资源简介 物理第四章 核心素养提升练1.(2025·山东省潍坊市天一大联考高三上10月月考)如图所示,压缩机通过活塞在汽缸内做往复运动来压缩和输送气体,活塞的中心A与圆盘在同一平面内,O为圆盘圆心,B为圆盘上一点,A、B处通过铰链连接在轻杆两端,圆盘绕过O点的轴做角速度为ω的匀速圆周运动。某时刻AB与OA间的夹角为α,OB与BA垂直,已知O、B间距离为r,则此时活塞的速度为( )A. B.C.ωrcosα D.ωrsinα答案:A解析:OB与BA垂直,则此时B点的线速度与活塞沿杆的分速度相等,设活塞的速度为v,由运动的合成与分解可知vcosα=ωr,解得v=,故选A。2.(2023·浙江1月选考)如图所示,在考虑空气阻力的情况下,一小石子从O点抛出沿轨迹OPQ运动,其中P是最高点。若空气阻力大小与瞬时速度大小成正比,则小石子竖直方向分运动的加速度大小( )A.O点最大 B.P点最大C.Q点最大 D.整个运动过程保持不变答案:A解析:空气阻力方向与瞬时速度方向相反,空气阻力大小与瞬时速度大小成正比,则根据平行四边形定则可知,空气阻力沿竖直方向的分力与瞬时速度沿竖直方向的分速度大小成正比,且二者方向相反。由牛顿第二定律可知,在竖直方向上,小石子向上减速运动阶段的加速度大小始终大于重力加速度g,向下加速运动阶段的加速度大小始终小于重力加速度g,而在向上减速过程中,小石子在O点竖直方向的分速度最大,小石子所受空气阻力沿竖直方向的分力最大,在竖直方向所受合力最大,根据牛顿第二定律可知,此时竖直方向分运动的加速度大小最大,故选A。3.无级变速是在变速范围内任意连续变换速度的变速系统。如图所示是无级变速模型示意图,主动轮、从动轮中间有一个滚轮,各轮间不打滑,通过滚轮位置改变实现无级变速。A、B为滚轮轴上两点,则( )A.从动轮和主动轮转动方向始终相反B.滚轮在A处,从动轮转速大于主动轮转速C.滚轮在B处,从动轮转速大于主动轮转速D.滚轮从A到B,从动轮转速先变大后变小答案:B解析:主动轮和滚轮之间为摩擦传动,转动方向相反,滚轮和从动轮之间为摩擦传动,转动方向相反,则主动轮和从动轮转动方向相同,故A错误;设主动轮和从动轮与滚轮接触位置的线速度分别为v1、v2,则v1=v2,又因为v=ωr,故=,由题图可知,滚轮在A处时r1>r2,故ω1<ω2,又ω=2πn,则有n1ω2,故n1>n2,故B正确,C错误;由前面分析可知,从动轮转速n2=n1,滚轮从A到B,主动轮转动的转速n1不变,而由题图知一直变小,则从动轮转速一直变小,故D错误。4.(多选)如图所示为赛车场的一个水平“梨形”赛道,两个弯道分别为半径R=90 m的大圆弧和r=40 m的小圆弧,直道与弯道相切。大、小圆弧圆心O、O′距离L=100 m。赛车沿弯道路线行驶时,路面对轮胎的最大径向静摩擦力是赛车重力的2.25倍。假设赛车在直道上做匀变速直线运动,在弯道上做匀速圆周运动。要使赛车不打滑,绕赛道一圈时间最短(发动机功率足够大,重力加速度g=10 m/s2,π=3.14),则赛车( )A.在绕过小圆弧弯道后加速B.在大圆弧弯道上的速率为45 m/sC.在直道上的加速度大小为5.63 m/s2D.通过小圆弧弯道的时间为5.58 s答案:AB解析:赛车用时最短,就要求赛车通过大、小圆弧时,速度都应达到允许的最大速度,通过小圆弧时,由=2.25mg得v1=30 m/s,通过大圆弧时,由=2.25mg得v2=45 m/s,B正确;赛车从小圆弧到大圆弧通过直道时需加速,故A正确;由几何关系可知连接大、小圆弧的直道长x=50 m,由匀加速直线运动的速度位移公式:v-v=2ax得a≈6.50 m/s2,C错误;由几何关系可得小圆弧所对圆心角为120°,所以通过小圆弧弯道的时间t==×=2.79 s,故D错误。5.(2025·山东省泰安市第二中学高三上10月月考)如图所示,电动打夯机由偏心轮(飞轮和配重物组成)、电动机和底座三部分组成。电动机、飞轮和底座总质量为M,配重物质量为m,配重物的重心到轮轴的距离为R,重力加速度为g。在电动机带动下,偏心轮在竖直平面内匀速转动,皮带不打滑。当偏心轮上的配重物转到顶端时,底座刚好对地面无压力。下列说法正确的是( )A.电动机轮轴与偏心轮转动的角速度相同B.配重物转到顶点时处于超重状态C.偏心轮转动的角速度为D.打夯机对地面压力的最大值大于(M+m)g答案:D解析:电动机轮轴与偏心轮通过皮带传动,相应皮带轮的轮缘的线速度大小相等,由题图可知,电动机的皮带轮与偏心轮的皮带轮半径不同,故电动机轮轴与偏心轮转动的角速度不相同,故A错误;配重物转到顶点时,具有向下的加速度,处于失重状态,故B错误;当偏心轮上的配重物转到顶端时,底座刚好对地面无压力,由平衡条件可知,配重物对飞轮的作用力大小T1′=Mg,由牛顿第三定律可知,飞轮对配重物的作用力大小T1=T1′=Mg,对配重物由牛顿第二定律有T1+mg=mω2R,解得偏心轮转动的角速度为ω=,故C错误;配重物运动到最低点时,打夯机对地面的压力最大,设此时飞轮对配重物的作用力大小为T2,配重物对飞轮的作用力大小为T2′,地面对打夯机的支持力大小为N,对配重物由牛顿第二定律有T2-mg=mω2R,对电动机、飞轮和底座整体由平衡条件有Mg+T2′=N,且T2′=T2,解得N=2(M+m)g>(M+m)g,根据牛顿第三定律可知,打夯机对地面压力的最大值大于(M+m)g,故D正确。6.(多选)如图所示,ab是半径为R的圆的直径,c是圆周上一点,ac=bc。质量为m的物体仅受一个恒力作用,从a点沿ac方向射入圆形区域,经时间t沿cb方向从b点射出圆形区域。下列说法中正确的是( )A.恒力沿cb方向,大小为B.恒力方向垂直ab斜向左上,大小为C.物体在a点的速率为D.物体离开b点时的速率为答案:BD解析:把物体在圆形区域内的运动沿ac方向和cb方向分解,沿ac方向初速度为va,末速度为0,物体做匀减速直线运动,由几何关系得位移为R,在ac方向的平均速度==,则va=;沿cb方向初速度为0,末速度为vb,物体做匀加速直线运动,位移为R,在cb方向的平均速度′==,解得vb=,C错误,D正确。沿ac方向的加速度ax==-,方向从c指向a,沿cb方向的加速度ay==,方向从c指向b,合加速度为a=,解得a=,方向与ab垂直斜向左上方,根据牛顿第二定律,得恒力F=ma=,方向垂直ab斜向左上方,A错误,B正确。7.(2024·山东省潍坊市高三上模拟预测)如图为斜式滚筒洗衣机的滚筒简化图,在脱水过程中滚筒绕固定轴OO′以恒定的角速度转动,滚筒的半径为r,筒壁内有一可视为质点的衣物,衣物与滚筒间的动摩擦因数为μ(设最大静摩擦力等于滑动摩擦力),转动轴与水平面间的夹角为,重力加速度为g。在脱水过程中,要保持衣物始终与滚筒相对静止,滚筒转动角速度的最小值为( )A. B.C. D.答案:B解析:衣物在垂直于转轴的平面内做匀速圆周运动,则所受合力大小不变,一直指向轨迹圆心,衣物的重力和滚筒的支持力提供向心力,分析可知,衣物在最高点时所受滚筒的弹力最小,根据最大静摩擦力与弹力成正比,可知衣物在最高点时最容易滑动。要保持衣物始终与滚筒相对静止,则衣物在最高点时有mgsinθ≤μFN,又FN+mgcosθ=mω2r,可解得ω≥,所以在脱水过程中,要保持衣物始终与滚筒相对静止,滚筒转动角速度的最小值为,故选B。8.(多选)“快乐向前冲”节目中有这样一种项目,选手需要借助悬挂在高处的绳飞跃到鸿沟对面的平台上,已知开始时绳与竖直方向夹角为α,绳的悬挂点O距平台的竖直高度为H,绳长为L。如果质量为m的选手抓住绳子由静止开始摆动,运动到O点的正下方时松手,做平抛运动,不考虑空气阻力和绳的质量,下列说法正确的是( )A.选手刚摆到最低点时处于超重状态B.选手刚摆到最低点时所受绳子的拉力为(3-2cosα)mgC.若绳与竖直方向夹角仍为α,当L=时,落点距O点的水平距离最远D.若绳与竖直方向夹角仍为α,当L=时,落点距O点的水平距离最远答案:ABC解析:选手做圆周运动摆到最低点时,加速度方向竖直向上,处于超重状态,A正确;选手摆到最低点时,T-mg=m,质量为m的选手由静止开始,运动到O点正下方过程中机械能守恒,故mgL·(1-cosα)=mv2 ①,联立解得T=(3-2cosα)mg,B正确;从最低点松开绳子后,选手做平抛运动,故在水平方向上做匀速直线运动,x=vt ②,在竖直方向上做匀加速直线运动,H-L=gt2 ③,联立①②③解得x=,根据数学知识可知,当L=H-L,即L=时,x最大,C正确,D错误。9.(2022·全国甲卷)将一小球水平抛出,使用频闪仪和照相机对运动的小球进行拍摄,频闪仪每隔0.05 s发出一次闪光。某次拍摄时,小球在抛出瞬间频闪仪恰好闪光,拍摄的照片编辑后如图所示。图中的第一个小球为抛出瞬间的影像,每相邻两个球之间被删去了3个影像,所标出的两个线段的长度s1和s2之比为3∶7。重力加速度大小取g=10 m/s2,忽略空气阻力。求在抛出瞬间小球速度的大小。答案: m/s解析:频闪仪每隔0.05 s发出一次闪光,每相邻两个球之间被删去3个影像,故图中相邻两球影像的时间间隔为t=4T=4×0.05 s=0.2 s设抛出瞬间小球的速度大小为v0,s1、s2所对应的水平方向上的位移均为x,竖直方向上的位移分别为y1、y2,根据平抛运动规律有x=v0ty1=gt2y1+y2=g(2t)2由平行四边形定则,有s1=s2=由题知s1∶s2=3∶7联立解得v0= m/s。10.(2024·江西高考)雪地转椅是一种游乐项目,其中心传动装置带动转椅在雪地上滑动。如图a、b所示,传动装置有一高度可调的水平圆盘,可绕通过中心O点的竖直轴匀速转动。圆盘边缘A处固定连接一轻绳,轻绳另一端B连接转椅(视为质点)。转椅运动稳定后,其角速度与圆盘角速度相等。转椅与雪地之间的动摩擦因数为μ,重力加速度为g,不计空气阻力。(1)在图a中,若圆盘在水平雪地上以角速度ω1匀速转动,转椅运动稳定后在水平雪地上绕O点做半径为r1的匀速圆周运动。求AB与OB之间夹角α的正切值。(2)将圆盘升高,如图b所示。圆盘匀速转动,转椅运动稳定后在水平雪地上绕O1点做半径为r2的匀速圆周运动,绳子与竖直方向的夹角为θ,绳子在水平雪地上的投影A1B与O1B的夹角为β。求此时圆盘的角速度ω2。答案:(1) (2)解析:(1)转椅在水平面内受摩擦力f1和轻绳拉力T1,两者的合力提供其做匀速圆周运动所需的向心力Fn1,如图1所示设转椅的质量为m,根据牛顿第二定律可知,转椅所需的向心力Fn1=mωr1又转椅受到的摩擦力f1=μmg根据几何关系有tanα=联立解得tanα=。(2)在题图b情况下,设转椅受到轻绳的拉力为T2,水平面的摩擦力为f2,水平面的支持力为N2,转椅在水平面内的受力如图2所示,根据牛顿第二定律可知,转椅所需的向心力Fn2=mωr2又转椅受到的摩擦力f2=μN2根据几何关系有tanβ=由平衡条件,竖直方向上有N2+T2cosθ=mg又水平面上有f2=T2sinθsinβ联立解得ω2=。1(共20张PPT)第四章 核心素养提升练2.(2023·浙江1月选考)如图所示,在考虑空气阻力的情况下,一小石子从O点抛出沿轨迹OPQ运动,其中P是最高点。若空气阻力大小与瞬时速度大小成正比,则小石子竖直方向分运动的加速度大小( )A.O点最大 B.P点最大C.Q点最大 D.整个运动过程保持不变解析:空气阻力方向与瞬时速度方向相反,空气阻力大小与瞬时速度大小成正比,则根据平行四边形定则可知,空气阻力沿竖直方向的分力与瞬时速度沿竖直方向的分速度大小成正比,且二者方向相反。由牛顿第二定律可知,在竖直方向上,小石子向上减速运动阶段的加速度大小始终大于重力加速度g,向下加速运动阶段的加速度大小始终小于重力加速度g,而在向上减速过程中,小石子在O点竖直方向的分速度最大,小石子所受空气阻力沿竖直方向的分力最大,在竖直方向所受合力最大,根据牛顿第二定律可知,此时竖直方向分运动的加速度大小最大,故选A。3.无级变速是在变速范围内任意连续变换速度的变速系统。如图所示是无级变速模型示意图,主动轮、从动轮中间有一个滚轮,各轮间不打滑,通过滚轮位置改变实现无级变速。A、B为滚轮轴上两点,则( )A.从动轮和主动轮转动方向始终相反B.滚轮在A处,从动轮转速大于主动轮转速C.滚轮在B处,从动轮转速大于主动轮转速D.滚轮从A到B,从动轮转速先变大后变小4.(多选)如图所示为赛车场的一个水平“梨形”赛道,两个弯道分别为半径R=90 m的大圆弧和r=40 m的小圆弧,直道与弯道相切。大、小圆弧圆心O、O′距离L=100 m。赛车沿弯道路线行驶时,路面对轮胎的最大径向静摩擦力是赛车重力的2.25倍。假设赛车在直道上做匀变速直线运动,在弯道上做匀速圆周运动。要使赛车不打滑,绕赛道一圈时间最短(发动机功率足够大,重力加速度g=10 m/s2,π=3.14),则赛车( )A.在绕过小圆弧弯道后加速B.在大圆弧弯道上的速率为45 m/sC.在直道上的加速度大小为5.63 m/s2D.通过小圆弧弯道的时间为5.58 s9.(2022·全国甲卷)将一小球水平抛出,使用频闪仪和照相机对运动的小球进行拍摄,频闪仪每隔0.05 s发出一次闪光。某次拍摄时,小球在抛出瞬间频闪仪恰好闪光,拍摄的照片编辑后如图所示。图中的第一个小球为抛出瞬间的影像,每相邻两个球之间被删去了3个影像,所标出的两个线段的长度s1和s2之比为3∶7。重力加速度大小取g=10 m/s2,忽略空气阻力。求在抛出瞬间小球速度的大小。10.(2024·江西高考)雪地转椅是一种游乐项目,其中心传动装置带动转椅在雪地上滑动。如图a、b所示,传动装置有一高度可调的水平圆盘,可绕通过中心O点的竖直轴匀速转动。圆盘边缘A处固定连接一轻绳,轻绳另一端B连接转椅(视为质点)。转椅运动稳定后,其角速度与圆盘角速度相等。转椅与雪地之间的动摩擦因数为μ,重力加速度为g,不计空气阻力。(1)在图a中,若圆盘在水平雪地上以角速度ω1匀速转动,转椅运动稳定后在水平雪地上绕O点做半径为r1的匀速圆周运动。求AB与OB之间夹角α的正切值。(2)将圆盘升高,如图b所示。圆盘匀速转动,转椅运动稳定后在水平雪地上绕O1点做半径为r2的匀速圆周运动,绳子与竖直方向的夹角为θ,绳子在水平雪地上的投影A1B与O1B的夹角为β。求此时圆盘的角速度ω2。 展开更多...... 收起↑ 资源列表 第四章 核心素养提升练.docx 第四章 核心素养提升练.pptx