粤教版高中物理必修第二册第二章圆周运动第三节生活中的圆周运动课件(39页ppt)+检测含答案(教师用)

资源下载
  1. 二一教育资源

粤教版高中物理必修第二册第二章圆周运动第三节生活中的圆周运动课件(39页ppt)+检测含答案(教师用)

资源简介

(共39张PPT)
第三节 生活中的圆周运动
核心素养点击
物理观念 (1)了解生活中的各种圆周运动现象
(2)知道公路弯道、铁路弯道、拱形与凹形路面的特点
科学思维 (1)能根据所学知识分析生活中的各种圆周运动现象
(2)会分析火车(汽车)转弯、汽车过凸形桥和凹形路面时的有关问题
科学态度与责任 通过对生活中圆周运动实例的分析,有主动将所学知识应用于日常生活的意识,体会物理学的技术应用对日常生活的影响
圆周运动
静摩擦力
外高内低
重力和支持
力的合力
(2)火车转弯。
①运动情况:相当于做 。
②弯道的内外轨一样高:由 对轮缘的弹力提供向心力,如图甲所示,这样铁轨和车轮极易受损,还可能使火车侧翻。
③弯道的外轨略高于内轨:如果依据规定的行驶速度行驶,转弯时向心力几乎完全由 和 的合力提供,如图乙所示。
圆周运动
外轨
重力G
支持力FN
(3)铁路弯道的特点。
①转弯处 略高于 。
②铁轨对火车的支持力不是竖直向上的,而是斜向弯道 。
③铁轨对火车的支持力与火车所受重力的合力指向轨道的 ,它提供了火车以规定速度行驶时的 。
外轨
内轨
内侧
圆心
向心力
2.判一判
(1)汽车转弯可以简化为水平面上的圆周运动。 ( )
(2)火车转弯处的轨道内轨要高于外轨。 ( )
(3)火车转弯时的向心力是由铁轨与车轮间的挤压力提供的。 ( )
(4)火车通过弯道时具有速度的限制。 ( )
3.想一想
火车静止在转弯处时,合力为零,若火车按照规定的速度转弯时,其合力也是零吗?
提示:此时火车具有向心加速度,其合力沿水平方向指向轨道的内侧。

×
×

二、汽车过拱形与凹形路面
1.填一填
mg-FN
FN-mg
结论 汽车对拱形路面的压力小于汽车所受的重力,而且汽车速度越大,对路面的压力 ____ 汽车对凹形路面的压力大于汽车的重力,而且汽车速度越大,对凹形路面的压力_____
超重、
失重现象 失重状态 超重状态
2.判一判
(1)汽车在拱形路面上行驶,速度较小时,对路面的压力大于车的重力。( )
(2)汽车在水平路面上加速行驶时对水平路面的压力大于车的重力。 ( )
(3)汽车过凹形路面底部时,对路面的压力大于车的重力。 ( )
续表
越小
越大
×
×

探究(一)  火车转弯问题
[问题驱动]
火车在铁轨上转弯可以看成是匀速圆周运动,如图所示,请思考下列问题:
(1)火车转弯处的铁轨有什么特点?火车受力如何?运动特点如何?
提示:火车转弯处的外轨高于内轨;由于外轨高于内轨,
火车所受支持力的方向斜向上,火车所受支持力与重力的合力可以提供向心力;火车在行驶的过程中,中心的高度不变,故火车在同一水平面内做匀速圆周运动,即火车的向心加速度和向心力均沿水平面指向圆心。
(2)火车以规定的速度转弯时,什么力提供向心力?
提示:火车以规定的速度转弯时,重力和支持力的合力恰好提供向心力。
(3)火车转弯速度过大时,会对哪侧轨道有侧压力?
提示:当火车转弯速度过大时,重力和支持力的合力不足以提供向心力,此时火车对外侧轨道有向外的侧向压力。
(4)火车转弯速度过小时,又会对哪侧轨道有侧压力?
提示:当火车转弯速度过小时,重力和支持力的合力大于所需向心力,此时火车对内侧轨道有向里的侧向压力。           
[重难释解]
1.火车车轮的特点
火车的车轮有凸出的轮缘,火车在铁轨上运行时,车轮与铁轨有水平与竖直两个接触面,这种结构特点,主要是避免火车运行时脱轨,如图所示。
2.轨道分析
火车在转弯过程中,运动轨迹是一段水平圆弧。由于火车转弯过程中重心高度不变,故火车轨迹所在的平面是水平面,而不是斜面;火车的向心加速度和向心力均沿水平面指向圆心。
3.向心力分析
火车速度合适时,火车受如图所示的重力和支持力作用,火车转弯所需的向心力完全由重力和支持力的合力提供,合力沿水平方向,大小F=mgtan θ。
某铁路转弯处的圆弧半径是300 m,铁轨的轨距是1 435 mm,火车通过这里的规定速度是72 km/h。
(1)求内外轨的高度差。
(2)保持内外轨的这个高度差,如果列车通过转弯处的速度大于或小于72 km/h,分别会发生什么现象?说明理由。
[迁移·发散]
如果该弯道的内外轨一样高,火车质量为100 t,仍以规定速度72 km/h通过该弯道,其向心力来源是什么?向心力的大小是多少?会产生什么后果?
火车转弯问题的解题策略
(1)对火车转弯问题一定要搞清合力的方向,指向圆心方向的合外力提供火车做圆周运动的向心力,方向指向水平面内的圆心。
(2)弯道两轨在同一水平面上时,向心力由外轨对轮缘的挤压力提供。
(3)当外轨高于内轨时,向心力由火车的重力和铁轨的支持力以及内、外轨对轮缘的挤压力的合力提供,这还与火车的速度大小有关。

[素养训练]
1.[多选]在铁路转弯处,往往使外轨略高于内轨,这是为了 (  )
A.增加火车轮子对外轨的挤压
B.增加火车轮子对内轨的挤压
C.使火车车身倾斜,利用重力和支持力的合力提供转弯所需的向心力
D.限制火车向外脱轨
解析:火车轨道建成外高内低,火车转弯时,轨道的支持力与火车的重力两者的合力指向弧形轨道的圆心,为火车转弯提供了(部分)向心力,减轻了轮缘与外轨的挤压,同时在一定程度上限制了火车转弯时发生离心运动,即限制火车向外脱轨,故C、D正确。
答案:CD 
2.[多选] 如图所示,铁路转弯处外轨应略高于内轨,火车必须按规
定的速度行驶,则转弯时 (  )
A.火车所需向心力沿水平方向指向弯道内侧
B.弯道半径越大,火车所需向心力越大
C.火车的速度若小于规定速度,火车对外侧铁轨挤压
D.火车若要提速行驶,弯道的坡度应适当增大
探究(二) 汽车过拱形与凹形路面问题
[问题驱动]
如图甲、乙所示为汽车在拱形与凹形路面上行驶的示意图,汽车行驶时可以看作圆周运动。
(1)如图甲,汽车行驶到拱形路面的最高点时:
①什么力提供向心力?汽车对路面的压力有什么特点?
②汽车对路面的压力与车速有什么关系?汽车安全通过拱形路面最高点(不脱离路面)行驶的最大速度是多大?
(2)当汽车行驶到凹形路面的最底端时,什么力提供向心力?汽车对路面的压力有什么特点?
[重难释解]
汽车过拱形与凹形路面问题的比较
续表
如图所示,质量m=2.0×104 kg的汽车以不变的速率先后驶过凹形路面和凸形路面,两路面的圆弧半径均为60 m。如果路面承受的压力不得超过3.0×105N
(g取10 m/s2),则汽车允许的最大速率是多少?
[迁移·发散]
在上述典例中,若以所求速率行驶,汽车对路面的最小压力是多少?
[素养训练]
1. 如图所示,汽车以一定的速度经过一个圆弧形桥面的顶点时,关于汽车的受力及汽车对桥面的压力情况,以下说法不正确的是 (  )
A.在竖直方向汽车受到三个力:重力、桥面的支持力和向心力
B.在竖直方向汽车可能只受两个力:重力和桥面的支持力
C.在竖直方向汽车可能只受重力
D.汽车对桥面的压力小于汽车的重力
2.如图所示,汽车在炎热的夏天沿不规整的曲面行驶,
其中最容易发生爆胎的点是(汽车运动速率不变)(  )
A.a点 B.b点 C.c点 D.d点
3.如图所示,是一座半径为40 m的圆弧形拱形桥。一质量为1.0×103 kg的汽车,行驶到拱形桥顶端时,汽车运动速度为10 m/s;则此时汽车运动的向心加速度为多大?向心力大小为多大?汽车对桥面的压力是多少?(g取10 m/s2)
一、培养创新意识和创新思维
如图所示,地球可以看作一个巨大的拱形桥,桥面半径等于
地球半径,试讨论:
(1)地面上有一辆汽车在行驶,地面对它的支持力与汽车的速度有何关系?驾驶员在行驶过程中处于超重状态还是失重状态?驾驶员能感受到吗?
(2)假设地球的半径R=6 400 km,g=10 m/s2,汽车以多大的速度行驶时,驾驶员会处于完全失重状态?
二、注重学以致用和思维建模
1.(2023·广东1月学考)如图所示,一物体从固定的光滑圆弧轨道上端由静止下滑,当物体滑到轨道最低点时,下列说法正确的是(  )
A.物体处于超重状态
B.物体处于平衡状态
C.物体对轨道的压力等于物体的重力
D.物体对轨道的压力大于轨道对物体的支持力
答案:A 
2.近年来,我国高铁技术迅猛发展。目前已经全线通车的沪昆高铁,穿越沪、浙、赣、湘、黔、滇六省,使得从上海到昆明的耗时减少为原来的四分之一。在沪昆高铁的怀化至贵阳段,由于山势原因,设计师根据地形设计了一半径为
3 000 m,限定时速为180 km/h(此时车轮轮缘不受力)的弯道。试参考题目信息,结合以下条件求过此弯道时的外轨超高值d为多少。(已知我国的轨距L约为1 500 mm,且角度较小时,可认为正弦跟正切相等,重力加速度g=10 m/s2)课时跟踪检测(八) 生活中的圆周运动
A组—重基础·体现综合
1.[多选]火车在铁轨上转弯可以看作是做匀速圆周运动,火车速度提高易使外轨受损。为解决火车高速转弯时使外轨受损这一难题,你认为理论上可行的措施是(  )
A.减小弯道半径
B.增大弯道半径
C.适当减小内外轨道的高度差
D.适当增加内外轨道的高度差
解析:选BD 当火车速度增大时,可适当增大转弯半径或适当增大轨道倾角,以减小外轨所受压力,故B、D正确。
2.建造在公路上的桥梁大多是拱形桥,较少是水平桥,更少有凹形桥,其主要原因是(  )
A.为了节省建筑材料,以减少建桥成本
B.汽车以同样速度通过凹形桥时对桥面的压力要比水平或拱形桥压力大,故凹形桥易损坏
C.建造凹形桥的技术特别困难
D.拱形桥更美观些
解析:选B 汽车通过凹形桥时,路面的支持力和重力提供汽车的向心力,根据牛顿第二定律,汽车产生超重现象,汽车对桥面的压力大于重力。而汽车通过拱形桥时,产生失重现象,汽车对桥面的压力小于重力。汽车通过水平路面时,对路面的压力等于汽车的重力,这样汽车以同样的速度通过凹形桥时对桥面的压力要比水平或拱形桥压力大,故凹形桥易损坏,故选项B正确。
3.俗话说,养兵千日,用兵一时。近年来我国军队进行了多种形式的军事演习。如图所示,在某次军事演习中,一辆战车以恒定的速率在起伏不平的路面上行进,则战车对路面的压力最大和最小的位置分别是(  )
A.A点,B点 B.B点,C点
C.B点,A点 D.D点,C点
解析:选C 战车在B点时,由FN-mg=m知,FN=mg+m,则FN>mg,故对路面的压力最大;在C和A点时,由mg-FN=m知,FN=mg-m,则FNRA,故FNC>FNA,故在A点对路面压力最小,故C项正确。
4.[多选]如图所示,宇航员在围绕地球做匀速圆周运动的空间站中处于完全失重状态,下列说法正确的是(  )
A.宇航员仍受重力的作用
B.宇航员受力平衡
C.宇航员所受重力等于所需的向心力
D.宇航员不受重力的作用
解析:选AC 做匀速圆周运动的空间站中的宇航员,所受重力全部提供其做圆周运动的向心力,处于完全失重状态,并非宇航员不受重力作用,A、C正确,B、D错误。
5.一辆运输西瓜的小汽车(可视为质点),以大小为v的速度经过一座半径为R的拱形桥。在桥的最高点,其中一个质量为m的西瓜A(位置如图所示)受到周围的西瓜对它的作用力的大小为(  )
A.mg B.
C.mg- D.mg+
解析:选C 西瓜和汽车一起做匀速圆周运动,竖直方向上的合力提供向心力,有:mg-F=m,解得F=mg-,故选项C正确。
6.(2024·广东汕头高一阶段练习)公路在通过小型水库的泄洪闸的下游时,常常要修建凹形路面,也叫“过水路面”。如图所示,汽车通过凹形路面的最低点时(  )
A.汽车的加速度为零,受力平衡
B.汽车对路面的压力比汽车的重力大
C.汽车对路面的压力比汽车受到路面的支持力小
D.汽车的速度越大,汽车对路面的压力越小
解析:选B 汽车通过凹形路面的最低点时,汽车的加速度方向向上,根据牛顿第二定律可得FN-mg=m,汽车对路面的压力与汽车受到路面的支持力是一对相互作用力,大小相等,则有FN′=FN=mg+m,可知汽车对路面的压力比汽车的重力大,汽车的速度越大,汽车对路面的压力越大。故选B。
7.在高速公路的拐弯处,通常路面都是外高内低。如图所示,在某路段汽车向左拐弯,司机左侧的路面比右侧的路面低一些。汽车的运动可看作是半径为R的圆周运动。设内、外路面高度差为h,路基的水平宽度为d,路面的宽度为L。已知重力加速度为g。要使车轮与路面之间的横向(即垂直于前进方向)摩擦力等于零,则汽车转弯时的车速应等于(  )
A. B.
C. D.
解析:选B 设路面的倾角为θ,根据牛顿第二定律得mgtan θ=m,又由数学知识可知tan θ=,联立解得v= ,选项B正确。
8.质量为1吨的汽车过拱形桥的运动可以看作匀速圆周运动,以20 m/s的速度过桥,桥面的圆弧半径为500 m,g取9.8 m/s2,则汽车过桥面顶点时对桥面的压力是(  )
A.800 N B.9 000 N
C.10 000 N D.10 800 N
解析:选B 汽车在桥顶时,由重力和支持力的合力提供圆周运动的向心力,根据牛顿第二定律得mg-N=m,解得N=mg-m=1 000×9.8 N-1 000× N=9 000 N,根据牛顿第三定律得:对汽车桥面的压力大小N′=N=9 000 N,方向竖直向下,故B正确。
9. 2022年北京冬奥会短道速滑混合团体2 000米接力决赛中,我国短道速滑队夺得中国队在本届冬奥会的首金。
(1)如果把运动员起跑后进入弯道前的过程看作初速度为零的匀加速直线运动,若运动员加速到速度v=9 m/s时,滑过的距离x=15 m,求加速度的大小;
(2)如果把运动员在弯道滑行的过程看作轨道为半圆的匀速圆周运动,如图所示,若甲、乙两名运动员同时进入弯道,滑行半径分别为R甲 =8 m、R乙 =9 m,滑行速率分别为v甲 =10 m/s、v乙 =11 m/s,求甲、乙过弯道时的向心加速度大小之比,并通过计算判断哪位运动员先出弯道。
解析:(1)由运动学公式v2=2ax,得a=2.7 m/s2。
(2)由向心加速度公式a=,带入数据可得向心加速度之比为,由t==,代入数据可得t甲=,t乙=,t甲答案:(1)2.7 m/s2 (2) 甲
B组—重应用·体现创新
10.飞机驾驶员最多可承受9倍的重力加速度带来的影响,当飞机在竖直平面上沿圆弧轨道俯冲时速度为v,则圆弧的最小半径为(  )
A.   B.   C.   D.
解析:选B 当飞机飞到最低点时,由牛顿第二定律得:
F-mg=m;由题意得:
F≤9mg;解得:R≥,故B正确。
11.一辆质量m=2 t的轿车,驶过半径R=90 m的一段拱形桥面,g=10 m/s2,求:
(1)轿车以10 m/s的速度通过桥面最高点时,对桥面的压力是多大?
(2)在最高点对桥面的压力等于零时,轿车的速度大小是多少?
解析:(1)轿车在桥上运动,通过拱形桥面最高点时,竖直方向受力分析如图所示。
设桥面对轿车的支持力为N,重力与桥面对轿车支持力的合力提供向心力,则mg-N=m,得出N≈1.78×104 N,根据牛顿第三定律,轿车在桥面最高点时对桥面压力的大小为1.78×104 N。
(2)对桥面的压力等于零时,则桥面对轿车的支持力为N=0。设此时轿车的速度为v′,轿车的重力提供向心力,
则mg=m,得出v′==30 m/s。
答案:(1)1.78×104 N (2)30 m/s
12.如图所示,高速公路转弯处弯道半径R=100 m,汽车的质量m=1 500 kg,重力加速度g=10 m/s2。 
(1)当汽车以v1=10 m/s的速率行驶时,其所需的向心力为多大?
(2)若路面是水平的,已知汽车轮胎与路面间的动摩擦因数μ=0.4,且最大静摩擦力等于滑动摩擦力。问汽车转弯时不发生径向滑动所允许的最大速率vm为多少?
(3)若汽车转弯时仍以(2)中的最大速率vm,且要求汽车刚好不受径向的摩擦力作用,则转弯处的路面应怎样设计?
解析:(1)由题意有:F=m=1 500× N=1 500 N,故汽车所需向心力为1 500 N。
(2)当以最大速率转弯时,最大静摩擦力提供向心力,此时有:fm=μmg=m,
由此解得最大速率为:vm=20 m/s。
(3)若汽车转弯时仍以(2)中的最大速率vm,且要求汽车刚好不受径向的摩擦力作用,则转弯处的路面应设计成“外高内低”的情况,设路面的斜角为θ,作出汽车的受力图,如图所示,根据牛顿第二定律有:
mgtan θ=m,解得tan θ=0.4,
即路面的倾角θ=arctan 0.4。
答案:(1) 1 500 N  (2) 20 m/s (3)见解析
21世纪教育网(www.21cnjy.com)

展开更多......

收起↑

资源列表