2025北京市西城区第十五中学七年级下学期数学期中试卷(pdf版,含答案)

资源下载
  1. 二一教育资源

2025北京市西城区第十五中学七年级下学期数学期中试卷(pdf版,含答案)

资源简介

北京市第十五中学 2024—2025 学年度第二学期期中
七年级数学试卷及评分参考 2025.04
一、选择题.(每小题 2 分,共 16 分,每道题仅有一个正确选项)
1.沙燕风筝是北京传统风筝中最具代表性的,不仅性能良好,还有祈福的寓意.图 1 是一种北
京沙燕风筝的示意图,在下面右侧的四个图中,能由图 1 经过平移得到的是( ).
图 1 A B C D
1
2.下列五个实数中:3.14159, 3 , 25 , ,0.212112111211112L (从左往右相邻的两个 2 之间依
7
C
次多一个 1),无理数的个数是( ). D
A.1 B.2 C.3 D.4
1
3.如图,点 O 为直线 AB 上一点,则∠1 的邻补角是( ). A B
O
A.∠COD B.∠DOB C.∠AOD D.∠COB 第 3 题图
4x +3y = 2①
4.用加减消元法解二元一次方程组 时,下列方法中消元正确 的是( ).
2x 5y = 7②
A.① 5+② B.①+② 3 C.① ② 2 D.①+② 2
A
5.如图,直线 a // b,直线 l 分别与直线 a,b 相交于点 P,Q,
2
PA⊥l 于点 P.若∠1=64°,则∠2 的度数为( ). P a
A.26° B.36° C.116° D.64°
1
b
Q
6.在平面直角坐标系 xOy 中,若点 P 在第二象限,且点 P 到 x 轴的距离为 l
第 5 题图
1,到 y 轴的距离为 2 ,则点 P 的坐标为( ).
A. ( 2,1) B. ( 2, 1) C. ( 1,2 ) D. (1, 2 )
7.如图,9个大小、形状完全相同的小长方形,组成了一个周长为46的大
长方形 ABCD,若设小长方形的长为 x,宽为 y,则可列方程组为( ).
第 7 题图
2x = 7y; 2x = 7y;
A. B.
2(2x + x + y) = 46 7y + 2x + x + y = 46
7x = 2y; 7x = 2y;
C. D.
2(2x + x + y) = 46 7y + 2x + x + y = 46
第1页(共9页)
8.如图,在平面直角坐标系 xOy 中,点 P(1,0).点 P 第 1 次向上跳动 1 个 y
6
单位至点 P1(1,1),紧接着第 2 次向左跳动 2 个单位至点 P2(-1,1),第 3 5
4
次向上跳动 1 个单位至点 P3,第 4 次向右跳动 3 个单位至点 P4,第 5 次又向 3 P5
P3 2 P4
上跳动 1 个单位至点 P5,第 6 次向左跳动 4 个单位至点 P6,…….照此规
P2 1 P1
律,点 P 第 100 次跳动至点 P100的坐标是( ). –3 –2 –1O 1P 2 3 4 x
第 8 题图
A.(-26,50) B.(-25,50) C.(26,50) D.(25,
50)
二、选择题(第 13、14 题每小题 3 分,其他题每小题 2 分,共
18 分)
9.正实数的平方根有 个.
10.比较大小: 3 26 ____3.
x = 1
11.若 是方程2x +my = 4的解,则m 的值是 .
y = 2
2
12.已知实数 a,b 满足 (a + b 1) +∣2a b 8∣= 0,则a +b = .
13.以正东、正北方向为 x 轴、y 轴的正方向建立坐标系,1 格代表 1 个 第 13题图
单位长度.如果表示左安门的点的坐标为(5,-6),那么原点对应的是
________门;表示广安门的点的坐标为 .
14.在以下命题中:①对顶角相等;②同旁内角互补;③平行于同一条直线的两条直线互相平行;④经过一
点,有且只有一条直线与已知直线垂直.是真.命题的有: .(填序号)
15.算盘起源于中国,是我国的优秀文化遗产.以排列成串的算珠作
为计算工具,成串算珠称为档,中间横梁把上珠分为上、下两部分,
每个上珠代表 5,每个下珠代表 1,每串算珠从右至左依次可代表十
进位值制的个位、十位、百位……,不拨出空档表示 0.小华
在百位拨了一颗上珠和一颗下珠,且个位数字与十位数字的和等于百
位上的数,个位数字比十位数字多 4,则小华要表示的这个三位数是______. 第15题图
16. 在《实数》学习中,我们可以如图 1 操作:把面积为 1 的两个小正方形沿着对角线剪开,将所得的四
个直角三角形拼成如图所示的一个大正方形,它的边长为 2 .可以参考这个方法,如图 2 操作:将长为
3、宽为 2 的两个长方形沿着对角线剪开,将所得的 4 个直角三角形围成如图所示的正方形,则内部白色
正方形的边长 k 为________.
第2页(共9页)
图 1 图 2
17. 3(1) 计算: 8 + 2 3 + 3 2 (2) 计算式子中 x 的值:9 x2 = 25
2x + y = 5,
18.解方程组
3x 2y = 4
A
D
19.作图题:如图,四边形 ABCD 中,AD∥BC.
(1)画线段 CE⊥AB,垂足为 E;则点 C 到 AB 的距离为线段
的长度;
B
(2)连接 CA,并比较下列两条线段的长度: C
CE CA (用“>”或“<”或“=”填空)依据是 .
20.补全证明并填写依据:
已知:如图,AC⊥BD,EF⊥BD,∠A=∠1.求证:EF 平分∠BED.
证明:∵AC⊥BD,EF⊥BD,
∴∠ACB=90°,∠EFB=90°.( )
∴∠ACB=∠EFB.
∴ // .( )
∴∠A=∠2.( )
∠3=∠1.( )
又∵∠A=∠1,
∴∠2=∠3.( )
∴EF 平分∠BED.
21.已知三角形 ABC 的三个顶点的坐标分别是: A(3,
-1),B(3,-3),C(0,-3).
(1)在所给的平面直角坐标系 xOy 中,画出三角形 ABC,
则这个三角形的面积是___________;
(2)如果四边形 ABCD 为长方形,则点 D 的坐标为
___________;
(3)将(2)中的四边形向左平移 5 个单位长度再向上平移
5 个单位,得到四边形 A1B1C1D1;在坐标系中画出这个
四边形,并写出点 A1 的坐标:__________.
第3页(共9页)
22.截至目前,我国有 44 个项目列入联合国教科文组织非物质文化遗产名录(名册),总数位居世界第一.2024
年 12 月 4 日,“春节——中国人庆祝传统新年的社会实践”也列入联合国教科文组织人类非文化遗产代表作
名录.每逢春节,为了营造喜庆祥和的氛围,很多地方都会挂上红红的灯笼.在春节前夕,某商家购进 A、
B 两种型号的灯笼共 100 对,共用 3780 元.
这两种型号的灯笼的进价、售价如右表:
/ /
(1)求该商家购进 A、B 两种型号的灯笼各多少对? 型号 进价(元 对) 售价(元 对)
(2)为迎接新春到来,某单位购买 A、B 两种型号的灯笼(两种 A 54 72
型号都购买)共花费 336 元,请你计算购买 A、B 两种型号的
B 27 32
灯笼各多少对?并计算此时商家获利多少元?
23.如图,三角形 ABC 中,D,E,F 三点分别在 AB,AC,BC 三边上,过点 D 的直线和线段 EF 的交点为
点 H,且 DH // AC,∠3=∠C.
(1)求证:DE // BC;
(2)当 EF 为∠DEC 的角平分线时,在备用图中画出符合题意的图形,猜想∠DHF 和∠BFH 的数量关系并证
明.
A
A
D E
4 D E3
2
1
H
B
F C B C
备用图
第 23 题图
第4页(共9页)
24.在平面直角坐标系 xOy 中,已知点 A0 (0,a , A 1,a , A 2,a0 ) 1 ( 1 ) 2 ( 2 ),…, An (n,a ,n ) B (n,0),
其中a ,a ,a ,a ,a ,…,a ,n 为自然数.顺次连接 A , A , A ,…, A ,B 的折线与 x 轴、y0 1 2 3 4 n 0 1 2 n
轴围成的封闭图形记为图形M.
小明在求图形M的面积时,过点 A1 (1,a ,1 ) A2 (2,a ),…, A (n 1,a )作 x 轴的垂线段,将图形M2 n 1 n 1
分成 n 个四边形,计算这些四边形面积的和,即可求出图形M的面积.
请你参考小明的思路,解决下面的问题.
(1)当 n=2 时,若a =1,0 a = 3,a = 2 ,如图 1,则图形M的面积为__________; 1 2
(2)当 n=4 时,从 1,2,3,…,10 这 10 个正整数中任选 5 个不同数作为a ,a ,a , , . 0 1 2 a3 a4
①选择了a = 4 ,0 a1 = 5,a , , ,请在图 2 中画出此时的图形M. 2 = 7 a3 = 6 a4 = 3
②在①的条件下,若用剩下的 5 个数 1,2,8,9,10 作为a ,a ,a ,a ,a 的取值,使新得到的图0 1 2 3 4
形M的面积与图 2 中的图形M面积相等,则这 5 个数的排序可能是:_______.
(写出一组即可)
第5页(共9页)
四、选做题 (第 1 题 3 分,第 2 题 7 分,共 10 分)
1.在平面内取一定点O,引一条射线Ox,再取定一个长度单位,并确定角的方向(通常以逆时针的方向为
正方向),这样就建立了一个极坐标系(如图1).其中,点O叫做极点,Ox叫做极轴.那么平面上任一点M的
位置可由OM的长度m(称为点M的极径)与∠xOM的度数α(称为点M的极角)确定,有序数对(m,α)称为M点的
极坐标.如图2,在极坐标系下,有一个等边三角形AOB,且AB=4,则点B的极坐标为 .
M(m , α)
B
m
α
O O
x A x
图1 图2
2.如图 1,将支架平面镜 AB放置在水平桌面MN 上,激光笔PD与水平天花板EF 的夹角( EPG )始终
为30 ,激光笔发出的入射光线DG射到 AB上后,反射光线GH 与EF 形成 PHG ,由光的反射定律可
知,DG,GH 与 AB的垂线GK 所形成的夹角始终相等,即 1= 2.
(1) GHF 的度数为 ;
(2)如图 2,点 B 固定不动,调节支架平面镜 AB,调节角为 ABM .
①若 ABM = 30 ,求 PHG 的度数;
②若反射光线GH 恰好与EF 平行,画出相应图形,并求出此时 ABM 的度数.
第6页(共9页)
一、选择题(每小题 2 分,共 16 分)
题号 1 2 3 4 5 6 7 8
答案 D B D C A A A C
二、填空题(第 13、14 题每小题 3 分,其他题每小题 2 分,共 18 分)
9 10 11 12
2 < 3 1
13 14 15 16
天安门;(-6,-3) ①③ 615 13
三、解答题(共 66 分)
17. 3(1) 8 + 2 3 + 3 2
= 2 + 2 3 + 2 3 ·············································································· 4 分
= 3 . ······························································································ 6 分
(2) 9x2 = 25
2 25解:x = ··················································································· 2 分
9
5
x = ····················································································· 6 分
3
x = 2
18. (方法不唯一,过程正确即可) ·············································· 6 分
y =1
19.(1)图略,CE ···················································································· 4 分
(2)图略,<,垂线段最短 ·································································· 7 分
20.垂直定义 ························································································ 1 分
EF∥AC;同位角相等,两直线平行 ····················································· 4 分
两直线平行,同位角相等
···································································································· 5 分
两直线平行内错角相等
···································································································· 6 分
等量代换
···································································································· 7 分
21.①图略,3 ······················································································ 4 分
②D(0,-1) ····················································································· 5 分
③图略, A1(-2,4) ·········································································· 8 分
第7页(共9页)
22.
(1)解:设商家购进 A 种型号的灯笼 a 对,B 种型号的灯笼 b 对, ····················· 1 分
a + b =100

54a + 27b = 3780
···································································································· 3 分
a = 40
解得: ,
b = 60
···································································································· 4 分
答:商家购进 A 种型号的灯笼 40 对,B 种型号的灯笼 60 对; ··················· 5 分
(2)解:设商家购进 A 种型号的灯笼 x 对,B 种型号的灯笼 y 对,根据题意得:
72x +32y = 336,
···································································································· 6 分
∵两种型号都购买,
∴x,y 均为正整数,
当 x = 2时, y = 6,符合题意;
∴购进种 A 型号的灯笼 2 对,B 种型号的灯笼 6 对,
···································································································· 7 分
此时商家获利2 (72 54)+ 6 (32 27) = 66元.
···································································································· 8 分
答:购进 A 种型号的灯笼 2 对,B 种型号的灯笼 6 对,此时商家获利 66 元.
···································································································· 9 分
23.
(1)证明略 ······························································································· 4 分
(2)图略,∠DHF=∠BFH ············································································ 6 分
证明略 ································································································ 9 分
24.
(1)4.5 ····································································································· 2 分
(2) ①图略 ······························································································ 5 分
②答案不唯一,如 9,1,2,10,8. ····························································· 8 分
第8页(共9页)
四、选做题(共 10 分)
1.(4,60°) ··························································································· 3 分
2.(1)30°
············································································································ 1 分
(2)①过点 G 作GC∥MN ,则 BGC = ABM = 30 ,
∵EF∥MN ,
∴EF∥GC∥MN ,
∵ EPG = 30 ,
∴ PGC = EPG = 30 ,
∴ PGB = PGC + GC = 60 ,
∵KG ⊥ AB,
∴ PGK + PGB = 90 ,
∴ PGK = 90 60 = 30 ,
∴ PGH = 2 PGK = 60 ,
∴ PHG =180 EPG PGH = 90 ;
············································································································ 4 分
②如图,若反射光线GH 恰好与EF 平行,
············································································································ 5 分
则 PGH = EPG = 30 ,
1
∴ HGK = PGK = PGH =15 ,
2
∵KG ⊥ AB,
∴ HGK + HGB = 90 ,
∴ HGB = 90 15 = 75 ,
∵EF∥MN ,
∴GH∥MN∥EF ,
∴ ABM = HGB = 75 .
············································································································ 7 分
第9页(共9页)

展开更多......

收起↑

资源预览