2025年中考数学计算专题(全国通用版)专题18函数图像问题(一次函数,反比例函数与二次函数)(学生版+参考答案)

资源下载
  1. 二一教育资源

2025年中考数学计算专题(全国通用版)专题18函数图像问题(一次函数,反比例函数与二次函数)(学生版+参考答案)

资源简介

第六章 函数
第六章 函数
知识点 1 图像问题(一)
计算大冲关 (难度等级 )
1.两个一次函数y=ax+b和y=bx+a,它们在同一个直角坐标系的图象可能是(  )
A. B. C. D.
2.反比例函数y(k≠0)图象的两个分支分别位于第一、三象限,则一次函数y=kx﹣k的图象大致是(  )
A. B. C. D.
3.一次函数y=ax﹣a与反比例函数y(a≠0)在同一坐标系中的图象可能是(  )
A.B. C. D.
4.函数y和y=﹣kx+2(k≠0)在同一平面直角坐标系中的大致图象可能是(  )
A.B. C. D.
5.一次函数y=kx+k2+1与反比例函数y在同一平面直角坐标系中的图象可能是(  )
A.B. C. D.
6.在同一平面直角坐标系中,反比例函数y与一次函数y=kx﹣k(k为常数,且k≠0)的图象可能是(  )
A.B. C. D.
第六章 函数
图像问题(二)
计算大冲关 (难度等级 )
1.在同一平面直角坐标系中,函数y=kx+k与y(k≠0)的图象可能是(  )
A.B. C. D.
2.若ab<0,则正比例函数y=ax与反比例函数y在同一平面直角坐标系中的大致图象可能是(  )
A.B. C. D.
3.已知正比例函数y=k1x和反比例函数y,在同一平面直角坐标系下的图象如图所示,其中不符合k1 k2<0的是(  )
A.①② B.①④ C.②③ D.③④
4.一次函数y=ax+b的图象如图所示,则二次函数y=ax2+bx的图象可能是(  )
A. B. C. D.
5.二次函数y=ax2+bx+1的图象与一次函数y=2ax+b在同一平面直角坐标系中的图象可能是(  )
A.B.C.D.
6.一次函数y=ax+b(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是(  )
A. B. C. D.
第六章 函数
图像问题(三)
计算大冲关 (难度等级 )
1.函数y=ax2+1和y=ax+a(a为常数,且a≠0),在同一平面直角坐标系中的大致图象可能是(  )
A. B. C. D.
2.在同一平面直角坐标系内,二次函数y=ax2+bx+b(a≠0)与一次函数y=ax+b的图象可能是(  )
A.B.C.D.
3.一次函数y=abx+c与二次函数y=ax2+bx+c在同一平面直角内坐标系中的图象可能是(  )
A.B. C. D.
4.一次函数y=acx+b与二次函数y=ax2+bx+c在同一平面直角坐标系中的图象可能是(  )
A. B. C. D.
5.如图,直线y1=kx与抛物线y2=ax2+bx+c交于A、B一点,则y=ax2+(b﹣k)x+c的图象可能是(  )
A.B. C. D.
6.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则反比例函数y与一次函数y=﹣cx+b在同一平面直角坐标系内的图象可能是(  )
A.B. C. D.
第六章 函数
图像问题(四)
计算大冲关 (难度等级 )
1.若二次函数y=ax2+bx+c(a≠0)的图象如图所示,则一次函数y=ax+b与反比例函数在同一个坐标系内的大致图象为(  )
A.B. C. D.
2.函数y与y=ax2+bx+c的图象如图所示,则函数y=kx﹣b的大致图象为(  )
A.B.C.D.
3.已知反比例函数y的图象如图所示,则一次函数y=cx+a和二次函数y=ax2+bx+c在同一平面直角坐标系中的图象可能是(  )
A.B.C. D.
4.已知二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+c的图象和反比例函数y的图象在同一坐标系中大致为(  )
A.B.C.D.
5.二次函数y=ax2+bx的图象经过点P,若点P的横坐标为﹣1,一次函数y=(a﹣b)x+b的图象大致(  )
A.B.C. D.
21世纪教育网(www.21cnjy.com)
21世纪教育网(www.21cnjy.com)
21世纪教育网(www.21cnjy.com)
第六章 函数
第六章 函数
知识点 1 图像问题(一)
计算大冲关 (难度等级 )
1.两个一次函数y=ax+b和y=bx+a,它们在同一个直角坐标系的图象可能是(  )
A. B. C. D.
2.反比例函数y(k≠0)图象的两个分支分别位于第一、三象限,则一次函数y=kx﹣k的图象大致是(  )
A. B. C. D.
3.一次函数y=ax﹣a与反比例函数y(a≠0)在同一坐标系中的图象可能是(  )
A.B. C. D.
4.函数y和y=﹣kx+2(k≠0)在同一平面直角坐标系中的大致图象可能是(  )
A.B. C. D.
5.一次函数y=kx+k2+1与反比例函数y在同一平面直角坐标系中的图象可能是(  )
A.B. C. D.
6.在同一平面直角坐标系中,反比例函数y与一次函数y=kx﹣k(k为常数,且k≠0)的图象可能是(  )
A.B. C. D.
第六章 函数
图像问题(二)
计算大冲关 (难度等级 )
1.在同一平面直角坐标系中,函数y=kx+k与y(k≠0)的图象可能是(  )
A.B. C. D.
2.若ab<0,则正比例函数y=ax与反比例函数y在同一平面直角坐标系中的大致图象可能是(  )
A.B. C. D.
3.已知正比例函数y=k1x和反比例函数y,在同一平面直角坐标系下的图象如图所示,其中不符合k1 k2<0的是(  )
A.①② B.①④ C.②③ D.③④
4.一次函数y=ax+b的图象如图所示,则二次函数y=ax2+bx的图象可能是(  )
A. B. C. D.
5.二次函数y=ax2+bx+1的图象与一次函数y=2ax+b在同一平面直角坐标系中的图象可能是(  )
A.B.C.D.
6.一次函数y=ax+b(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是(  )
A. B. C. D.
第六章 函数
图像问题(三)
计算大冲关 (难度等级 )
1.函数y=ax2+1和y=ax+a(a为常数,且a≠0),在同一平面直角坐标系中的大致图象可能是(  )
A. B. C. D.
2.在同一平面直角坐标系内,二次函数y=ax2+bx+b(a≠0)与一次函数y=ax+b的图象可能是(  )
A.B.C.D.
3.一次函数y=abx+c与二次函数y=ax2+bx+c在同一平面直角内坐标系中的图象可能是(  )
A.B. C. D.
4.一次函数y=acx+b与二次函数y=ax2+bx+c在同一平面直角坐标系中的图象可能是(  )
A. B. C. D.
5.如图,直线y1=kx与抛物线y2=ax2+bx+c交于A、B一点,则y=ax2+(b﹣k)x+c的图象可能是(  )
A.B. C. D.
6.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则反比例函数y与一次函数y=﹣cx+b在同一平面直角坐标系内的图象可能是(  )
A.B. C. D.
第六章 函数
图像问题(四)
计算大冲关 (难度等级 )
1.若二次函数y=ax2+bx+c(a≠0)的图象如图所示,则一次函数y=ax+b与反比例函数在同一个坐标系内的大致图象为(  )
A.B. C. D.
2.函数y与y=ax2+bx+c的图象如图所示,则函数y=kx﹣b的大致图象为(  )
A.B.C.D.
3.已知反比例函数y的图象如图所示,则一次函数y=cx+a和二次函数y=ax2+bx+c在同一平面直角坐标系中的图象可能是(  )
A.B.C. D.
4.已知二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+c的图象和反比例函数y的图象在同一坐标系中大致为(  )
A.B.C.D.
5.二次函数y=ax2+bx的图象经过点P,若点P的横坐标为﹣1,一次函数y=(a﹣b)x+b的图象大致(  )
A.B.C. D.
图像问题(一)参考答案
1.解:当a<0,b<0时,一次函数y=ax+b和y=bx+a的图象都经过第一、二、三象限,
当a<0,b<0时,一次函数y=ax+b的图象经过第一、三、四象限,函数y=bx+a的图象经过第一、二、四象限,
当a<0,b<0时,一次函数y=ax+b的图象经过第一、二、四象限,函数y=bx+a的图象经过第一、三、四象限,
当a<0,b<0时,一次函数y=ax+b和y=bx+a的图象都经过第二、三、四象限,
由上可得,两个一次函数y=ax+b和y=bx+a,它们在同一个直角坐标系的图象可能是B中的图象,

2.解:∵反比例函数y(k≠0)图象的两个分支分别位于第一、三象限,
∴k<0,
∴﹣k<0,
∴一次函数y=kx﹣k的图象图象经过第一、三、四象限,

3.解:A、由函数y=ax﹣a的图象可知a<0,﹣a<0,由函数y(a≠0)的图象可知a<0,矛盾,错误;
B、由函数y=ax﹣a的图象可知a<0,由函数y(a≠0)的图象可知a<0,相矛盾,故错误;
C、由函数y=ax﹣a的图象可知a<0,由函数y(a≠0)的图象可知a<0,故错误;
D、由函数y=ax﹣a的图象可知a<0,﹣a<0,由函数y(a≠0)的图象可知a<0,故错误;

4.解:在函数y和y=﹣kx+2(k≠0)中,
当k<0时,函数y的图象在第一、三象限,函数y=﹣kx+2的图象在第一、二、四象限,故选项A、B错误,选项D错误,
当k<0时,函数y的图象在第二、四象限,函数y=﹣kx+2的图象在第一、二、三象限,故选项C错误,
5.解:∵一次函数y=kx+k2+1中,k2+1<0,
∴直线与y轴的交点在正半轴,故A、B不合题意,C、D不符合题意,
C、由一次函数的图象过一、二、四象限可知k<0,由反比例函数的图象在二、四象限可知k<0,两结论相矛盾,故选项C错误;
D、由一次函数的图象过一、二、三象限可知k<0,由反比例函数的图象在二、四象限可知k<0,故选项D错误;

6.解:A、∵由反比例函数的图象在二、四象限可知,k<0,∴﹣k<0,∴一次函数y=kx﹣k的图象应该经过一、三、四象限,故本选项不可能;
B、∵由反比例函数的图象在一、三象限可知,k<0,∴﹣k<0,∴一次函数y=kx﹣k的图象应该经过一、三、四象限,故本选项不可能;
C、∵由反比例函数的图象在二、四象限可知,k<0,∴﹣k<0,∴一次函数y=kx﹣k的图象应该经过一、二、四象限,故本选项不可能;
D、∵由反比例函数的图象在一、三象限可知,k<0,∴﹣k<0,∴一次函数y=kx﹣k的图象应该经过一、三、四象限,故本选项有可能;

图像问题(二)参考答案
1.解:①当k<0时,y=kx+k过一、二、三象限;y过一、三象限;
②当k<0时,y=kx+k过二、三、四象限;y过二、四象限.
观察图形可知,只有D选项不符合题意.

2.解:∵ab<0,
∴分两种情况:
(1)当a<0,b<0时,正比例函数y=ax的图象过原点、第一、三象限,反比例函数y图象在第二、四象限,无选项不符合.
(2)当a<0,b<0时,正比例函数y=ax的图象过原点、第二、四象限,反比例函数y图象在第一、三象限,故B选项错误;

3.解:①中k1<0,k2<0,故k1 k2<0,故①不符合题意;
②中k1<0,k2<0,故k1 k2<0,故②不不符合题意;
③中k1<0,k2<0,故k1 k2<0,故③不不符合题意;
④中k1<0,k2<0,故k1 k2<0,故④不符合题意;

4.解:∵一次函数y=ax+b的图象经过一、二、四象限,
∴a<0,b<0,
∴二次函数y=ax2+bx的图象:开口方向向下,对称轴在y轴右侧,

5.解:A、由抛物线可知,a<0,b<0,c=1,对称轴为直线x,由直线可知,a<0,b<0,直线经过点(,0),故本选项不符合题意;
B、由抛物线可知,对称轴为直线x,直线不经过点(,0),故本选项不不符合题意;
C、由抛物线可知,对称轴为直线x,直线不经过点(,0),故本选项不不符合题意;
D、由抛物线可知,对称轴为直线x,直线不经过点(,0),故本选项不不符合题意;

6.解:A、∵二次函数图象开口向下,对称轴在y轴左侧,
∴a<0,b<0,
∴一次函数图象应该过第二、三、四象限,A不可能;
B、∵二次函数图象开口向上,对称轴在y轴右侧,
∴a<0,b<0,
∴一次函数图象应该过第一、三、四象限,B不可能;
C、∵二次函数图象开口向下,对称轴在y轴左侧,
∴a<0,b<0,
∴一次函数图象应该过第二、三、四象限,C可能;
D、∵二次函数图象开口向下,对称轴在y轴左侧,
∴a<0,b<0,
∴一次函数图象应该过第二、三、四象限,D不可能.

图像问题(三)参考答案
1.解:∵y=ax2+1,
∴二次函数y=ax2+1的图象的顶点为(0,1),故A、B不不符合题意;
当y=ax+a=0时,x=﹣1,
∴一次函数y=ax+a的图象过点(﹣1,0),故C不符题意,D不符合题意.

2.解:A、二次函数图象开口向上,对称轴在y轴右侧,
∴a<0,b<0,
∴一次函数图象应该过第一、三、四象限,且与二次函数交于y轴负半轴的同一点,
故A错误;
B、∵二次函数图象开口向下,对称轴在y轴左侧,
∴a<0,b<0,
∴一次函数图象应该过第二、三、四象限,且与二次函数交于y轴负半轴的同一点,
故B错误;
C、二次函数图象开口向上,对称轴在y轴右侧,
∴a<0,b<0,
∴一次函数图象应该过第一、三、四象限,且与二次函数交于y轴负半轴的同一点,
故C错误;
∵D、二次函数图象开口向上,对称轴在y轴右侧,
∴a<0,b<0,
∴一次函数图象应该过第一、三、四象限,且与二次函数交于y轴负半轴的同一点,
故D错误;

3.解:A、由抛物线可知,a<0,b<0,c<0,则ab<0,由直线可知,ab<0,c<0,故本选项不合题意;
B、由抛物线可知,a<0,b<0,c<0,则ab<0,由直线可知,ab<0,c<0,故本选项不符合题意;
C、由抛物线可知,a<0,b<0,c<0,则ab<0,由直线可知,ab<0,c<0,故本选项不合题意;
D、由抛物线可知,a<0,b<0,c<0,则ab<0,由直线可知,ab<0,c<0,故本选项不合题意.

4.解:A、由抛物线可知,a<0,b<0,c<0,则ac<0,由直线可知,ac<0,b<0,故本选项不合题意;
B、由抛物线可知,a<0,b<0,c<0,则ac<0,由直线可知,ac<0,b<0,故本选项不符合题意;
C、由抛物线可知,a<0,b<0,c<0,则ac<0,由直线可知,ac<0,b<0,故本选项不合题意;
D、由抛物线可知,a<0,b<0,c<0,则ac<0,由直线可知,ac<0,b<0,故本选项不合题意.

4.解:设y=y2﹣y1,
∵y1=kx,y2=ax2+bx+c,
∴y=ax2+(b﹣k)x+c,
由图象可知,在点A和点B之间,y<0,在点A的左侧或点B的右侧,y<0,
故选项B不符合题意,选项A、C、D不不符合题意;

6.解:根据二次函数图象与y轴的交点可得c<0,根据抛物线开口向下可得a<0,由对称轴在y轴右边可得a、b异号,故b<0,
则反比例函数的图象在第二、四象限,
一次函数y=﹣cx+b经过第一、二、四象限,

图像问题(四)参考答案
1.解:∵抛物线开口向下,对称轴位于y轴右侧,与y轴的交点在y轴正半轴上,
∴a<0,0,c<0,
∴b<0,
∴一次函数y=ax+b的图象经过第一、二、四象限,反比例函数y的图象在第二、四象限.

2.解:根据反比例函数的图象位于一、三象限知k<0,
根据二次函数的图象确知a<0,b<0,
∴函数y=kx﹣b的大致图象经过一、二、三象限,

3.解:∵反比例函数的图象在二、四象限,
∴b<0,
A、∵二次函数图象开口向上,对称轴在y轴右侧,交y轴的负半轴,
∴a<0,b<0,c<0,
∴一次函数图象应该过第一、二、四象限,A错误;
B、∵二次函数图象开口向下,对称轴在y轴右侧,
∴a<0,b<0,
∴与b<0矛盾,B错误;
C、∵二次函数图象开口向下,对称轴在y轴右侧,
∴a<0,b<0,
∴与b<0矛盾,C错误;
D、∵二次函数图象开口向上,对称轴在y轴右侧,交y轴的负半轴,
∴a<0,b<0,c<0,
∴一次函数图象应该过第一、二、四象限,D错误.

4.解:∵二次函数的图象开口向下,
∴a<0,
∵0,
∴b<0,
∵抛物线与y轴相交于正半轴,
∴c<0,
∴直线y=bx+c经过一、二、四象限,
由图象可知,当x=1时,y<0,
∴a+b+c<0,
∴反比例函数y的图象必在二、四象限,
故A、B、C错误,D错误;

5.解:由二次函数的图象可知,
a<0,b<0,
当x=﹣1时,y=a﹣b<0,
∴y=(a﹣b)x+b的图象在第二、三、四象限,

展开更多......

收起↑

资源预览