时函数取最小值 am2+bm≥a+b
⑧(a+c)-b2
⑨和的大小关系 可以把代数式变成顶点的纵坐标公式,顶点坐标() 假如定点纵坐标小于-1,则,<-4a,- >4a
⑩若给出的值 , 即,进而可知的关系 可以判断关于任意式子的正负 也可以求出以为参数的方程的根
【题型1】 二次函数的性质及应用综合
【例题1】(2024·广西·中考真题)如图,壮壮同学投掷实心球,出手(点P处)的高度是,出手后实心球沿一段抛物线运行,到达最高点时,水平距离是,高度是.若实心球落地点为M,则 .
【答案】
【分析】本题考查的是二次函数的实际应用,设抛物线为,把点,代入即可求出解析式;当时,求得x的值,即为实心球被推出的水平距离.
【详解】解:以点O为坐标原点,射线方向为x轴正半轴,射线方向为y轴正半轴,建立平面直角坐标系,
∵出手后实心球沿一段抛物线运行,到达最高点时,水平距离是,高度是.
设抛物线解析式为:,
把点代入得:,
解得:,
∴抛物线解析式为:;
当时,,
解得,(舍去),,
即此次实心球被推出的水平距离为.
【例题2】(2023·湖北十堰中考真题)已知点在直线上,点在抛物线上,若且,则的取值范围是( )
A. B.
C. D.
【答案】A
【分析】设直线与抛物线对称轴左边的交点为,设抛物线顶点坐标为,求得其坐标的横坐标,结合图象分析出的范围,根据二次函数的性质得出,进而即可求解.
【详解】解:如图所示,设直线与抛物线对称轴左边的交点为,设抛物线顶点坐标为
联立
解得:或
∴,
由,则,对称轴为直线,
设,则点在上,
∵且,
∴点在点的左侧,即,,
当时,
对于,当,,此时,
∴,

∵对称轴为直线,则,
∴的取值范围是
【例题3】(2024·四川成都·中考真题)在平面直角坐标系中,,,是二次函数图象上三点.若,,则 (填“”或“”);若对于,,,存在,则的取值范围是 .
【答案】
【分析】本题考查二次函数的性质、不等式的性质以及解不等式组,熟练掌握二次函数的性质是解答的关键.先求得二次函数的对称轴,再根据二次函数的性质求解即可.
【详解】解:由得抛物线的对称轴为直线,开口向下,
∵,,
∴,
∴;
∵,,,,
∴,
∵存在,
∴,,且离对称轴最远,离对称轴最近,
∴,即,且,
∵,,
∴且,
解得,
故答案为:;.
【巩固练习1】(2024·四川自贡·中考真题)九(1)班劳动实践基地内有一块面积足够大的平整空地.地上两段围墙于点O(如图),其中上的段围墙空缺.同学们测得m,m,m,m,m.班长买来可切断的围栏m,准备利用已有围墙,围出一块封闭的矩形菜地,则该菜地最大面积是 .
【答案】
【分析】本题考查了二次函数的应用.要利用围墙和围栏围成一个面积最大的封闭的矩形菜地,那就必须尽量使用原来的围墙,观察图形,利用和才能使该矩形菜地面积最大,分情况,利用矩形的面积公式列出二次函数,利用二次函数的性质求解即可.
【详解】解:要使该矩形菜地面积最大,则要利用和构成矩形,
设矩形在射线上的一段长为,矩形菜地面积为,
当时,如图,
则在射线上的长为
则,
∵,
∴当时,随的增大而增大,
∴当时,的最大值为;
当时,如图,
则矩形菜园的总长为,
则在射线上的长为
则,
∵,
∴当时,随的增大而减少,
∴当时,的值均小于;
综上,矩形菜地的最大面积是
【巩固练习2】(2024·四川资阳·中考真题)已知二次函数与的图像均过点和坐标原点,这两个函数在时形成的封闭图像如图所示,为线段的中点,过点且与轴不重合的直线与封闭图像交于,两点.给出下列结论:
①;
②;
③以,,,为顶点的四边形可以为正方形;
④若点的横坐标为,点在轴上(,,三点不共线),则周长的最小值为.
其中,所有正确结论的个数是( )
A. B. C. D.
【答案】D
【分析】根据题意可得两个函数的对称轴均为直线,根据对称轴公式即可求出,可判断①正确;过点作交轴于点,过点作交轴于点,证明,可得,可判断②正确;当点、分别在两个函数的顶点上时,,点、的横坐标均为,求出的长度,得到,可判断③正确;作点关于轴的对称点,连接交轴于点,此时周长的最小,小值为,即可判断④.
【详解】解:①二次函数与的图像均过点和坐标原点,为线段的中点,
,两个函数的对称轴均为直线,
即,
解得:,故①正确;
②如图,过点作交轴于点,过点作交轴于点,

由函数的对称性可知,
在和中,


,故正确②;
③当点、分别在两个函数的顶点上时,,点、的横坐标均为,
由①可知两个函数的解析式分别为,,
,,

点,


由,
此时以,,,为顶点的四边形为正方形,故③正确;
④作点关于轴的对称点,连接交轴于点,此时周长的最小,最小值为,
点的横坐标为,
,点的横坐标为,
,,
,,
周长的最小值为,故正确④
【巩固练习3】(2024·四川宜宾·中考真题)如图,抛物线的图象交x轴于点、,交y轴于点C.以下结论:①;②;③当以点A、B、C为顶点的三角形是等腰三角形时,;④当时,在内有一动点P,若,则的最小值为.其中正确结论有( )

A.1个 B.2个 C.3个 D.4个
【答案】C
【分析】根据抛物线图象经过点,可得当时,,据此可判断①;根据对称轴计算公式求出,进而推出,则,再根据抛物线开口向下,即可判断②;对称轴为直线,则,求出,,再分当时, 当时,两种情况求出对应的c的值即可判断③;当时,,则,取点,连接,则,可证明,由相似三角形的性质可得,则,故当点P在线段上时,的值最小,即此时的值最小,最小值为线段的长,利用勾股定理求出即可判断④.
【详解】解:∵抛物线的图象经过点,
∴当时,,故①正确;
∵抛物线的图象交x轴于点、,
∴抛物线对称轴为直线,
∴,
∴,
∴,即,
∴,
∵,
∴,故②正确;
∵对称轴为直线,
∴;
∵、,
∴,
∴;
在中,当时,,
∴,
∴,
当时,则由勾股定理得,
∴,
∴或(舍去);
同理当时,可得;
综上所述,当以点A、B、C为顶点的三角形是等腰三角形时,或,故③错误;
当时,,则,
如图所示,取点,连接,则,

∴,
∵,
∴,
又∵,
∴,
∴,
∴,
∴,
∴当点P在线段上时,的值最小,即此时的值最小,最小值为线段的长,
在中,由勾股定理得,故④正确,
∴正确的有3个
【题型2】 二次函数图象与系数的关系(给出对称轴或对称轴范围)
【例题1】(2024·山东泰安·中考真题)如图所示是二次函数的部分图象,该函数图象的对称轴是直线,图象与轴交点的纵坐标是2,则下列结论:①;②方程一定有一个根在和之间;③方程一定有两个不相等的实数根;④.其中,正确结论的个数有( )
A.1个 B.2个 C.3个 D.4个
【答案】B
【分析】本题主要考查的是图象法求一元二次方程的近似值、抛物线与x轴的交点、二次函数图象与系数的关系、二次函数与方程的关系等知识点,掌握二次函数的性质、二次函数图象与系数的关系是解题的关键.
根据抛物线与坐标轴的交点情况、二次函数与方程的关系、二次函数的性质逐个判断即可.
【详解】解:∵抛物线的对称轴为直线,
∴,
∴,
∴,故①正确;
∵抛物线的对称轴为直线,与x轴的一个交点在2、3之间,
∴与x轴的另一个交点在、0之间,
∴方程一定有一个根在和0之间,故②错误;
∵抛物线与直线有两个交点,
∴方程一定有两个不相等的实数根,故③正确;
∵抛物线与x轴的另一个交点在,0之间,
∴,
∵图象与y轴交点的纵坐标是2,
∴,
∴,
∴.故④错误.
综上,①③正确,共2个
【例题2】(2024·四川遂宁·中考真题)如图,已知抛物线(a、b、c为常数,且)的对称轴为直线,且该抛物线与轴交于点,与轴的交点在,之间(不含端点),则下列结论正确的有多少个( )
①;
②;
③;
④若方程两根为,则.
A.1 B.2 C.3 D.4
【答案】C
【分析】本题主要考查二次函数和一次函数的性质,根据题干可得,,,即可判断①错误;根据对称轴和一个交点求得另一个交点为,即可判断②错误;将c和b用a表示,即可得到,即可判断③正确;结合抛物线和直线与轴得交点,即可判断④正确.
【详解】解:由图可知,
∵抛物线的对称轴为直线,且该抛物线与轴交于点,
∴,,
则,
∵抛物线与轴的交点在,之间,
∴,
则,故①错误;
设抛物线与轴另一个交点,
∵对称轴为直线,且该抛物线与轴交于点,
∴,解得,
则,故②正确;
∵,,,
∴,解得,故③正确;
根据抛物线与轴交于点和,直线过点和,如图,
方程两根为满足,故④正确
【例题3】(2024·四川达州·中考真题)抛物线与轴交于两点,其中一个交点的横坐标大于1,另一个交点的横坐标小于1,则下列结论正确的是( )
A. B. C. D.
【答案】A
【分析】本题考查了二次函数的性质,设抛物线与轴交于两点,横坐标分别为,依题意,,根据题意抛物线开口向下,当时,,即可判断A选项,根据对称轴即可判断B选项,根据一元二次方程根的判别式,即可求解.判断C选项,无条件判断D选项,据此,即可求解.
【详解】解:依题意,设抛物线与轴交于两点,横坐标分别为
依题意,
∵,抛物线开口向下,
∴当时,,即
∴,故A选项正确,符合题意;
若对称轴为,即,
而,不能得出对称轴为直线,
故B选项不正确,不符合题意;
∵抛物线与坐标轴有2个交点,
∴方程有两个不等实数解,即,又
∴,故C选项错误,不符合题意;
无法判断的符号,故D选项错误,不符合题意
【例题4】(2024·山东青岛·中考真题)二次函数的图象如图所示,对称轴是直线,则过点和点的直线一定不经过( )

A.第一象限 B.第二象限 C.第三象限 D.第四象限
【答案】C
【分析】本题主要考查了二次函数与一次函数综合,根据二次函数与y轴交于y轴的正半轴得到,根据对称轴计算公式得到,即,则在x轴正半轴上;由二次函数顶点在第二象限,得到当时,,再由二次函数与x轴无交点,得到,则点在第二象限,据此可得答案.
【详解】解:∵二次函数与y轴交于y轴的正半轴,
∴,
∵对称轴是直线,
∴,
∴,
∴,
∴在x轴正半轴上;
∵二次函数顶点在第二象限,
∴当时,,
∵二次函数与x轴无交点,
∴,
∴点在第二象限,
∴经过点和点的直线一定经过第一、二、四象限,不经过第三象限
【巩固练习1】(2024·黑龙江绥化·中考真题)二次函数的部分图象如图所示,对称轴为直线,则下列结论中:
① ②(m为任意实数) ③
④若、是抛物线上不同的两个点,则.其中正确的结论有( )
A.1个 B.2个 C.3个 D.4个
【答案】B
【分析】本题考查了二次函数的图象与性质,根据抛物线的开口方向,对称轴可得,即可判断①,时,函数值最大,即可判断②,根据时,,即可判断③,根据对称性可得即可判段④,即可求解.
【详解】解:∵二次函数图象开口向下

∵对称轴为直线,


∵抛物线与轴交于正半轴,则
∴,故①错误,
∵抛物线开口向下,对称轴为直线,
∴当时,取得最大值,最大值为
∴(m为任意实数)
即,故②正确;
∵时,




∴,故③正确;
∵、是抛物线上不同的两个点,
∴关于对称,
∴即故④不正确
正确的有②③
【巩固练习2】(2024·四川德阳·中考真题)如图,抛物线的顶点的坐标为,与轴的一个交点位于0和1之间,则以下结论:①;②;③若抛物线经过点,则;④若关于的一元二次方程无实数根,则.其中正确结论是 (请填写序号).
【答案】①②④
【分析】本题考查了二次函数的图象与系数的关系,根的判别式,二次函数图象上点的坐标特征,解题的关键是掌握二次函数的图象与性质.①利用抛物线的顶点坐标和开口方向即可判断;②利用抛物线的对称轴求出,根据图象可得当时,,即可判断;③利用抛物线的对称轴,设两点横坐标与对称轴的距离为,求出距离,根据图象可得,距离对称轴越近的点的函数值越大,即可判断;④根据图象即可判断.
【详解】解:①∵抛物线的顶点的坐标为,
∴,
∴,即,
由图可知,抛物线开口方向向下,即,
∴,
当时,,
∴,故①正确,符合题意;
②∵直线是抛物线的对称轴,
∴,
∴,

由图象可得:当时,,
∴,即,故②正确,符合题意;
③∵直线是抛物线的对称轴,
设两点横坐标与对称轴的距离为,
则,,
∴,
根据图象可得,距离对称轴越近的点的函数值越大,
∴,故③错误,不符合题意;
④如图,
∵关于x的一元二次方程无实数根,
∴,故④正确,符合题意.
【巩固练习3】(2024·四川眉山·中考真题)如图,二次函数的图象与轴交于点,与轴交于点,对称轴为直线,下列四个结论:①;②;③;④若,则,其中正确结论的个数为( )
A.1个 B.2个 C.3个 D.4
【答案】C
【分析】此题考查了二次函数的图象和性质,数形结合是解题的关键,利用开口方向和对称轴的位置即可判断①,利用对称轴和特殊点的函数值即可判断②,利用二次函数的最值即可判断③,求出,进一步得到,又根据得到,即可判断④.
【详解】解:①函数图象开口方向向上,

对称轴在轴右侧,
、异号,

∵抛物线与轴交点在轴负半轴,

,故①错误;
②二次函数的图象与轴交于点,与轴交于点,对称轴为直线,


时,,


,故②正确;
③对称轴为直线,,
最小值,

∴,
故③正确;
④,
∴根据抛物线与相应方程的根与系数的关系可得,






故④正确;
综上所述,正确的有②③④
【巩固练习4】(2024·山东烟台·中考真题)已知二次函数的与的部分对应值如下表:
下列结论:;关于的一元二次方程有两个相等的实数根;当时,的取值范围为;若点,均在二次函数图象上,则;满足的的取值范围是或.其中正确结论的序号为 .
【答案】
【分析】本题考查了二次函数的图象和性质, 利用待定系数法求出的值即可判断;利用根的判别式即可判断;利用二次函数的性质可判断;利用对称性可判断;画出函数图形可判断;掌握二次函数的图象和性质是解题的关键.
【详解】解:把,,代入得,

解得,
∴,故正确;
∵,,,
∴,
当时,,
∴,
∵,
∴关于的一元二次方程有两个相等的实数根,故正确;
∵抛物线的对称轴为直线,
∴抛物线的顶点坐标为,
又∵,
∴当时,随的增大而增大,当时,随的增大而减小,当时,函数取最大值,
∵与时函数值相等,等于,
∴当时, 的取值范围为,故错误;
∵,
∴点,关于对称轴对称,
∴,故正确;
由得,
即,
画函数和图象如下:
由,解得,,
∴,,
由图形可得,当或时,,即,故错误;
综上,正确的结论为
【巩固练习5】(2024·四川广元·中考真题)如图,已知抛物线过点与x轴交点的横坐标分别为,,且,,则下列结论:
①;
②方程有两个不相等的实数根;
③;
④;
⑤.其中正确的结论有( )
A.1个 B.2个 C.3个 D.4个
【答案】C
【分析】本题考查的是二次函数的图象与性质,熟练的利用数形结合的方法解题是关键;由当时,,可判断①,由函数的最小值,可判断②,由抛物线的对称轴为直线,且,可判断③,由时,,当时,,可判断④,由根与系数的关系可判断⑤;
【详解】解:①抛物线开口向上,,,
∴当时,,故①不符合题意;
②∵抛物线过点,
∴函数的最小值,
∴有两个不相等的实数根;
∴方程有两个不相等的实数根;故②符合题意;
③∵,,
∴抛物线的对称轴为直线,且,
∴,而,
∴,
∴,故③不符合题意;
④∵抛物线过点,
∴,
∵时,,
即,
当时,,
∴,
∴,
∴,故④符合题意;
⑤∵,,
∴,
由根与系数的关系可得:,,

∴,
∴,故⑤符合题意
【题型3】 二次函数图象与系数的关系(给出对称轴和交点坐标)
【例题1】(2024·山东日照·中考真题)已知二次函数图象的一部分如图所示,该函数图象经过点,对称轴为直线.对于下列结论:①;②;③多项式可因式分解为;④当时,关于的方程无实数根.其中正确的个数有( )
A.1个 B.2个 C.3个 D.4个
【答案】C
【分析】本题考查了二次函数图象与系数的关系,二次函数图象的性质,二次函数的最值问题,熟练掌握二次函数图象与系数的关系是解题的关键.①根据图像分别判断,,的符号即可;②将点代入函数即可得到答案;③根据题意可得该函数与轴的另一个交点的横坐标为5,即可得到;④由,得到,,将代入函数得,从而推出当时,该抛物线与直线的图象无交点,即可判断.
【详解】解:由题图可知,,
,故①正确;
当时,,即,故②正确;
二次函数与轴的一个交点的横坐标为,对称轴为直线,
二次函数与轴的另一个交点的横坐标为5,
多项式,故③错误;
当时,有最大值,即,
当时,抛物线与直线的图象无交点,
即关于x的方程无实数根,故④正确.
综上,①②④正确.
【例题2】(2024·黑龙江牡丹江·中考真题)在平面直角坐标系中,抛物线与x轴交于A、B两点,,与y轴交点C的纵坐标在~之间,根据图象判断以下结论:①;②;③若且,则;④直线与抛物线的一个交点,则.其中正确的结论是( )
A.①②④ B.①③④ C.①②③ D.①②③④
【答案】A
【分析】本题考查二次函数的图象和性质,二次函数和一元二次方程的关系,掌握二次函数和一元二次方程的关系是解题的关键,
根据题意得到抛物线的解析式为,即可得到,,代入即可判断①;根据判断②;把代入,然后利用因式分解法解方程即可判断③;然后把,代入解方程求出m的值判断④.
【详解】解:设抛物线的解析式为:,
∴,,
∴,故①正确;
∵点C的纵坐标在~之间,
∴,即,
∴,故②正确;
∵,
∴,即,
∴,
又∵,
∴,故③错误;
∵令相等,则
∴,解得(舍),,
∴,故④正确
【巩固练习1】(2024·四川广安·中考真题)如图,二次函数(,,为常数,)的图象与轴交于点,对称轴是直线,有以下结论:①;②若点和点都在抛物线上,则;③(为任意实数);④.其中正确的有( )
A.1个 B.2个 C.3个 D.4个
【答案】B
【分析】根据二次函数图像的性质、二次函数图像与系数的关系以及与轴交点问题逐项分析判断即可.
【详解】解:由图可知,二次函数开口方向向下,与轴正半轴交于一点,
,.

.
.故①错误;
对称轴是直线,点和点都在抛物线上,
而,
.故②错误;
当时,,
当时,函数取最大值,
∴对于任意实数有:

∴,故③正确;

.
当时,,
.
,即,
故④正确.
综上所述,正确的有③④
【巩固练习2】(2024·黑龙江齐齐哈尔·中考真题)如图,二次函数的图象与轴交于,,其中.结合图象给出下列结论:

①;②;
③当时,随的增大而减小;
④关于的一元二次方程的另一个根是;
⑤的取值范围为.其中正确结论的个数是( )
A. B. C. D.
【答案】C
【分析】根据二次函数的图象与性质判断结论①②③正误;由二次函数与一元二次方程的关系判断结论④;利用结论④及题中条件可求得的取值范围,再由结论②可得取值范围,判断⑤是否正确.
【详解】解:由图可得:,对称轴,

,①错误;
由图得,图象经过点,将代入可得,
,②正确;
该函数图象与轴的另一个交点为,且,
对称轴,
该图象中,当时,随着的增大而减小,当时,随着的增大而增大,
当时,随着的增大而减小,
③正确;
,,
关于的一元二次方程的根为,

,,
④正确;
,即,
解得,
即,


⑤正确.
综上,②③④⑤正确,共个.
【巩固练习3】(2023乐山市中考真题)如图,抛物线经过点,且,有下列结论:①;②;③;④若点在抛物线上,则.其中,正确的结论有( )

A.4个 B.3个 C.2个 D.1个
【答案】B
【分析】抛物线经过点,且,,可以得到,,从而可以得到b的正负情况,从而可以判断①;继而可得出,则,即可判断②;由图象可知,当时,,即,所以有,从而可得出,即可判断③;利用,再根据,所以,从而可得,即可判断④.
【详解】解 :∵抛物线的图象开口向上,∴,
∵抛物线经过点,且,
∴,∴,故①正确;
∵,,∴
∴,故②正确;由图象可知,当时,,即,∴
∵,,∴,故③正确;∵,
又∵,∴,
∵抛物线的图象开口向上,∴,故④错误.
∴正确的有①②③共3个,故选:B.
【巩固练习4】(辽宁省营口市)如图.抛物线与x轴交于点和点,与y轴交于点C.下列说法:①;②抛物线的对称轴为直线;③当时,;④当时,y随x的增大而增大;⑤(m为任意实数)其中正确的个数是( )

A.1个 B.2个 C.3个 D.4个
【答案】C
【分析】根据抛物线开口向下,与y轴交于正半轴,可得,根据和点可得抛物线的对称轴为直线,即可判断②;推出,即可判断①;根据函数图象即可判断③④;根据当时,抛物线有最大值,即可得到,即可判断⑤.
【详解】解:∵抛物线开口向下,与y轴交于正半轴,
∴,
∵抛物线与x轴交于点和点,
∴抛物线对称轴为直线,故②正确;
∴,
∴,
∴,故①错误;
由函数图象可知,当时,抛物线的函数图象在x轴上方,
∴当时,,故③正确;
∵抛物线对称轴为直线且开口向下,
∴当时,y随x的增大而减小,即当时,y随x的增大而减小,故④错误;
∵抛物线对称轴为直线且开口向下,
∴当时,抛物线有最大值,
∴,
∴,故⑤正确;
综上所述,正确的有②③⑤
【题型4】 二次函数图象与系数的关系(题目没给出图像)
【例题1】(2024·江苏连云港·中考真题)已知抛物线(a、b、c是常数,)的顶点为.小烨同学得出以下结论:①;②当时,随的增大而减小;③若的一个根为3,则;④抛物线是由抛物线向左平移1个单位,再向下平移2个单位得到的.其中一定正确的是( )
A.①② B.②③ C.③④ D.②④
【答案】B
【分析】根据抛物线的顶点公式可得,结合,,由此可判断①;由二次函数的增减性可判断②;用a表示b、c的值,再解方程即可判断③,由平移法则即可判断④.
【详解】解:根据题意可得:,


即,


的值可正也可负,
不能确定的正负;故①错误;

抛物线开口向下,且关于直线对称,
当时,随的增大而减小;故②正确;

抛物线为,

,故③正确;
抛物线,
将向左平移1个单位得:,
抛物线是由抛物线向左平移1个单位得到的,故④错误;
正确的有②③
【例题2】(2024·湖北武汉·中考真题)抛物线(a,b,c是常数,)经过,两点,且.下列四个结论:
①;
②若,则;
③若,则关于x的一元二次方程 无实数解;
④点,在抛物线上,若,,总有,则.
其中正确的是 (填写序号).
【答案】②③④
【分析】本题考查了二次函数的性质,根据题意可得抛物线对称轴,即可判断①,根据,两点之间的距离大于,即可判断②,根据抛物线经过得出,代入顶点纵坐标,求得纵坐标的最大值即可判断③,根据④可得抛物线的对称轴,解不等式,即可求解.
【详解】解:∵(a,b,c是常数,)经过,两点,且.
∴对称轴为直线, ,
∵,
∴,故①错误,

∴,即,两点之间的距离大于
又∵
∴时,
∴若,则,故②正确;
③由①可得,
∴,即,
当时,抛物线解析式为
设顶点纵坐标为
∵抛物线(a,b,c是常数,)经过,



∵,,对称轴为直线,
∴当时,取得最大值为,而,
∴关于x的一元二次方程 无解,故③正确;
④∵,抛物线开口向下,点,在抛物线上, ,,总有,
又,
∴点离较远,
∴对称轴
解得:,故④正确.
【巩固练习1】(2024·内蒙古通辽·中考真题)关于抛物线(是常数),下列结论正确的是 (填写所有正确结论的序号).
①当时,抛物线的对称轴是轴;
②若此抛物线与轴只有一个公共点,则;
③若点,在抛物线上,则;
④无论为何值,抛物线的顶点到直线的距离都等于.
【答案】①④/④①
【分析】本题主要考查了二次函数的图象和性质.①把代入解析式,即可判断;②利用一元二次方程根的判别式,即可判断;③把抛物线解析式化为顶点式可得抛物线的对称轴为直线,再由二次函数的性质,即可判断;④根据题意可得抛物线的顶点坐标在直线上,即可判断.
【详解】解:当时,,此时抛物线的对称轴是轴,故①正确;
∵此抛物线与轴只有一个公共点,
∴方程的有两个相等的实数根,
∴,
解得:,故②错误;
∵,
∴抛物线的对称轴为直线,
∵,
∴离对称轴距离越远的点的纵坐标越大,
∵点,在抛物线上,且,
∴,故③错误;
∵,
∴抛物线的顶点坐标为,
∴抛物线的顶点坐标在直线上,
如图,过点A作直线于点B,则点,,,
∴是等腰直角三角形,
∴,即抛物线的顶点到直线的距离都等于,故④正确.
【巩固练习2】(2024·四川雅安·中考真题)已知一元二次方程有两实根,,且,则下列结论中正确的有( )
①;②抛物线的顶点坐标为;
③;④若,则.
A.1个 B.2个 C.3个 D.4个
【答案】B
【分析】本题主要考查了二次函数图象与系数的关系、根与系数的关系、根的判别式、抛物线与轴的交点,解题时要熟练掌握并能灵活运用二次函数的性质是关键.
依据题意,由有两实根,,可得,即可得,故可判断①又抛物线的对称轴是直线,进而抛物线的顶点为c),再结合,可得,故可判断②;依据题意可得,又,进而可得,从而可以判断③;由,故,即对于函数,当时的函数值小于当时的函数值,再结合,抛物线的对称轴是直线,从而根据二次函数的性质即可判断④.
【详解】解:由题意,∵有两实根,

∴得,.
∴,故①正确.

∴抛物线的对称轴是直线.
∴抛物线的顶点为.
又,
∴,即.
∴.
∴.
∴顶点坐标为,故②正确.
∵,
∴.
又,

∴,故③错误.


∴对于函数,当时的函数值小于当时的函数值.
∵,抛物线的对称轴是直线,
又此时抛物线上的点离对称轴越近函数值越小,


∴,故④错误.
综上,正确的有①②共2个.
【巩固练习3】(2024·四川巴中·中考真题)若二次函数的图象向右平移1个单位长度后关于轴对称.则下列说法正确的序号为 .(少选得1分,错选得0分,选全得满分)

②当时,代数式的最小值为3
③对于任意实数,不等式一定成立
④,为该二次函数图象上任意两点,且.当时,一定有
【答案】①③④
【分析】本题考查的是二次函数的图象与性质,抛物线的平移,抛物线的增减性的应用,利用的应用二次函数的性质是解本题的关键.
由二次函数的图象向右平移1个单位长度后关于轴对称.可得,可得①符合题意;由,可得,结合,可得②不符合题意;由对称轴为直线,结合,可得③符合题意;分三种情况分析④当时,当时,满足,当时,不满足,不符合题意,舍去,可得④符合题意;
【详解】解:∵二次函数的图象的对称轴为直线,
而二次函数的图象向右平移1个单位长度后关于轴对称.
∴,
∴,故①符合题意;
∴,



∵,
∴当时,取最小值,故②不符合题意;
∵,
∴对称轴为直线,
∵,
当时,函数取最小值,
当时,函数值为,
∴,
∴对于任意实数,不等式一定成立,故③符合题意;
当时,
∵,
∴,
∴,
当时,满足,
∴,
∴,
当时,不满足,不符合题意,舍去,故④符合题意;
综上:符合题意的有①③④
【题型5】 含参二次函数
【例题1】(2024·福建·中考真题)已知二次函数的图象经过,两点,则下列判断正确的是( )
A.可以找到一个实数,使得 B.无论实数取什么值,都有
C.可以找到一个实数,使得 D.无论实数取什么值,都有
【答案】C
【分析】本题考查二次函数的图象和性质,根据题意得到二次函数开口向上,且对称轴为,顶点坐标为,再分情况讨论,当时,当时,, 的大小情况,即可解题.
【详解】解:二次函数解析式为,
二次函数开口向上,且对称轴为,顶点坐标为,
当时,,
当时,,

当时,,

故A、B错误,不符合题意;
当时,,
由二次函数对称性可知,,
当时,,由二次函数对称性可知,,不一定大于,
故C正确符合题意;D错误,不符合题意
【例题2】(2024·江苏镇江·中考真题)对于二次函数(a是常数),下列结论:①将这个函数的图像向下平移3个单位长度后得到的图像经过原点;②当时,这个函数的图像在函数图像的上方;③若,则当时,函数值y随自变量x增大而增大;④这个函数的最小值不大于3.其中正确的是 (填写序号).
【答案】①②④
【分析】本题考查了二次函数图象与几何变换,二次函数的性质,二次函数图象上点的坐标特征,二次函数的最值,一次函数图象上点的坐标特征,掌握二次函数的性质,数形结合是解题的关键.根据平移的规律顶点平移后的函数解析式即可判断①;确定抛物线与直线没有交点,且开口向上即可判断②;利用函数的性质即可判断③;求得顶点坐标即可判断④.
【详解】解:将二次函数是常数)的图象向下平移3个单位长度后得到,
当时,,
平移后的函数的图象经过原点,
故①正确;
当时,则,
令,即,

抛物线与直线没有交点,
抛物线开口向上,
当时,这个函数的图象在函数图象的上方;
故②正确;
二次函数是常数),
开口向上,对称轴为直线,
当时,函数值随自变量增大而增大,
故③错误;

顶点为,

故④正确.
【巩固练习1】(2023年四川省南充市中考真题)抛物线与x轴的一个交点为,若,则实数的取值范围是( )
A. B.或
C. D.或
【答案】B
【分析】根据抛物线有交点,则有实数根,得出或,分类讨论,分别求得当和时的范围,即可求解.
【详解】解:∵抛物线与x轴有交点,
∴有实数根,


解得:或,
当时,如图所示,

依题意,当时,,
解得:,
当时,,解得,
即,
当时,
当时,,
解得:


综上所述,或,故选:B.
【巩固练习2】(2023·浙江衢州中考真题)已知二次函数(a是常数,)的图象上有和两点.若点,都在直线的上方,且,则的取值范围是( )
A. B. C. D.
【答案】C
【分析】根据已知条件列出不等式,利用二次函数与轴的交点和二次函数的性质,即可解答.
【详解】解:,

点,都在直线的上方,且,
可列不等式:,

可得,
设抛物线,直线,
可看作抛物线在直线下方的取值范围,
当时,可得,
解得,

的开口向上,
的解为,
根据题意还可列不等式:,

可得,
整理得,
设抛物线,直线,
可看作抛物线在直线下方的取值范围,
当时,可得,
解得,

抛物线开口向下,
的解为或,
综上所述,可得,
【巩固练习3】(2023年四川省泸州市中考真题)已知二次函数(其中是自变量),当时对应的函数值均为正数,则的取值范围为(  )
A. B.或
C.或 D.或
【答案】D
【分析】首先根据题意求出对称轴,然后分两种情况:和,分别根据二次函数的性质求解即可.
【详解】∵二次函数,
∴对称轴,
当时,
∵当时对应的函数值均为正数,
∴此时抛物线与x轴没有交点,
∴,
∴解得;
当时,
∵当时对应的函数值均为正数,
∴当时,,
∴解得,
∴,
∴综上所述,
当时对应的函数值均为正数,则的取值范围为或.
【题型6】 二次函数新定义问题
【例题1】(2024·江苏无锡·中考真题)已知是的函数,若存在实数,当时,的取值范围是.我们将称为这个函数的“级关联范围”.例如:函数,存在,,当时,,即,所以是函数的“2级关联范围”.下列结论:
①是函数的“1级关联范围”;
②不是函数的“2级关联范围”;
③函数总存在“3级关联范围”;
④函数不存在“4级关联范围”.
其中正确的为( )
A.①③ B.①④ C.②③ D.②④
【答案】A
【分析】本题考查了新定义,一次函数的性质,反比例函数的性质,二次函数的性质.
推出在时,,即,即可判断①;推出在时,,即,即可判断②;③设当,则,
当函数存在“3级关联范围”时,整理得,即可判断③;设,则,当函数存在“4级关联范围”时,,求出m和n的值,即可判断④.
【详解】解:①当时,,当时,,
∵,
∴y随x的增大而减小,
∴在时,,即,
∴是函数的“1级关联范围”;故①正确,符合题意;
②当时,,当时,,
∵对称轴为y轴,,
∴当时,y随x的增大而增大,
∴在时,,即,
∴是函数的“2级关联范围”,故②不正确,不符合题意;
③∵,
∴该反比例函数图象位于第一象限,且在第一象限内,y随x的增大而减小.
设当,则,
当函数存在“3级关联范围”时,
整理得:,
∵,,
∴总存在,
∴函数总存在“3级关联范围”;故③正确,符合题意;
④函数的对称轴为,
∵,
∴当时,y随x的增大而增大,
设,则,
当函数存在“4级关联范围”时,,
解得:,
∴是函数的“4级关联范围”,
∴函数存在“4级关联范围”,故④不正确,不符合题意;
综上:正确的有①③
【例题2】(2024·四川乐山·中考真题)定义:函数图象上到两坐标轴的距离都小于或等于1的点叫做这个函数图象的“近轴点”.例如,点是函数图象的“近轴点”.
(1)下列三个函数的图象上存在“近轴点”的是 (填序号);
①;②;③.
(2)若一次函数图象上存在“近轴点”,则m的取值范围为 .
【答案】 ③ 或
【分析】本题主要考查了新定义——“近轴点”.正确理解新定义,熟练掌握一次函数,反比例函数,二次函数图象上点的坐标特点,是解决问题的关键.
(1)①中,取,不存在“近轴点”;
②,由对称性,取,不存在“近轴点”;
③,取时,,得到是的“近轴点”;
(2)图象恒过点,当直线过时, ,得到;当直线过时,,得到.
【详解】(1)①中,
时,,
不存在“近轴点”;
②,
由对称性,当时,,
不存在“近轴点”;
③,
时,,
∴是的“近轴点”;
∴上面三个函数的图象上存在“近轴点”的是③
故答案为:③;
(2)中,
时,,
∴图象恒过点,
当直线过时,,
∴,
∴;
当直线过时,,
∴,
∴;
∴m的取值范围为或.
故答案为:或.
【巩固练习1】(2024·上海·中考真题)对于一个二次函数()中存在一点,使得,则称为该抛物线的“开口大小”,那么抛物线“开口大小”为 .
【答案】4
【分析】本题考查新定义运算与二次函数综合,涉及二次函数性质、分式化简求值等知识,读懂题意,理解新定义抛物线的“开口大小”,利用二次函数图象与性质将一般式化为顶点式得到,按照定义求解即可得到答案,熟记二次函数图象与性质、理解新定义是解决问题的关键.
【详解】解:根据抛物线的“开口大小”的定义可知中存在一点,使得,则,

中存在一点,有,解得,则,
抛物线“开口大小”为
【巩固练习2】(2023·四川巴中中考真题)规定:如果两个函数的图象关于y轴对称,那么称这两个函数互为“Y函数”.例如:函数与互为“Y函数”.若函数的图象与x轴只有一个交点,则它的“Y函数”图象与x轴的交点坐标为 .
【答案】或
【分析】根据题意与x轴的交点坐标和它的“Y函数”图象与x轴的交点坐标关于y轴对称,再进行分类讨论,即和两种情况,求出与x轴的交点坐标,即可解答.
【详解】解:①当时,函数的解析式为,
此时函数的图象与x轴只有一个交点成立,
当时,可得,解得,
与x轴的交点坐标为,
根据题意可得,它的“Y函数”图象与x轴的交点坐标为;
①当时,
函数的图象与x轴只有一个交点,
,即,
解得,
函数的解析式为,
当时,可得,
解得,
根据题意可得,它的“Y函数”图象与x轴的交点坐标为,
综上所述,它的“Y函数”图象与x轴的交点坐标为或,
故答案为:或.
【巩固练习3】(2024·黑龙江大庆·中考真题)定义:若一个函数图象上存在纵坐标是横坐标2倍的点,则把该函数称为“倍值函数”,该点称为“倍值点”.例如:“倍值函数”,其“倍值点”为.下列说法不正确的序号为 .
①函数是“倍值函数”;
②函数的图象上的“倍值点”是和;
③若关于x的函数的图象上有两个“倍值点”,则m的取值范围是;
④若关于x的函数的图象上存在唯一的“倍值点”,且当时,n的最小值为k,则k的值为.
【答案】①③④
【分析】本题考查了新定义问题,二次函数的图象与系数的关系,二次函数图象上点的坐标特征,二次函数的性质,二次函数的最值问题.根据“倍值函数”的定义,逐一判断即可.
【详解】解:①函数中,令,则,无解,故函数不是“倍值函数”,故①说法错误;
②函数中,令,则,
解得或,
经检验或都是原方程的解,
故函数的图象上的“倍值点”是和,故②说法正确;
③在中,
令,则,
整理得,
∵关于x的函数的图象上有两个“倍值点”,
∴且,
解得且,故③说法错误;
④在中,
令,则,
整理得,
∵该函数的图象上存在唯一的“倍值点”,
∴,
整理得,
∴对称轴为,此时n的最小值为,
根据题意分类讨论,
,解得;
,无解;
,解得或(舍去),
综上,k的值为0或,故④说法错误
模块二 代几综合
【题型7】 从函数图像获取信息(行程问题)
【例题1】(2024·山东威海·中考真题)同一条公路连接,,三地,地在,两地之间.甲、乙两车分别从地、地同时出发前往地.甲车速度始终保持不变,乙车中途休息一段时间,继续行驶.下图表示甲、乙两车之间的距离()与时间()的函数关系.下列结论正确的是( )
A.甲车行驶与乙车相遇 B.,两地相距
C.甲车的速度是 D.乙车中途休息分钟
【答案】A
【分析】本题考查了函数图象,根据函数图象结合选项,逐项分析判断,即可求解.
【详解】解:根据函数图象可得两地之间的距离为()
两车行驶了小时,同时到达地,
如图所示,在小时时,两车同向运动,在第2小时,即点时,两车距离发生改变,此时乙车休息,
点的意义是两车相遇,点意义是乙车休息后再出发,
∴乙车休息了1小时,故D不正确,
设甲车的速度为,乙车的速度为,
根据题意,乙车休息后两车同时到达地,则甲车的速度比乙车的速度慢,


在时,乙车不动,则甲车的速度是,
∴乙车休息前速度为,故C不正确,
∴的距离为千米,故B不正确,
设小时两辆车相遇,依题意得,
解得:即小时时,两车相遇,故A正确
【例题2】
【巩固练习1】(2024·内蒙古呼伦贝尔·中考真题)已知某同学家、体育场、图书馆在同一条直线上.下面的图象反映的过程是:该同学从家跑步去体育场,在那里锻炼了一阵后又步行回家吃早餐,饭后骑自行车到图书馆.图中用x表示时间,y表示该同学离家的距离.结合图象给出下列结论:

(1)体育场离该同学家2.5千米;
(2)该同学在体育场锻炼了15分钟;
(3)该同学跑步的平均速度是步行平均速度的2倍;
(4)若该同学骑行的平均速度是跑步平均速度的1.5倍,则的值是3.75;
其中正确结论的个数是( )
A.1 B.2 C.3 D.4
【答案】C
【分析】本题考查利用函数图像解决实际问题,正确的读懂图像给出的信息是解题的关键.利用图象信息解决问题即可.
【详解】解:由图象可知:体育场离该同学家2.5千米,故(1)正确;
该同学在体育场锻炼了(分钟),故(2)正确;
该同学的跑步速度为(千米/分钟),步行速度为(千米/分钟),则跑步速度是步行速度的倍,故(3)错误;
若该同学骑行的平均速度是跑步平均速度的1.5倍,则该同学骑行的平均速度为(千米/分钟),所以,故(4)正确
【巩固练习2】(2024·山东淄博·中考真题)某日,甲、乙两人相约在一条笔直的健身道路上锻炼.两人都从地匀速出发,甲健步走向地.途中偶遇一位朋友,驻足交流后,继续以原速步行前进;乙因故比甲晚出发,跑步到达地后立刻以原速返回,在返回途中与甲第二次相遇.下图表示甲、乙两人之间的距离与甲出发的时间之间的函数关系.( )
那么以下结论:
①甲、乙两人第一次相遇时,乙的锻炼用时为;
②甲出发时,甲、乙两人之间的距离达到最大值;
③甲、乙两人第二次相遇的时间是在甲出发后;
④,两地之间的距离是.
其中正确的结论有:
A.①②③ B.①②④ C.①③④ D.②③④
【答案】B
【分析】本题考查了函数图象以及二元一次方程组的应用;①由乙比甲晚出发及当时第一次为,可得出乙出发时两人第一次相遇,进而可得出结论①正确;②观察函数图象,可得出当时,取得最大值,最大值为,进而可得出结论②正确;③设甲的速度为 ,乙的速度为,利用路程速度时间,可列出关于,的二元一次方程组,解之可得出,的之,将其代入中,可得出甲、乙两人第二次相遇的时间是在甲出发后,进而可得出结论③错误;④利用路程速度时间,即可求出,两地之间的距离是.
【详解】解:①乙比甲晚出发,且当时,,
乙出发时,两人第一次相遇,
既甲、乙两人第一次相遇时,乙的锻炼用时为,结论①正确;
②观察函数图象,可知:当时,取得最大值,最大值为,
甲出发时,甲、乙两人之间的距离达到最大值,结论②正确;
③设甲的速度为,乙的速度为,
根据题意得:,
解得:,
∴,
甲、乙两人第二次相遇的时间是在甲出发后,结论③错误;
④,
,两地之间的距离是,结论④正确.
综上所述,正确的结论有①②④.
【巩固练习3】
【题型8】 由动点的函数图像求线段长
【例题1】(2023·广东深圳·中考真题)如图1,在中,动点P从A点运动到B点再到C点后停止,速度为2单位/s,其中长与运动时间t(单位:s)的关系如图2,则的长为( )

A. B. C.17 D.
【答案】C
【分析】根据图象可知时,点与点重合,得到,进而求出点从点运动到点所需的时间,进而得到点从点运动到点的时间,求出的长,再利用勾股定理求出即可.
【详解】解:由图象可知:时,点与点重合,
∴,
∴点从点运动到点所需的时间为;
∴点从点运动到点的时间为,
∴;
在中:
【例题2】(2024·四川广元·中考真题)如图①,在中,,点P从点A出发沿A→C→B以1的速度匀速运动至点B,图②是点P运动时,的面积随时间x(s)变化的函数图象,则该三角形的斜边的长为( )
A.5 B.7 C. D.
【答案】A
【分析】本题考查根据函数图象获取信息,完全平方公式,勾股定理,
由图象可知,面积最大值为6,此时当点P运动到点C,得到,由图象可知, 根据勾股定理,结合完全平方公式即可求解.
【详解】解:由图象可知,面积最大值为6
由题意可得,当点P运动到点C时,的面积最大,
∴,即,
由图象可知,当时,,此时点P运动到点B,
∴,
∵,
∴,
∴.
【例题3】(2024·甘肃兰州·中考真题)如图1,在菱形中,,连接,点M从B出发沿方向以的速度运动至D,同时点N从B出发沿方向以的速度运动至C,设运动时间为,的面积为,y与x的函数图象如图2所示,则菱形的边长为( )

A. B. C. D.
【答案】C
【分析】本题主要考查菱形的性质和二次函数的性质,根据题意可知,,结合菱形的性质得,过点M作于点H,则,那么,设菱形的边长为a,则,那么点M和点N同时到达点D和点C,此时的面积达到最大值为,利用最大值即可求得运动时间,即可知菱形边长.
【详解】解:根据题意知,,,
∵四边形为菱形,,
∴,
过点M作于点H,连接交于点O,如图,

则,
那么,的面积为,
设菱形的边长为a,
∴,
∴点M和点N同时到达点D和点C,此时的面积达到最大值为,
∴,解得,(负值舍去),
∴.
【例题4】(2024·甘肃·模拟预测)如图1,在菱形中,,点在边上,连接,动点从点出发,在菱形的边上沿匀速运动,运动到点C时停止.在此过程中,的面积y随着运动时间x的函数图象如图2所示,则的长为( )
A.2 B. C.4 D.
【答案】A
【分析】本题考查的是动点函数图象问题、菱形的性质、勾股定理.设菱形的边长为,过点作于,根据图象可求出,再根据菱形的性质求出,根据图象当点到达点时,,据此计算即可求解.
【详解】解:设菱形的边长为,过点作于,如图,

则,


,,
由图可知,当点在点时,的面积最大,
此时,
解得:或(舍去),
,,
当点到达点时,,


【巩固练习1】(2024·甘肃临夏·中考真题)如图1,矩形中,为其对角线,一动点从出发,沿着的路径行进,过点作,垂足为.设点的运动路程为,为,与的函数图象如图2,则的长为( )
A. B. C. D.
【答案】B
【分析】本题考查了动点问题的函数图象,根据图象得出信息是解题的关键.
根据函数的图象与坐标的关系确定的长,再根据矩形性质及勾股定理列方程求解.
【详解】解:由图象得:,当时,,此时点P在边上,
设此时,则,,
在中,,
即:,
解得:,
【巩固练习2】(2024·甘肃·中考真题)如图1,动点P从菱形的点A出发,沿边匀速运动,运动到点C时停止.设点P的运动路程为x,的长为y,y与x的函数图象如图2所示,当点P运动到中点时,的长为(  )
A.2 B.3 C. D.
【答案】C
【分析】结合图象,得到当时,,当点P运动到点B时,,根据菱形的性质,得,继而得到,当点P运动到中点时,的长为,解得即可.
本题考查了菱形的性质,图象信息题,勾股定理,直角三角形的性质,熟练掌握菱形的性质,勾股定理,直角三角形的性质是解题的关键.
【详解】结合图象,得到当时,,
当点P运动到点B时,,
根据菱形的性质,得,
故,
当点P运动到中点时,的长为
【巩固练习3】(24-25九年级上·广东深圳·期中)如图1,在矩形中,点P从点A出发,匀速沿向点D运动,连接,设点P的运动距离为x,的长为y,y关于x的函数图象如图2所示,则当点P为中点时,的长为( )
A.5 B.8 C. D.
【答案】D
【分析】本题考查了动点问题的函数图象,从函数图象中获取信息是解题的关键.
根据图2中点的实际意义可得∶当时, ,再根据图2中点的实际意义可得∶, ,然后在中,利用勾股定理可求出,最后在中,利用勾股定理进行计算即可解答.
【详解】解∶由图2可得∶
当时,,
当点P的运动距离为0时,的长为6,
当时,.
由图2可得∶
当时,,
当点的运动距离为a时,的值最大,最大为6,
当点P运动到和点B重合时,的值最大,
,,
在中,,



点P为的中点,

【巩固练习4】(2024·甘肃兰州·模拟预测)如图,点,分别从正方形的顶点,同时出发,沿正方形的边逆时针方向匀速运动,若点的速度是点速度的倍,当点运动到点时,点,同时停止运动.图是点,运动时,的面积随时间变化的图象,则正方形的边长为(  )
A. B. C. D.
【答案】D
【分析】本题考查了正方形的性质,三角形的面积公式,动点问题的函数图象等,根据图可知,当时,点运动到点,点运动到的中点,的面积为,进行计算即可,解题的关键是根据图象分析得到时,点运动到点,点运动到的中点,且的面积为.
【详解】解:∵四边形是正方形,点的速度是点速度的倍,
∴,,
由图可知,当点在上运动时,的面积为,
当时,的面积为,即,
此时点为的中点,
故,
解得:
【巩固练习5】(2024·安徽宣城·模拟预测)如图1,在正方形中,点以每秒3cm的速度从点出发,沿的路径运动,到点停止.过点作,与边(或边)交于点,的长度()与点的运动时间的函数图象如图2所示.当点运动时,的长是( )
A. B. C. D.
【答案】B
【分析】本题主要考查了动点问题的函数图象、正方形的性质、勾股定理、平行线的性质等知识,从图象中获取正确的信息是解题的关键.
由题意知,当运动到时,最长,此时,由图象可知,当时,,得出正方形边长为,当时,,由,得出,推出,根据勾股定理计算,得出答案即可.
【详解】解:∵四边形是正方形,
∴,,,
由题意知,当运动到时,最长,此时,
由图象可知,当时,,
∴,
整理得:
∵,
∴,即正方形边长为,
∴当时,,
∵,
∴,
∴,

【巩固练习6】(2024·山东济南·中考真题)如图1,是等边三角形,点在边上,,动点以每秒1个单位长度的速度从点出发,沿折线匀速运动,到达点后停止,连接.设点的运动时间为,为.当动点沿匀速运动到点时,与的函数图象如图2所示.有以下四个结论:
①;
②当时,;
③当时,;
④动点沿匀速运动时,两个时刻,分别对应和,若,则.其中正确结论的序号是( )
A.①②③ B.①② C.③④ D.①②④
【答案】D
【分析】由图知当动点沿匀速运动到点时,,作于点,利用解直角三角形和勾股定理,即可得到,即可判断①,当时,证明是等边三角形,即可判断②,当时,且时,最小,求出最小值即可判断③,利用勾股定理分别表示出和进行比较,即可判断④.
【详解】解:由图知当动点沿匀速运动到点时,,
作于点,
是等边三角形,点在边上,,
,,
,,


故①正确;
当时,,,

是等边三角形,


故②正确;
当时,且时,最小,
,,

最小为,即能取到,
故③错误;
动点沿匀速运动时,
,,
,,,

当时,,,

,;故④正确;
综上所述,正确的有①②④
【巩固练习7】(2024·湖北·模拟预测)如图1,点E 在正方形 的边上,且 ,点 P 沿 从点 B 运动的到点D,设B,P两点间的距离为x,,图2是点 P运动时y随x变化的关系图象,若图象的最低点M的纵坐标为,则最高点 N的纵坐标a的值为 .
【答案】
【分析】本题考查了正方形的性质、全等三角形的判定、三角形三边之间的关系、勾股定理等,解题的关键是准确分析图1与图2的对应变化关系.
根据正方形的对角线的轴对称性得到,则得到y的最小值是AE,对应到图2中的最低点M的纵坐标,结合之间的关系及勾股定理可求得的长,再观察到当点P运动到D点时,y达到最大值a,勾股定理求得长,则可求得a的值.
【详解】解:连接,

∵四边形是正方形,是其对角线,
∴,
又,
∴,
∴,

连接交于点,
(三角形两边之和大于第三边).
当点P运动到时,

解得,

连接,则.
在图1中,当P运动到D点时,对应图2中最高点N,此时y取最大值a,,
故答案为:.
【题型9】 动点的函数图像分析与判定
【例题1】(2023·四川资阳·中考真题)如图,在平行四边形中,,厘米,厘米,点从点出发以每秒厘米的速度,沿在平行四边形的边上匀速运动至点.设点的运动时间为秒,的面积为平方厘米,下列图中表示与之间函数关系的是( )
A. B.
C. D.
【答案】B
【分析】本题考查了动点问题的函数图象问题,涉及平行四边形性质、三角形外角性质、三角形面积公式等知识.由平行四边形性质得到厘米,点速度为每秒厘米,则点在上时,时间满足的取值范围为,观察符合题意的、、的图象,即点在处时,的面积各不相同,求得此时的面积,即可找到正确选项.判断出点运动到点时的时间及此时的面积是解决本题的关键.
【详解】解:四边形是平行四边形,厘米,
厘米,
点从点出发以每秒厘米的速度,
点走完所用的时间为:秒,
当点在上时,;故排除;
当时,点在点处,过点作于点,如图所示:



厘米,
厘米,
厘米,
平方厘米
【例题2】(2023·辽宁·中考真题)如图,,在射线,上分别截取,连接,的平分线交于点D,点E为线段上的动点,作交于点F,作交射线于点G,过点G作于点H,点E沿方向运动,当点E与点B重合时停止运动.设点E运动的路程为x,四边形与重叠部分的面积为S,则能大致反映S与x之间函数关系的图象是( )

A. B.
C. D.
【答案】A
【分析】分三种情况分别求出S与x的函数关系式,根据函数的类型与其图象的对应关系进行判断即可.
【详解】解:∵,,
∴是边长为6的正三角形,
∵平分,
∴,,,
①当矩形全部在之中,即由图1到图2,此时,

∵,
∴,
∴,
∴,
在中,,
∴,
∴;
②如图3时,当,
则,解得,
由图2到图3,此时,

如图4,记,的交点为,则是正三角形,
∴,
∴, 而,
∴,


③如图6时,,由图3到图6,此时,

如图5,同理是正三角形,
∴,,,


因此三段函数的都是二次函数关系,其中第1段是开口向上,第2段、第3段是开口向下的抛物线,
故选:A.
【例题3】(2024·山东烟台·中考真题)如图,水平放置的矩形中,,,菱形的顶点,在同一水平线上,点与的中点重合,,,现将菱形以的速度沿方向匀速运动,当点运动到上时停止,在这个运动过程中,菱形与矩形重叠部分的面积与运动时间之间的函数关系图象大致是( )
A. B.
C. D.
【答案】D
【分析】本题考查了解直角三角形的应用,菱形的性质,动点问题的函数图象,二次函数的图象的性质,先求得菱形的面积为,进而分三种情形讨论,重合部分为三角形,重合部分为五边形,重合部分为菱形,分别求得面积与运动时间的函数关系式,结合选项,即可求解.
【详解】解:如图所示,设交于点,
∵菱形,,

又∵,
∴是等边三角形,
∵,,



当时,重合部分为,
如图所示,
依题意,为等边三角形,
运动时间为,则,

当时,如图所示,
依题意,,则



∴当时,
当时,同理可得,
当时,同理可得,
综上所述,当时,函数图象为开口向上的一段抛物线,当时,函数图象为开口向下的一段抛物线,当时,函数图象为一条线段,当时,函数图象为开口向下的一段抛物线,当时,函数图象为开口向上的一段抛物线
【巩固练习1】(2024·黑龙江齐齐哈尔·中考真题)如图,在等腰中,,,动点E,F同时从点A出发,分别沿射线和射线的方向匀速运动,且速度大小相同,当点E停止运动时,点F也随之停止运动,连接,以为边向下做正方形,设点E运动的路程为,正方形和等腰重合部分的面积为y,下列图像能反映y与x之间函数关系的是( )
A.B.C.D.
【答案】A
【分析】本题考查动态问题与函数图象,能够明确y与x分别表示的意义,并找到几何图形与函数图象之间的关系,以及对应点是解题的关键,根据题意并结合选项分析当与重合时,及当时图象的走势,和当时图象的走势即可得到答案.
【详解】解:当与重合时,设,由题可得:
∴,,
在中,由勾股定理可得:,
∴,
∴,
∴当时,,
∵,
∴图象为开口向上的抛物线的一部分,
当在下方时,设,由题可得:
∴,,
∵,,
∴,
∴,
∴,
∴,
∴当时,,
∵,
∴图象为开口向下的抛物线的一部分,
综上所述:A正确
【巩固练习2】(2024·安徽合肥·三模)如图,为正方形的中心,分别为的中点,,点从点出发沿方向匀速运动,同时点从点出发沿方向匀速运动,两点运动速度相等,当点运动到点时,两点同时停止运动.设点运动的路程为的面积为,则随变化的函数图象大致是( )

A. B.
C. D.
【答案】B
【分析】当时,点在上,点在上,求得,故图象是正比例函数,当时,点在上,点在上,求得,图象是开口向下的抛物线,当时,点在上,点在上,求得,据此可求出答案.本题考查了动点问题的函数图象,准确的分析动点的运动位置,获得相应的解题条件是本题的解题关键.
【详解】解:两点运动速度相等,
两点的运动路程相等,
当时,点在上,点在上,如图,
,,
,故图象是正比例函数,
当时,点在上,点在上,如图,

此时,
为中点,


点到的距离为,

图象是开口向下的抛物线,
当时,点在上,点在上,如图,

此时,


,,
,图象与前一段函数一样,
据此判断B正确
【巩固练习3】(2023·黑龙江绥化·中考真题)如图,在菱形中,,,动点,同时从点出发,点以每秒个单位长度沿折线向终点运动;点以每秒个单位长度沿线段向终点运动,当其中一点运动至终点时,另一点随之停止运动.设运动时间为秒,的面积为个平方单位,则下列正确表示与函数关系的图象是( )

A. B. C. D.
【答案】A
【分析】连接,过点作于点,根据已知条件得出是等边三角形,进而证明得出,当时,在上,当时,在上,根据三角形的面积公式得到函数关系式,
【详解】解:如图所示,连接,过点作于点,
当时,在上,

菱形中,,,
∴,则是等边三角形,
∴,
∵,
∴,又


∴,

当时,在上,

∴,
综上所述,时的函数图象是开口向上的抛物线的一部分,当时,函数图象是直线的一部分
【巩固练习4】(2024·安徽·中考真题)如图,在中,,,,是边上的高.点E,F分别在边,上(不与端点重合),且.设,四边形的面积为y,则y关于x的函数图象为( )
A.B.C. D.
【答案】A
【分析】本题主要考查了函数图象的识别,相似三角形的判定以及性质,勾股定理的应用,过点E作于点H,由勾股定理求出,根据等面积法求出,先证明,由相似三角形的性质可得出,即可求出,再证明,由相似三角形的性质可得出,即可得出,根据,代入可得出一次函数的解析式,最后根据自变量的大小求出对应的函数值.
【详解】解:过点E作于点H,如下图:
∵,,,
∴,
∵是边上的高.
∴,
∴,
∵,,
∴,
∴,
解得:,
∴,
∵,,
∴,,
∴,
∴,
∴,

∵,∴当时, ,当时,.
【巩固练习5】(2023·辽宁盘锦·中考真题)如图,在平面直角坐标系中,菱形的顶点A在y轴的正半轴上,顶点B、C在x轴的正半轴上,,.点M在菱形的边和上运动(不与点A,C重合),过点M作轴,与菱形的另一边交于点N,连接,,设点M的横坐标为x,的面积为y,则下列图象能正确反映y与x之间函数关系的是( )

A. B.
C. D.
【答案】A
【分析】先根据菱形的性质求出各点坐标,分M的横坐标x在,,之间三个阶段,用含x的代数式表示出的底和高,进而求出分段函数的解析式,根据解析式判断图象即可.
【详解】解:菱形的顶点A在y轴的正半轴上,顶点B、C在x轴的正半轴上,
,,


,,,
设直线的解析式为,将,代入,得:

解得,
直线的解析式为.
轴,
N的横坐标为x,
(1)当M的横坐标x在之间时,点N在线段上,中上的高为,



该段图象为开口向上的抛物线;
(2)当M的横坐标x在之间时,点N在线段上,中,上的高为,

该段图象为直线;
(3)当M的横坐标x在之间时,点N在线段上,中上的高为,
由,可得直线的解析式为,
,,


该段图象为开口向下的抛物线;
观察四个选项可知,只有选项A满足条件
模块三 规律探索
【题型10】 数字类规律探索
【例题1】(2024·山东日照·中考真题)在数学活动课上,老师给出了一个数字构造游戏:对于给定的一列有序数字,在每相邻两个数之间插入这两数的和,形成新的一列有序数字.现有一列数:,进行第1次构造,得到新的一列数:,第2次构造后,得到一列数:,…,第n次构造后得到一列数:,记.某小组经过讨论得出如下结论,错误的是( )
A. B.为偶数 C. D.
【答案】D
【分析】本题主要考查了数字类的规律探索,先求出的值,以及对应的k值,可得规律,此时,据此可判断A、C、D;再证明是偶数即可判断B.
【详解】解:由题意得,此时,
,此时,
第3次构造后得到的一列数为,
∴,此时,故A正确,不符合题意;
同理可得,此时,
……,
以此类推可知,,此时,故D错误,符合题意
∴,,故C正确,不符合题意;
∵是偶数,
∴是偶数,
∴是偶数,
∴是偶数,
∴是偶数,
以此类推,也是偶数,
∴为偶数,故B正确,不符合题意
【例题2】(2024·四川眉山·中考真题)已知(且),,则的值为 .
【答案】
【分析】此题考查了分式的混合运算,利用分式的运算法则计算得到每三个为一个循环,分别为,,,进一步即可求出.
【详解】解:,





……,
由上可得,每三个为一个循环,


【巩固练习1】(2024·江苏扬州·中考真题)1202年数学家斐波那契在《计算之书》中记载了一列数:1,1,2,3,5,……,这一列数满足:从第三个数开始,每一个数都等于它的前两个数之和.则在这一列数的前2024个数中,奇数的个数为( )
A.676 B.674 C.1348 D.1350
【答案】D
【分析】将这一列数继续写下去,发现这列数的变化规律即可解答.
本题主要考查的是数字规律类问题,发现这列数的变化规律是解题的关键.
【详解】这一列数为:1,1,2,3,5,8,13,21,34,…
可以发现每3个数为一组,每一组前2个数为奇数,第3个数为偶数.
由于,
即前2024个数共有674组,且余2个数,
∴奇数有个.
【巩固练习2】(2024·山东德州·中考真题)观察下列等式:
……
则的值为 .
【答案】
【分析】本题考查了数字的规律的探究,算术平方根.通过前三个式子找出其中的规律即可.
【详解】解:,






【题型11】 图形类规律探索
【例题1】(2024·山东济宁·中考真题)如图,用大小相等的小正方形按照一定规律拼正方形.第一幅图有1个正方形,第二幅图有5个正方形,第三幅图有14个正方形……按照此规律,第六幅图中正方形的个数为( )
A.90 B.91 C.92 D.93
【答案】B
【分析】本题主要考查了规律型问题,解题的关键是仔细观察图形并找到有关图形个数的规律.仔细观察图形知道第1个图形有1个正方形,第2个有个,第3个图形有个,…由此得到规律求得第6个图形中正方形的个数即可.
【详解】第1个图形有1个正方形,
第2个图形有个正方形,
第3个图形有个正方形,
……
第6个图形有(个)正方形
【例题2】(2024·四川达州·中考真题)如图,在中,,分别是内角、外角的三等分线,且,,在中,,分别是内角,外角的三等分线.且,,…,以此规律作下去.若.则 度.
【答案】
【分析】本题考查了三角形的外角定理,等式性质,熟练掌握知识点是解题的关键.
先分别对运用三角形的外角定理,设,则,,则,得到,,同理可求:,所以可得.
【详解】解:如图:
∵,,
∴设,,则,,
由三角形的外角的性质得:,,
∴,
如图:
同理可求:,
∴,
……,
∴,
即,
【例题3】(2024·山东潍坊·中考真题)将连续的正整数排成如图所示的数表.记为数表中第行第列位置的数字,如,,.若,则 , .
【答案】 45 2
【分析】本题考查了规律型:数字的变化类,解题的关键是找出规律:当正整数为时,若为奇数,则在第行,第1列,下一个数再下一行,上一个数在第2列;若为偶数,则在第1行,第列,下一个数再下一列,上一个数在第2行.
【详解】解:由图中排布可知,当正整数为时,
若为奇数,则在第行,第1列,下一个数再下一行,上一个数在第2列;
若为偶数,则在第1行,第列,下一个数再下一列,上一个数在第2行;
∵,
而,在第行,第1列,
∴2024在第行,第2列,
∴,
【巩固练习1】(2024·西藏·中考真题)如图是由若干个大小相同的“”组成的一组有规律的图案,其中第1个图案用了2个“”,第2个图案用了6个“”,第3个图案用了12个“”,第4个图案用了20个“”,……,依照此规律,第n个图案中“”的个数为 (用含n的代数式表示).
【答案】
【分析】
本题考查了图形类规律,根据图形规律求得第n个图案中“”的个数为,解题的关键是明确题意,发现题目中个数的变化规律.
【详解】
解:∵第1个图案用了个“”,
第2个图案用了个“”,
第3个图案用了个“”,
第4个图案用了个“”,
……,
∴第n个图案中“”的个数为
【巩固练习2】(2024·山东泰安·中考真题)如图所示,是用图形“○”和“●”按一定规律摆成的“小屋子”.按照此规律继续摆下去,第 个“小屋子”中图形“○”个数是图形“●”个数的3倍.
【答案】12
【分析】本题主要考查了图形变化的规律、一元二次方程的应用等知识点,能根据所给图形发现“〇”和“●”的个数变化规律是解题的关键.
根据所给图形,依次求出“〇”和“●”的个数,发现规律,再利用规律列出一元二次方程求解即可.
【详解】解:由所给图形可知,
第1个“小屋子”中图形“〇”的个数为:,“●”的个数为:;
第2个“小屋子”中图形“〇”的个数为:,“●”的个数为:;
第3个“小屋子”中图形“〇”的个数为:,“●”的个数为:;
第4个“小屋子”中图形“〇”的个数为:,“●”的个数为:;
…,
所以第n个“小屋子”中图形“〇”的个数为:,“●”的个数为:;
由题知,解得,
又n为正整数,则,即第12个“小屋子”中图形“〇”个数是图形“●”个数的3倍.
【巩固练习3】(2024·黑龙江齐齐哈尔·中考真题)如图,数学活动小组在用几何画板绘制几何图形时,发现了如“花朵”形的美丽图案,他们将等腰三角形OBC置于平面直角坐标系中,点O的坐标为,点B的坐标为,点C在第一象限,.将沿x轴正方向作无滑动滚动,使它的三边依次与x轴重合,第一次滚动后,点O的对应点为,点C的对应点为,与的交点为,称点为第一个“花朵”的花心,点为第二个“花朵”的花心;……;按此规律,滚动2024次后停止滚动,则最后一个“花朵”的花心的坐标为 .
【答案】
【分析】本题考查了解直角三角形,等腰直角的性质,点的坐标规律探索.连接,求得,,,分别得到,, ,,推导得到,滚动一次得到,滚动四次得到,滚动七次得到,由此得到滚动2024次后停止滚动,则,据此求解即可.
【详解】解:连接,
由题意得,,,
∴,
∴,,,
∴,
∴,

同理,


滚动一次得到,滚动四次得到,滚动七次得到,
∴滚动2024次后停止滚动,则时,
【题型12】 点坐标规律探索
【例题1】(2024·湖北武汉·中考真题)如图,小好同学用计算机软件绘制函数的图象,发现它关于点中心对称.若点,,,……,,都在函数图象上,这个点的横坐标从开始依次增加,则的值是( )
A. B. C.0 D.1
【答案】D
【分析】本题是坐标规律题,求函数值,中心对称的性质,根据题意得出,进而转化为求,根据题意可得,,即可求解.
【详解】解:∵这个点的横坐标从开始依次增加,
∴,
∴,
∴,而即,
∵,
当时,,即,
∵关于点中心对称的点为,
即当时,,

【例题2】(2024·黑龙江大兴安岭地·中考真题)如图,在平面直角坐标系中,正方形顶点M的坐标为,是等边三角形,点B坐标是,在正方形内部紧靠正方形的边(方向为)做无滑动滚动,第一次滚动后,点A的对应点记为,的坐标是;第二次滚动后,的对应点记为,的坐标是;第三次滚动后,的对应点记为,的坐标是;如此下去,……,则的坐标是 .
【答案】
【分析】本题考查了点的坐标变化规律,正方形性质,等边三角形性质,根据三角形的运动方式,依次求出点A的对应点,,,的坐标,发现规律即可解决问题.
【详解】解:正方形顶点M的坐标为,
,
是等边三角形,点B坐标是,
等边三角形高为,
由题知,
的坐标是;
的坐标是;
的坐标是;
继续滚动有,的坐标是;
的坐标是;
的坐标是;
的坐标是;
的坐标是;
的坐标是;
的坐标是;
的坐标是;
的坐标是;
的坐标是;不断循环,循环规律为以,,,,12个为一组,

的坐标与的坐标一样为
【巩固练习1】(2024·黑龙江绥化·中考真题)如图,已知,,,,,,,…,依此规律,则点的坐标为 .
【答案】
【分析】本题考查了点坐标的规律探究.解题的关键在于根据题意推导出一般性规律.根据题意可知个点坐标的纵坐标为一个循环,的坐标为,据此可求得的坐标.
【详解】解:∵,,,,,,,…,,
∴可知个点坐标的纵坐标为一个循环,的坐标为,
∵,
∴的坐标为.
∴的坐标为
【巩固练习2】(2024·河北·中考真题)平面直角坐标系中,我们把横、纵坐标都是整数,且横、纵坐标之和大于0的点称为“和点”.将某“和点”平移,每次平移的方向取决于该点横、纵坐标之和除以3所得的余数(当余数为0时,向右平移;当余数为1时,向上平移;当余数为2时,向左平移),每次平移1个单位长度.
例:“和点”按上述规则连续平移3次后,到达点,其平移过程如下:
若“和点”Q按上述规则连续平移16次后,到达点,则点Q的坐标为( )
A.或 B.或 C.或 D.或
【答案】D
【分析】本题考查了坐标内点的平移运动,熟练掌握知识点,利用反向运动理解是解决本题的关键.
先找出规律若“和点”横、纵坐标之和除以3所得的余数为0时,先向右平移1个单位,之后按照向上、向左,向上、向左不断重复的规律平移,按照的反向运动理解去分类讨论:①先向右1个单位,不符合题意;②先向下1个单位,再向右平移,当平移到第15次时,共计向下平移了8次,向右平移了7次,此时坐标为,那么最后一次若向右平移则为,若向左平移则为.
【详解】解:由点可知横、纵坐标之和除以3所得的余数为1,继而向上平移1个单位得到,此时横、纵坐标之和除以3所得的余数为2,继而向左平移1个单位得到,此时横、纵坐标之和除以3所得的余数为1,又要向上平移1个单位,因此发现规律为若“和点”横、纵坐标之和除以3所得的余数为0时,先向右平移1个单位,之后按照向上、向左,向上、向左不断重复的规律平移,
若“和点”Q按上述规则连续平移16次后,到达点,则按照“和点”反向运动16次求点Q坐标理解,可以分为两种情况:
①先向右1个单位得到,此时横、纵坐标之和除以3所得的余数为0,应该是向右平移1个单位得到,故矛盾,不成立;
②先向下1个单位得到,此时横、纵坐标之和除以3所得的余数为1,则应该向上平移1个单位得到,故符合题意,那么点先向下平移,再向右平移,当平移到第15次时,共计向下平移了8次,向右平移了7次,此时坐标为,即,那么最后一次若向右平移则为,若向左平移则为
【巩固练习3】(2024·四川广安·中考真题)已知,直线与轴相交于点,以为边作等边三角形,点在第一象限内,过点作轴的平行线与直线交于点,与轴交于点,以为边作等边三角形(点在点的上方),以同样的方式依次作等边三角形,等边三角形,则点的横坐标为 .
【答案】
【分析】直线直线可知,点坐标为,可得,由于是等边三角形,可得点,把代入直线解析式即可求得的横坐标,可得,由于是等边三角形,可得点;同理,,发现规律即可得解,准确发现坐标与字母的序号之间的规律是解题的关键.
【详解】解:∵直线l:与x轴负半轴交于点,
∴点坐标为,
∴,
过,,作轴交x轴于点M,轴交于点D,交x轴于点N,

∵为等边三角形,

∴,

∴,
当时,,解得:,
∴,,
∴,
∴,
∴,
∴当时,,解得:,
∴;
而,
同理可得:的横坐标为,
∴点的横坐标为,
故答案为:.
【巩固练习4】2024·山东东营·中考真题)如图,在平面直角坐标系中,已知直线的表达式为,点的坐标为,以为圆心,为半径画弧,交直线于点,过点作直线的垂线交轴于点;以为圆心,为半径画弧,交直线于点,过点作直线的垂线交轴于点;以为圆心,为半径画弧,交直线于点,过点作直线的垂线交轴于点;……按照这样的规律进行下去,点的横坐标是 .
【答案】
【分析】本题考查的是一次函数性质应用,等腰直角三角形的判定与性质及点的坐标规律问题,作轴于点H,依次求出,找出规律即可解决.
【详解】解:作轴于点H,
均在直线上,


,,





同理,,

同理,

即点的横坐标是
【巩固练习5】(2024·四川内江·中考真题)如图,在平面直角坐标系中,轴,垂足为点,将绕点逆时针旋转到的位置,使点的对应点落在直线上,再将绕点逆时针旋转到的位置,使点的对应点也落在直线上,如此下去,……,若点的坐标为,则点的坐标为( ).
A. B. C. D.
【答案】C
【分析】本题考查了平面直角坐标系、一次函数、旋转的性质、勾股定理等知识点.找出点的坐标规律以及旋转过程中线段长度的关系是解题的关键.
通过求出点的坐标,、、的长度,再根据旋转的特点逐步推导出后续点的位置和坐标,然后结合图形求解即可.
【详解】轴,点的坐标为,
,则点的纵坐标为3,代入,
得:,则点的坐标为.
,,

由旋转可知,,,,
,,


设点的坐标为,
则,
解得或(舍去),则,
点的坐标为.
【巩固练习6】(2024·山东淄博·中考真题)如图,在平面直角坐标系中,作直线与轴相交于点,与抛物线相交于点,连接,相交于点,得和,若将其面积之比记为,则 .
【答案】
【分析】本题考查相似三角形的判定和性质,二次函数的图象和性质,根据题意,易证,得到,进行求解即可.
【详解】解:∵作直线与轴相交于点,与抛物线相交于点,
∴轴,且,
∴,
∵,
∴,
∴,

【巩固练习7】(2024·四川泸州·中考真题)定义:在平面直角坐标系中,将一个图形先向上平移个单位,再绕原点按逆时针方向旋转角度,这样的图形运动叫做图形的变换.如:点按照变换后得到点的坐标为,则点按照变换后得到点的坐标为 .
【答案】
【分析】本题考查了解直角三角形,坐标与图形.根据题意,点向上平移2个单位,得到点,再根据题意将点绕原点按逆时针方向旋转,得到,,据此求解即可.
【详解】解:根据题意,点向上平移2个单位,得到点,

∴,,
∴,,
∴,
根据题意,将点绕原点按逆时针方向旋转,
∴,
作轴于点,
∴,,
∴,
∴点的坐标为
模块四 其它问题
【题型13】 三角函数综合
【例题1】(2024·湖南·中考真题)如图,左图为《天工开物》记载的用于春(chōng)捣谷物的工具——“碓(duì)”的结构简图,右图为其平面示意图,已知于点B,与水平线l相交于点O,.若分米,分米.,则点C到水平线l的距离为 分米(结果用含根号的式子表示).
【答案】/
【分析】题目主要考查解三角形及利用三角形等面积法求解,延长交l于点H,连接,根据题意及解三角形确定,,再由等面积法即可求解,作出辅助线是解题关键.
【详解】解:延长交l于点H,连接,如图所示:
在中,,

即,
解得:.
【例题2】(2024·四川资阳·中考真题)在中,,.若是锐角三角形,则边长的取值范围是 .
【答案】
【分析】本题考查了锐角三角函数,解题的关键是正确作出辅助线.作的高,,根据题意可得,,在中,根据三角函数可得,即,再根据,即可求解.
【详解】解:如图,作的高,,
是锐角三角形,
,在的内部,
,,
在中,,,


又,
【巩固练习1】(2024·福建·中考真题)无动力帆船是借助风力前行的.下图是帆船借助风力航行的平面示意图,已知帆船航行方向与风向所在直线的夹角为,帆与航行方向的夹角为,风对帆的作用力为.根据物理知识,可以分解为两个力与,其中与帆平行的力不起作用,与帆垂直的力仪可以分解为两个力与与航行方向垂直,被舵的阻力抵消;与航行方向一致,是真正推动帆船前行的动力.在物理学上常用线段的长度表示力的大小,据此,建立数学模型:,则 .(单位:)(参考数据:)
【答案】128
【分析】此题考查了解直角三角形的应用,求出,,由得到,求出,求出在中,根据即可求出答案.
【详解】解:如图,
∵帆船航行方向与风向所在直线的夹角为,帆与航行方向的夹角为,
∴,,
∵,
∴,
在中,,,
∴,
由题意可知, ,
∴,

在中,,

【巩固练习2】(2024·江苏盐城·中考真题)如图,小明用无人机测量教学楼的高度,将无人机垂直上升距地面的点P处,测得教学楼底端点A的俯角为,再将无人机沿教学楼方向水平飞行至点Q处,测得教学楼顶端点B的俯角为,则教学楼的高度约为 m.(精确到,参考数据:,,)

【答案】17
【分析】本题主要考查解直角三角形的实际应用,延长交直线于点H,先用三角函数解求出,进而求出,再证,最后根据即可求解.
【详解】解:如图,延长交直线于点H,则,

由题意知,
在中,,即,
解得,

,,



【巩固练习3】(2024·宁夏·中考真题)如图1是三星堆遗址出土的陶盉(hè),图2是其示意图.已知管状短流,四边形是器身,.器身底部距地面的高度为,则该陶盉管状短流口距地面的高度约为 (结果精确到)(参考数据:)
【答案】
【分析】本题考查解直角三角形的知识,解题的关键是过点作交于点,过点作交的延长线于点,根据,求出,根据,求出,根据,,求出,根据该陶盉管状短流口距地面的高度为:,即可.
【详解】解:过点作交于点,过点作交的延长线于点,
∴,
∵,
∴,
∴,
∵,
∴,
∴,
∵,,
∴,
∴,
∴该陶盉管状短流口距地面的高度为:.
故答案为:.
【题型14】 函数的应用
【例题1】(2024·河南·中考真题)把多个用电器连接在同一个插线板上,同时使用一段时间后,插线板的电源线会明显发热,存在安全隐患.数学兴趣小组对这种现象进行研究,得到时长一定时,插线板电源线中的电流I与使用电器的总功率P的函数图象(如图1),插线板电源线产生的热量Q与I的函数图象(如图2).下列结论中错误的是( )
A.当时, B.Q随I的增大而增大
C.I每增加1A,Q的增加量相同 D.P越大,插线板电源线产生的热量Q越多
【答案】C
【分析】本题考查了函数的图象,准确从图中获取信息,并逐项判定即可.
【详解】解∶根据图1知:当时,,故选项A正确,但不符合题意;
根据图2知:Q随I的增大而增大,故选项B正确,但不符合题意;
根据图2知:Q随I的增大而增大,但前小半段增加的幅度小,后面增加的幅度大,故选项C错误,符合题意;
根据图1知:I随P的增大而增大,又Q随I的增大而增大,则P越大,插线板电源线产生的热量Q越多,故选项D正确,但不符合题意
【例题2】如图是抛物线形拱桥,当拱顶离水面2米时,水面宽6米,水面下降 米,水面宽8米.
【答案】
【分析】根据已知得出直角坐标系,通过代入A点坐标(3,0),求出二次函数解析式,再根据把x=4代入抛物线解析式得出下降高度,即可得出答案.
【详解】解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,由题意可得:AO=OB=3米,C坐标为(0,2),
通过以上条件可设顶点式y=ax2+2,把点A点坐标(3,0)代入得,
∴,
∴,
∴抛物线解析式为:;
当水面下降,水面宽为8米时,有
把代入解析式,得;
∴水面下降米;故答案为:
【巩固练习1】年5月8日,商业首航完成——中国民商业运营国产大飞机正式起步.时分航班抵达北京首都机场,穿过隆重的“水门礼”(寓意“接风洗尘”、是国际民航中高级别的礼仪).如图①,在一次“水门礼”的预演中,两辆消防车面向飞机喷射水柱,喷射的两条水柱近似看作形状相同的地物线的一部分.如图②,当两辆消防车喷水口A、B的水平距离为米时,两条水柱在物线的顶点H处相遇,此时相遇点H距地面米,喷水口A、B距地面均为4米.若两辆消防车同时后退米,两条水柱的形状及喷水口、到地面的距离均保持不变,则此时两条水柱相遇点距地面 米.

【答案】
【分析】根据题意求出原来抛物线的解析式,从而求得平移后的抛物线解析式,再令求平移后的抛物线与轴的交点即可.
【详解】解:由题意可知:
、、,
设抛物线解析式为:,
将代入解析式,
解得:,

消防车同时后退米,即抛物线向左(右)平移米,
平移后的抛物线解析式为:,
令,解得:,
【巩固练习2】如图,水池中心点O处竖直安装一水管,水管喷头喷出抛物线形水柱,喷头上下移动时,抛物线形水柱随之竖直上下平移,水柱落点与点O在同一水平面.安装师傅调试发现,喷头高时,水柱落点距O点;喷头高时,水柱落点距O点.那么喷头高 m时,水柱落点距O点.
【答案】8
【分析】由题意可知,在调整喷头高度的过程中,水柱的形状不发生变化,则当喷头高2.5m时,可设y=ax2+bx+2.5,将(2.5,0)代入解析式得出2.5a+b+1=0;喷头高4m时,可设y=ax2+bx+4,将(3,0)代入解析式得9a+3b+4=0,联立可求出a和b的值,设喷头高为h时,水柱落点距O点4m,则此时的解析式为y=ax2+bx+h,将(4,0)代入可求出h.
【详解】解:由题意可知,在调整喷头高度的过程中,水柱的形状不发生变化,
当喷头高2.5m时,可设y=ax2+bx+2.5,
将(2.5,0)代入解析式得出2.5a+b+1=0①,
喷头高4m时,可设y=ax2+bx+4,
将(3,0)代入解析式得9a+3b+4=0②,
联立可求出,,
设喷头高为h时,水柱落点距O点4m,
∴此时的解析式为,
将(4,0)代入可得,
解得h=8.
【题型15】 一次函数综合
【例题1】(2024·江苏南通·中考真题)平面直角坐标系中,已知,.直线(k,b为常数,且)经过点,并把分成两部分,其中靠近原点部分的面积为,则k的值为 .
【答案】/0.6
【分析】本题主要考查了一次函数的综合问题,根据题意画出图形,求待定系数法求出的解析式,再根据直线经过点,求出,联立两直线求出点D的坐标,再根据靠近原点部分的面积为为等量关系列出关于k的等式,求解即可得出答案.
【详解】解:根据题意画出图形如下,
设直线的解析式为:,
把,代入,
可得出:,
解得:,
∴直线的解析式为:,
∵直线经过点,
∴,
∴,
∴直线,
联立两直线方程:,
解得:,

∵,,
∴,,
根据题意有:,
即,

解得:,
【巩固练习1】(2025·广东佛山·一模)在平面直角坐标系中,点在轴的非负半轴上运动,点在轴上运动,满足.点为线段的中点,则点运动路径的长为 .
【答案】
【分析】本题主要考查了平面直角坐标系中的动点问题,一次函数的应用,化为最简二次根式,根据题意找出点Q的运动轨迹是两条线段,是解题的关键.设点M的坐标为,点N的坐标为,则点Q的坐标为,根据,得出,然后分两种情况,或,得出与的函数关系式,即可得出Q横纵坐标的关系式,找出点Q的运动轨迹,根据勾股定理求出运动轨迹的长即可.
【详解】解:设点M的坐标为,点N的坐标为,则点Q的坐标为,
∵,
∴,(,) ,
∵当时,,
∴,即,
∴此时点Q在一条线段上运动,线段的一个端点在x轴的负半轴上,坐标为,另一端在y轴的非负半轴上,坐标为,
∴此时点Q的运动路径长为;
∵当时,,
∴,即,
∴此时点Q在一条线段上运动,线段的一个端点在x轴的正半轴上,坐标为,另一端在y轴的非负半轴上,坐标为,
∴此时点Q的运动路径2025届中考复习专题09:代数选填压轴常考热点问题
模块一 二次函数 2
【题型1】 二次函数的性质及应用综合 3
【题型2】 二次函数图象与系数的关系(给出对称轴或对称轴范围) 6
【题型3】 二次函数图象与系数的关系(给出对称轴和交点坐标) 9
【题型4】 二次函数图象与系数的关系(题目没给出图像) 12
【题型5】 含参二次函数 14
【题型6】 二次函数新定义问题 15
模块二 代几综合 16
【题型7】 从函数图像获取信息(行程问题) 16
【题型8】 由动点的函数图像求线段长 18
【题型9】 动点的函数图像分析与判定 23
模块三 规律探索 28
【题型10】 数字类规律探索 28
【题型11】 图形类规律探索 29
【题型12】 点坐标规律探索 31
模块四 其它问题 34
【题型13】 三角函数综合 34
【题型14】 函数的应用 36
【题型15】 一次函数综合 38
模块一 二次函数
二次函数图像与系数a,b,c的关系
如图,二次函数的图象关于直线对称,与x轴交于,两点
考法 解决方法 本题结果
① 二次函数图像开口向上时,a>0;开口向下,则a<0, a>0 b<0 c<0
:和共同决定了函数对称轴的位置,“左同右异”
c为图像和y轴交点的纵坐标
② 两个交点: 一个交点: 没有交点:
③ 用特殊值进行判断: a+b+c即为当时的函数值; 4a-2b+c为当时的函数值 a+b+c<0 a-b+c<0
④ 只有a,b时,用对称轴代换,消去一个未知数进行判断 ∵,∴,
⑤c+a 只有a,c或只有b,c时,先用对称轴代换,消去一个未知数,然后利用④中的结果判断结果 ∵a-b+c<0,∴a+c<b,∵a>0, ∴b=-2a<0,∴a+c<0
⑥ 若c的系数不是1,可以先化成1再进行计算,或这把③中的某个式子中的c的系数变成题里的形式 而,
⑦am2+bm和a+b的大小关系 同时加上c,am2+bm+c,a+b+c 第一个式子是当x=m时的函数值,第二个式子是当x=1时的函数值;由图可知,x=1时函数取最小值 am2+bm≥a+b
⑧(a+c)-b2
⑨和的大小关系 可以把代数式变成顶点的纵坐标公式,顶点坐标() 假如定点纵坐标小于-1,则,<-4a,- >4a
⑩若给出的值 , 即,进而可知的关系 可以判断关于任意式子的正负 也可以求出以为参数的方程的根
【题型1】 二次函数的性质及应用综合
【例题1】(2024·广西·中考真题)如图,壮壮同学投掷实心球,出手(点P处)的高度是,出手后实心球沿一段抛物线运行,到达最高点时,水平距离是,高度是.若实心球落地点为M,则 .
【例题2】(2023·湖北十堰中考真题)已知点在直线上,点在抛物线上,若且,则的取值范围是( )
A. B.
C. D.
∴的取值范围是
【例题3】(2024·四川成都·中考真题)在平面直角坐标系中,,,是二次函数图象上三点.若,,则 (填“”或“”);若对于,,,存在,则的取值范围是 .
【巩固练习1】(2024·四川自贡·中考真题)九(1)班劳动实践基地内有一块面积足够大的平整空地.地上两段围墙于点O(如图),其中上的段围墙空缺.同学们测得m,m,m,m,m.班长买来可切断的围栏m,准备利用已有围墙,围出一块封闭的矩形菜地,则该菜地最大面积是 .
【巩固练习2】(2024·四川资阳·中考真题)已知二次函数与的图像均过点和坐标原点,这两个函数在时形成的封闭图像如图所示,为线段的中点,过点且与轴不重合的直线与封闭图像交于,两点.给出下列结论:
①;
②;
③以,,,为顶点的四边形可以为正方形;
④若点的横坐标为,点在轴上(,,三点不共线),则周长的最小值为.
其中,所有正确结论的个数是( )
A. B. C. D.
【巩固练习3】(2024·四川宜宾·中考真题)如图,抛物线的图象交x轴于点、,交y轴于点C.以下结论:①;②;③当以点A、B、C为顶点的三角形是等腰三角形时,;④当时,在内有一动点P,若,则的最小值为.其中正确结论有( )

A.1个 B.2个 C.3个 D.4个
【题型2】 二次函数图象与系数的关系(给出对称轴或对称轴范围)
【例题1】(2024·山东泰安·中考真题)如图所示是二次函数的部分图象,该函数图象的对称轴是直线,图象与轴交点的纵坐标是2,则下列结论:①;②方程一定有一个根在和之间;③方程一定有两个不相等的实数根;④.其中,正确结论的个数有( )
A.1个 B.2个 C.3个 D.4个
【例题2】(2024·四川遂宁·中考真题)如图,已知抛物线(a、b、c为常数,且)的对称轴为直线,且该抛物线与轴交于点,与轴的交点在,之间(不含端点),则下列结论正确的有多少个( )
①;
②;
③;
④若方程两根为,则.
A.1 B.2 C.3 D.4
【例题3】(2024·四川达州·中考真题)抛物线与轴交于两点,其中一个交点的横坐标大于1,另一个交点的横坐标小于1,则下列结论正确的是( )
A. B. C. D.
【例题4】(2024·山东青岛·中考真题)二次函数的图象如图所示,对称轴是直线,则过点和点的直线一定不经过( )

A.第一象限 B.第二象限 C.第三象限 D.第四象限
【巩固练习1】(2024·黑龙江绥化·中考真题)二次函数的部分图象如图所示,对称轴为直线,则下列结论中:
① ②(m为任意实数) ③
④若、是抛物线上不同的两个点,则.其中正确的结论有( )
A.1个 B.2个 C.3个 D.4个
【巩固练习2】(2024·四川德阳·中考真题)如图,抛物线的顶点的坐标为,与轴的一个交点位于0和1之间,则以下结论:①;②;③若抛物线经过点,则;④若关于的一元二次方程无实数根,则.其中正确结论是 (请填写序号).
【巩固练习3】(2024·四川眉山·中考真题)如图,二次函数的图象与轴交于点,与轴交于点,对称轴为直线,下列四个结论:①;②;③;④若,则,其中正确结论的个数为( )
A.1个 B.2个 C.3个 D.4
【巩固练习4】(2024·山东烟台·中考真题)已知二次函数的与的部分对应值如下表:
下列结论:;关于的一元二次方程有两个相等的实数根;当时,的取值范围为;若点,均在二次函数图象上,则;满足的的取值范围是或.其中正确结论的序号为 .
【巩固练习5】(2024·四川广元·中考真题)如图,已知抛物线过点与x轴交点的横坐标分别为,,且,,则下列结论:
①;
②方程有两个不相等的实数根;
③;
④;
⑤.其中正确的结论有( )
A.1个 B.2个 C.3个 D.4个
【题型3】 二次函数图象与系数的关系(给出对称轴和交点坐标)
【例题1】(2024·山东日照·中考真题)已知二次函数图象的一部分如图所示,该函数图象经过点,对称轴为直线.对于下列结论:①;②;③多项式可因式分解为;④当时,关于的方程无实数根.其中正确的个数有( )
A.1个 B.2个 C.3个 D.4个
【例题2】(2024·黑龙江牡丹江·中考真题)在平面直角坐标系中,抛物线与x轴交于A、B两点,,与y轴交点C的纵坐标在~之间,根据图象判断以下结论:①;②;③若且,则;④直线与抛物线的一个交点,则.其中正确的结论是( )
A.①②④ B.①③④ C.①②③ D.①②③④
【巩固练习1】(2024·四川广安·中考真题)如图,二次函数(,,为常数,)的图象与轴交于点,对称轴是直线,有以下结论:①;②若点和点都在抛物线上,则;③(为任意实数);④.其中正确的有( )
A.1个 B.2个 C.3个 D.4个
【巩固练习2】(2024·黑龙江齐齐哈尔·中考真题)如图,二次函数的图象与轴交于,,其中.结合图象给出下列结论:

①;②;
③当时,随的增大而减小;
④关于的一元二次方程的另一个根是;
⑤的取值范围为.其中正确结论的个数是( )
A. B. C. D.
【巩固练习3】(2023乐山市中考真题)如图,抛物线经过点,且,有下列结论:①;②;③;④若点在抛物线上,则.其中,正确的结论有( )

A.4个 B.3个 C.2个 D.1个
【巩固练习4】(辽宁省营口市)如图.抛物线与x轴交于点和点,与y轴交于点C.下列说法:①;②抛物线的对称轴为直线;③当时,;④当时,y随x的增大而增大;⑤(m为任意实数)其中正确的个数是( )

A.1个 B.2个 C.3个 D.4个
综上所述,正确的有②③⑤
【题型4】 二次函数图象与系数的关系(题目没给出图像)
【例题1】(2024·江苏连云港·中考真题)已知抛物线(a、b、c是常数,)的顶点为.小烨同学得出以下结论:①;②当时,随的增大而减小;③若的一个根为3,则;④抛物线是由抛物线向左平移1个单位,再向下平移2个单位得到的.其中一定正确的是( )
A.①② B.②③ C.③④ D.②④
【例题2】(2024·湖北武汉·中考真题)抛物线(a,b,c是常数,)经过,两点,且.下列四个结论:
①;
②若,则;
③若,则关于x的一元二次方程 无实数解;
④点,在抛物线上,若,,总有,则.
其中正确的是 (填写序号).
【巩固练习1】(2024·内蒙古通辽·中考真题)关于抛物线(是常数),下列结论正确的是 (填写所有正确结论的序号).
①当时,抛物线的对称轴是轴;
②若此抛物线与轴只有一个公共点,则;
③若点,在抛物线上,则;
④无论为何值,抛物线的顶点到直线的距离都等于.
【巩固练习2】(2024·四川雅安·中考真题)已知一元二次方程有两实根,,且,则下列结论中正确的有( )
①;②抛物线的顶点坐标为;
③;④若,则.
A.1个 B.2个 C.3个 D.4个
【巩固练习3】(2024·四川巴中·中考真题)若二次函数的图象向右平移1个单位长度后关于轴对称.则下列说法正确的序号为 .(少选得1分,错选得0分,选全得满分)

②当时,代数式的最小值为3
③对于任意实数,不等式一定成立
④,为该二次函数图象上任意两点,且.当时,一定有
【题型5】 含参二次函数
【例题1】(2024·福建·中考真题)已知二次函数的图象经过,两点,则下列判断正确的是( )
A.可以找到一个实数,使得 B.无论实数取什么值,都有
C.可以找到一个实数,使得 D.无论实数取什么值,都有
【例题2】(2024·江苏镇江·中考真题)对于二次函数(a是常数),下列结论:①将这个函数的图像向下平移3个单位长度后得到的图像经过原点;②当时,这个函数的图像在函数图像的上方;③若,则当时,函数值y随自变量x增大而增大;④这个函数的最小值不大于3.其中正确的是 (填写序号).
【巩固练习1】(2023年四川省南充市中考真题)抛物线与x轴的一个交点为,若,则实数的取值范围是( )
A. B.或
C. D.或
【巩固练习2】(2023·浙江衢州中考真题)已知二次函数(a是常数,)的图象上有和两点.若点,都在直线的上方,且,则的取值范围是( )
A. B. C. D.
综上所述,可得,
【巩固练习3】(2023年四川省泸州市中考真题)已知二次函数(其中是自变量),当时对应的函数值均为正数,则的取值范围为(  )
A. B.或
C.或 D.或
【题型6】 二次函数新定义问题
【例题1】(2024·江苏无锡·中考真题)已知是的函数,若存在实数,当时,的取值范围是.我们将称为这个函数的“级关联范围”.例如:函数,存在,,当时,,即,所以是函数的“2级关联范围”.下列结论:
①是函数的“1级关联范围”;
②不是函数的“2级关联范围”;
③函数总存在“3级关联范围”;
④函数不存在“4级关联范围”.
其中正确的为( )
A.①③ B.①④ C.②③ D.②④
【例题2】(2024·四川乐山·中考真题)定义:函数图象上到两坐标轴的距离都小于或等于1的点叫做这个函数图象的“近轴点”.例如,点是函数图象的“近轴点”.
(1)下列三个函数的图象上存在“近轴点”的是 (填序号);
①;②;③.
(2)若一次函数图象上存在“近轴点”,则m的取值范围为 .
【巩固练习1】(2024·上海·中考真题)对于一个二次函数()中存在一点,使得,则称为该抛物线的“开口大小”,那么抛物线“开口大小”为 .
【巩固练习2】(2023·四川巴中中考真题)规定:如果两个函数的图象关于y轴对称,那么称这两个函数互为“Y函数”.例如:函数与互为“Y函数”.若函数的图象与x轴只有一个交点,则它的“Y函数”图象与x轴的交点坐标为 .
【巩固练习3】(2024·黑龙江大庆·中考真题)定义:若一个函数图象上存在纵坐标是横坐标2倍的点,则把该函数称为“倍值函数”,该点称为“倍值点”.例如:“倍值函数”,其“倍值点”为.下列说法不正确的序号为 .
①函数是“倍值函数”;
②函数的图象上的“倍值点”是和;
③若关于x的函数的图象上有两个“倍值点”,则m的取值范围是;
④若关于x的函数的图象上存在唯一的“倍值点”,且当时,n的最小值为k,则k的值为.
模块二 代几综合
【题型7】 从函数图像获取信息(行程问题)
【例题1】(2024·山东威海·中考真题)同一条公路连接,,三地,地在,两地之间.甲、乙两车分别从地、地同时出发前往地.甲车速度始终保持不变,乙车中途休息一段时间,继续行驶.下图表示甲、乙两车之间的距离()与时间()的函数关系.下列结论正确的是( )
A.甲车行驶与乙车相遇 B.,两地相距
C.甲车的速度是 D.乙车中途休息分钟
【例题2】
【巩固练习1】(2024·内蒙古呼伦贝尔·中考真题)已知某同学家、体育场、图书馆在同一条直线上.下面的图象反映的过程是:该同学从家跑步去体育场,在那里锻炼了一阵后又步行回家吃早餐,饭后骑自行车到图书馆.图中用x表示时间,y表示该同学离家的距离.结合图象给出下列结论:

(1)体育场离该同学家2.5千米;
(2)该同学在体育场锻炼了15分钟;
(3)该同学跑步的平均速度是步行平均速度的2倍;
(4)若该同学骑行的平均速度是跑步平均速度的1.5倍,则的值是3.75;
其中正确结论的个数是( )
A.1 B.2 C.3 D.4
【巩固练习2】(2024·山东淄博·中考真题)某日,甲、乙两人相约在一条笔直的健身道路上锻炼.两人都从地匀速出发,甲健步走向地.途中偶遇一位朋友,驻足交流后,继续以原速步行前进;乙因故比甲晚出发,跑步到达地后立刻以原速返回,在返回途中与甲第二次相遇.下图表示甲、乙两人之间的距离与甲出发的时间之间的函数关系.( )
那么以下结论:
①甲、乙两人第一次相遇时,乙的锻炼用时为;
②甲出发时,甲、乙两人之间的距离达到最大值;
③甲、乙两人第二次相遇的时间是在甲出发后;
④,两地之间的距离是.
其中正确的结论有:
A.①②③ B.①②④ C.①③④ D.②③④
【巩固练习3】
【题型8】 由动点的函数图像求线段长
【例题1】(2023·广东深圳·中考真题)如图1,在中,动点P从A点运动到B点再到C点后停止,速度为2单位/s,其中长与运动时间t(单位:s)的关系如图2,则的长为( )

A. B. C.17 D.
【例题2】(2024·四川广元·中考真题)如图①,在中,,点P从点A出发沿A→C→B以1的速度匀速运动至点B,图②是点P运动时,的面积随时间x(s)变化的函数图象,则该三角形的斜边的长为( )
A.5 B.7 C. D.
【例题3】(2024·甘肃兰州·中考真题)如图1,在菱形中,,连接,点M从B出发沿方向以的速度运动至D,同时点N从B出发沿方向以的速度运动至C,设运动时间为,的面积为,y与x的函数图象如图2所示,则菱形的边长为( )

A. B. C. D.
【例题4】(2024·甘肃·模拟预测)如图1,在菱形中,,点在边上,连接,动点从点出发,在菱形的边上沿匀速运动,运动到点C时停止.在此过程中,的面积y随着运动时间x的函数图象如图2所示,则的长为( )
A.2 B. C.4 D.
【巩固练习1】(2024·甘肃临夏·中考真题)如图1,矩形中,为其对角线,一动点从出发,沿着的路径行进,过点作,垂足为.设点的运动路程为,为,与的函数图象如图2,则的长为( )
A. B. C. D.
【巩固练习2】(2024·甘肃·中考真题)如图1,动点P从菱形的点A出发,沿边匀速运动,运动到点C时停止.设点P的运动路程为x,的长为y,y与x的函数图象如图2所示,当点P运动到中点时,的长为(  )
A.2 B.3 C. D.
【巩固练习3】(24-25九年级上·广东深圳·期中)如图1,在矩形中,点P从点A出发,匀速沿向点D运动,连接,设点P的运动距离为x,的长为y,y关于x的函数图象如图2所示,则当点P为中点时,的长为( )
A.5 B.8 C. D.
【巩固练习4】(2024·甘肃兰州·模拟预测)如图,点,分别从正方形的顶点,同时出发,沿正方形的边逆时针方向匀速运动,若点的速度是点速度的倍,当点运动到点时,点,同时停止运动.图是点,运动时,的面积随时间变化的图象,则正方形的边长为(  )
A. B. C. D.
【巩固练习5】(2024·安徽宣城·模拟预测)如图1,在正方形中,点以每秒3cm的速度从点出发,沿的路径运动,到点停止.过点作,与边(或边)交于点,的长度()与点的运动时间的函数图象如图2所示.当点运动时,的长是( )
A. B. C. D.
【巩固练习6】(2024·山东济南·中考真题)如图1,是等边三角形,点在边上,,动点以每秒1个单位长度的速度从点出发,沿折线匀速运动,到达点后停止,连接.设点的运动时间为,为.当动点沿匀速运动到点时,与的函数图象如图2所示.有以下四个结论:
①;
②当时,;
③当时,;
④动点沿匀速运动时,两个时刻,分别对应和,若,则.其中正确结论的序号是( )
A.①②③ B.①② C.③④ D.①②④
【巩固练习7】(2024·湖北·模拟预测)如图1,点E 在正方形 的边上,且 ,点 P 沿 从点 B 运动的到点D,设B,P两点间的距离为x,,图2是点 P运动时y随x变化的关系图象,若图象的最低点M的纵坐标为,则最高点 N的纵坐标a的值为 .
【题型9】 动点的函数图像分析与判定
【例题1】(2023·四川资阳·中考真题)如图,在平行四边形中,,厘米,厘米,点从点出发以每秒厘米的速度,沿在平行四边形的边上匀速运动至点.设点的运动时间为秒,的面积为平方厘米,下列图中表示与之间函数关系的是( )
A. B.
C. D.
【例题2】(2023·辽宁·中考真题)如图,,在射线,上分别截取,连接,的平分线交于点D,点E为线段上的动点,作交于点F,作交射线于点G,过点G作于点H,点E沿方向运动,当点E与点B重合时停止运动.设点E运动的路程为x,四边形与重叠部分的面积为S,则能大致反映S与x之间函数关系的图象是( )

A. B.
C. D.
【例题3】(2024·山东烟台·中考真题)如图,水平放置的矩形中,,,菱形的顶点,在同一水平线上,点与的中点重合,,,现将菱形以的速度沿方向匀速运动,当点运动到上时停止,在这个运动过程中,菱形与矩形重叠部分的面积与运动时间之间的函数关系图象大致是( )
A. B.
C. D.
【巩固练习1】(2024·黑龙江齐齐哈尔·中考真题)如图,在等腰中,,,动点E,F同时从点A出发,分别沿射线和射线的方向匀速运动,且速度大小相同,当点E停止运动时,点F也随之停止运动,连接,以为边向下做正方形,设点E运动的路程为,正方形和等腰重合部分的面积为y,下列图像能反映y与x之间函数关系的是( )
A.B.C.D.
【巩固练习2】(2024·安徽合肥·三模)如图,为正方形的中心,分别为的中点,,点从点出发沿方向匀速运动,同时点从点出发沿方向匀速运动,两点运动速度相等,当点运动到点时,两点同时停止运动.设点运动的路程为的面积为,则随变化的函数图象大致是( )

A. B.
C. D.
【巩固练习3】(2023·黑龙江绥化·中考真题)如图,在菱形中,,,动点,同时从点出发,点以每秒个单位长度沿折线向终点运动;点以每秒个单位长度沿线段向终点运动,当其中一点运动至终点时,另一点随之停止运动.设运动时间为秒,的面积为个平方单位,则下列正确表示与函数关系的图象是( )

A. B. C. D.
【巩固练习4】(2024·安徽·中考真题)如图,在中,,,,是边上的高.点E,F分别在边,上(不与端点重合),且.设,四边形的面积为y,则y关于x的函数图象为( )
A.B.C. D.
【巩固练习5】(2023·辽宁盘锦·中考真题)如图,在平面直角坐标系中,菱形的顶点A在y轴的正半轴上,顶点B、C在x轴的正半轴上,,.点M在菱形的边和上运动(不与点A,C重合),过点M作轴,与菱形的另一边交于点N,连接,,设点M的横坐标为x,的面积为y,则下列图象能正确反映y与x之间函数关系的是( )

A. B.
C. D.
模块三 规律探索
【题型10】 数字类规律探索
【例题1】(2024·山东日照·中考真题)在数学活动课上,老师给出了一个数字构造游戏:对于给定的一列有序数字,在每相邻两个数之间插入这两数的和,形成新的一列有序数字.现有一列数:,进行第1次构造,得到新的一列数:,第2次构造后,得到一列数:,…,第n次构造后得到一列数:,记.某小组经过讨论得出如下结论,错误的是( )
A. B.为偶数 C. D.
【例题2】(2024·四川眉山·中考真题)已知(且),,则的值为 .
【巩固练习1】(2024·江苏扬州·中考真题)1202年数学家斐波那契在《计算之书》中记载了一列数:1,1,2,3,5,……,这一列数满足:从第三个数开始,每一个数都等于它的前两个数之和.则在这一列数的前2024个数中,奇数的个数为( )
A.676 B.674 C.1348 D.1350
【巩固练习2】(2024·山东德州·中考真题)观察下列等式:
……
则的值为 .
【题型11】 图形类规律探索
【例题1】(2024·山东济宁·中考真题)如图,用大小相等的小正方形按照一定规律拼正方形.第一幅图有1个正方形,第二幅图有5个正方形,第三幅图有14个正方形……按照此规律,第六幅图中正方形的个数为( )
A.90 B.91 C.92 D.93
【例题2】(2024·四川达州·中考真题)如图,在中,,分别是内角、外角的三等分线,且,,在中,,分别是内角,外角的三等分线.且,,…,以此规律作下去.若.则 度.
【例题3】(2024·山东潍坊·中考真题)将连续的正整数排成如图所示的数表.记为数表中第行第列位置的数字,如,,.若,则 , .
【巩固练习1】(2024·西藏·中考真题)如图是由若干个大小相同的“”组成的一组有规律的图案,其中第1个图案用了2个“”,第2个图案用了6个“”,第3个图案用了12个“”,第4个图案用了20个“”,……,依照此规律,第n个图案中“”的个数为 (用含n的代数式表示).
【巩固练习2】(2024·山东泰安·中考真题)如图所示,是用图形“○”和“●”按一定规律摆成的“小屋子”.按照此规律继续摆下去,第 个“小屋子”中图形“○”个数是图形“●”个数的3倍.
【巩固练习3】(2024·黑龙江齐齐哈尔·中考真题)如图,数学活动小组在用几何画板绘制几何图形时,发现了如“花朵”形的美丽图案,他们将等腰三角形OBC置于平面直角坐标系中,点O的坐标为,点B的坐标为,点C在第一象限,.将沿x轴正方向作无滑动滚动,使它的三边依次与x轴重合,第一次滚动后,点O的对应点为,点C的对应点为,与的交点为,称点为第一个“花朵”的花心,点为第二个“花朵”的花心;……;按此规律,滚动2024次后停止滚动,则最后一个“花朵”的花心的坐标为 .
【题型12】 点坐标规律探索
【例题1】(2024·湖北武汉·中考真题)如图,小好同学用计算机软件绘制函数的图象,发现它关于点中心对称.若点,,,……,,都在函数图象上,这个点的横坐标从开始依次增加,则的值是( )
A. B. C.0 D.1
【例题2】(2024·黑龙江大兴安岭地·中考真题)如图,在平面直角坐标系中,正方形顶点M的坐标为,是等边三角形,点B坐标是,在正方形内部紧靠正方形的边(方向为)做无滑动滚动,第一次滚动后,点A的对应点记为,的坐标是;第二次滚动后,的对应点记为,的坐标是;第三次滚动后,的对应点记为,的坐标是;如此下去,……,则的坐标是 .
【巩固练习1】(2024·黑龙江绥化·中考真题)如图,已知,,,,,,,…,依此规律,则点的坐标为 .
【巩固练习2】(2024·河北·中考真题)平面直角坐标系中,我们把横、纵坐标都是整数,且横、纵坐标之和大于0的点称为“和点”.将某“和点”平移,每次平移的方向取决于该点横、纵坐标之和除以3所得的余数(当余数为0时,向右平移;当余数为1时,向上平移;当余数为2时,向左平移),每次平移1个单位长度.
例:“和点”按上述规则连续平移3次后,到达点,其平移过程如下:
若“和点”Q按上述规则连续平移16次后,到达点,则点Q的坐标为( )
A.或 B.或 C.或 D.或
【巩固练习3】(2024·四川广安·中考真题)已知,直线与轴相交于点,以为边作等边三角形,点在第一象限内,过点作轴的平行线与直线交于点,与轴交于点,以为边作等边三角形(点在点的上方),以同样的方式依次作等边三角形,等边三角形,则点的横坐标为 .
【巩固练习4】2024·山东东营·中考真题)如图,在平面直角坐标系中,已知直线的表达式为,点的坐标为,以为圆心,为半径画弧,交直线于点,过点作直线的垂线交轴于点;以为圆心,为半径画弧,交直线于点,过点作直线的垂线交轴于点;以为圆心,为半径画弧,交直线于点,过点作直线的垂线交轴于点;……按照这样的规律进行下去,点的横坐标是 .
【巩固练习5】(2024·四川内江·中考真题)如图,在平面直角坐标系中,轴,垂足为点,将绕点逆时针旋转到的位置,使点的对应点落在直线上,再将绕点逆时针旋转到的位置,使点的对应点也落在直线上,如此下去,……,若点的坐标为,则点的坐标为( ).
A. B. C. D.
【巩固练习6】(2024·山东淄博·中考真题)如图,在平面直角坐标系中,作直线与轴相交于点,与抛物线相交于点,连接,相交于点,得和,若将其面积之比记为,则 .
【巩固练习7】(2024·四川泸州·中考真题)定义:在平面直角坐标系中,将一个图形先向上平移个单位,再绕原点按逆时针方向旋转角度,这样的图形运动叫做图形的变换.如:点按照变换后得到点的坐标为,则点按照变换后得到点的坐标为 .
模块四 其它问题
【题型13】 三角函数综合
【例题1】(2024·湖南·中考真题)如图,左图为《天工开物》记载的用于春(chōng)捣谷物的工具——“碓(duì)”的结构简图,右图为其平面示意图,已知于点B,与水平线l相交于点O,.若分米,分米.,则点C到水平线l的距离为 分米(结果用含根号的式子表示).
【例题2】(2024·四川资阳·中考真题)在中,,.若是锐角三角形,则边长的取值范围是 .
【巩固练习1】(2024·福建·中考真题)无动力帆船是借助风力前行的.下图是帆船借助风力航行的平面示意图,已知帆船航行方向与风向所在直线的夹角为,帆与航行方向的夹角为,风对帆的作用力为.根据物理知识,可以分解为两个力与,其中与帆平行的力不起作用,与帆垂直的力仪可以分解为两个力与与航行方向垂直,被舵的阻力抵消;与航行方向一致,是真正推动帆船前行的动力.在物理学上常用线段的长度表示力的大小,据此,建立数学模型:,则 .(单位:)(参考数据:)
【巩固练习2】(2024·江苏盐城·中考真题)如图,小明用无人机测量教学楼的高度,将无人机垂直上升距地面的点P处,测得教学楼底端点A的俯角为,再将无人机沿教学楼方向水平飞行至点Q处,测得教学楼顶端点B的俯角为,则教学楼的高度约为 m.(精确到,参考数据:,,)

【巩固练习3】(2024·宁夏·中考真题)如图1是三星堆遗址出土的陶盉(hè),图2是其示意图.已知管状短流,四边形是器身,.器身底部距地面的高度为,则该陶盉管状短流口距地面的高度约为 (结果精确到)(参考数据:)
【题型14】 函数的应用
【例题1】(2024·河南·中考真题)把多个用电器连接在同一个插线板上,同时使用一段时间后,插线板的电源线会明显发热,存在安全隐患.数学兴趣小组对这种现象进行研究,得到时长一定时,插线板电源线中的电流I与使用电器的总功率P的函数图象(如图1),插线板电源线产生的热量Q与I的函数图象(如图2).下列结论中错误的是( )
A.当时, B.Q随I的增大而增大
C.I每增加1A,Q的增加量相同 D.P越大,插线板电源线产生的热量Q越多
【例题2】如图是抛物线形拱桥,当拱顶离水面2米时,水面宽6米,水面下降 米,水面宽8米.
【巩固练习1】年5月8日,商业首航完成——中国民商业运营国产大飞机正式起步.时分航班抵达北京首都机场,穿过隆重的“水门礼”(寓意“接风洗尘”、是国际民航中高级别的礼仪).如图①,在一次“水门礼”的预演中,两辆消防车面向飞机喷射水柱,喷射的两条水柱近似看作形状相同的地物线的一部分.如图②,当两辆消防车喷水口A、B的水平距离为米时,两条水柱在物线的顶点H处相遇,此时相遇点H距地面米,喷水口A、B距地面均为4米.若两辆消防车同时后退米,两条水柱的形状及喷水口、到地面的距离均保持不变,则此时两条水柱相遇点距地面 米.

令,解得:,
【巩固练习2】如图,水池中心点O处竖直安装一水管,水管喷头喷出抛物线形水柱,喷头上下移动时,抛物线形水柱随之竖直上下平移,水柱落点与点O在同一水平面.安装师傅调试发现,喷头高时,水柱落点距O点;喷头高时,水柱落点距O点.那么喷头高 m时,水柱落点距O点.
【题型15】 一次函数综合
【例题1】(2024·江苏南通·中考真题)平面直角坐标系中,已知,.直线(k,b为常数,且)经过点,并把分成两部分,其中靠近原点部分的面积为,则k的值为 .
【巩固练习1】(2025·广东佛山·一模)在平面直角坐标系中,点在轴的非负半轴上运动,点在轴上运动,满足.点为线段的中点,则点运动路径的长为 .
【巩固练习2】(2024·浙江嘉兴·一模)如图,将八个边长为1的小正方形摆放在平面直角坐标系中.若过原点的直线l将图形分成面积相等的两部分,则直线l的函数表达式为 .
【巩固练习3】(2023·四川眉山·中考真题)如图,在平面直角坐标系中,点B的坐标为,过点B分别作x轴、y轴的垂线,垂足分别为点C、点A,直线与交于点D.与y轴交于点E.动点M在线段上,动点N在直线上,若是以点N为直角顶点的等腰直角三角形,则点M的坐标为

21世纪教育网(www.21cnjy.com)
21世纪教育网(www.21cnjy.com)
21世纪教育网(www.21cnjy.com)

展开更多......

收起↑

资源列表